Abstract

We propose a method that eliminates speckle artifact in the reconstruction of triangular mesh based computer generated holograms. The proposed method generates a number of holograms with different sets of interleaved plane carrier waves. The generated holograms are displayed sequentially with time-multiplexing, achieving speckle-free reconstruction without sacrificing the viewing angle or depth of focus. The proposed method is verified experimentally using viewing-window type holographic display setup. The experimental results indicate that the proposed method can achieve speckle-free reconstruction with smaller number of the time-multiplexing than conventional temporal speckle averaging techniques.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram

Mehdi Askari, Seong-Bok Kim, Kwang-Soo Shin, Seok-Bum Ko, Sang-Hoo Kim, Dae-Youl Park, Yeon-Gyeong Ju, and Jae-Hyeung Park
Opt. Express 25(21) 25867-25878 (2017)

Removal of line artifacts on mesh boundary in computer generated hologram by mesh phase matching

Jae-Hyeung Park, Han-Ju Yeom, Hee-Jae Kim, HuiJun Zhang, BoNi Li, Yeong-Min Ji, and Sang-Hoo Kim
Opt. Express 23(6) 8006-8013 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).
  2. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
    [PubMed]
  3. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995).
    [PubMed]
  4. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
    [PubMed]
  5. W. F. Hsu and C. F. Yeh, “Speckle suppression in holographic projection displays using temporal integration of speckle images from diffractive optical elements,” Appl. Opt. 50(34), H50–H55 (2011).
    [PubMed]
  6. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
    [PubMed]
  7. T. Kurihara and Y. Takaki, “Speckle-free, shaded 3D images produced by computer-generated holography,” Opt. Express 21(4), 4044–4054 (2013).
    [PubMed]
  8. T. Utsugi and M. Yamaguchi, “Speckle-suppression in hologram calculation using ray-sampling plane,” Opt. Express 22(14), 17193–17206 (2014).
    [PubMed]
  9. J.-H. Park, “Recent progresses in computer generated holography for three-dimensional scene,” J. Inf. Displ. 18(1), 1–12 (2017).
  10. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47(10), 1567–1574 (2008).
    [PubMed]
  11. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47(19), D117–D127 (2008).
    [PubMed]
  12. Y. Pan, Y. Wang, J. Liu, X. Li, and J. Jia, “Improved full analytical polygon-based method using Fourier analysis of the three-dimensional affine transformation,” Appl. Opt. 53(7), 1354–1362 (2014).
    [PubMed]
  13. J.-H. Park, H.-J. Yeom, H.-J. Kim, H. Zhang, B. Li, Y.-M. Ji, and S.-H. Kim, “Removal of line artifacts on mesh boundary in computer generated hologram by mesh phase matching,” Opt. Express 23(6), 8006–8013 (2015).
    [PubMed]
  14. J.-H. Park, S.-B. Kim, H.-J. Yeom, H.-J. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and S.-B. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
    [PubMed]
  15. Y.-M. Ji, H. Yeom, and J.-H. Park, “Efficient texture mapping by adaptive mesh division in mesh-based computer generated hologram,” Opt. Express 24(24), 28154–28169 (2016).
    [PubMed]
  16. H.-J. Yeom and J.-H. Park, “Calculation of reflectance distribution using angular spectrum convolution in mesh-based computer generated hologram,” Opt. Express 24(17), 19801–19813 (2016).
    [PubMed]

2017 (1)

J.-H. Park, “Recent progresses in computer generated holography for three-dimensional scene,” J. Inf. Displ. 18(1), 1–12 (2017).

2016 (2)

2015 (2)

2014 (2)

2013 (1)

2011 (2)

2009 (2)

2008 (2)

1995 (1)

Ahrenberg, L.

Amako, J.

Benzie, P.

Golan, L.

Hahn, J.

Hsu, W. F.

Ji, Y.-M.

Jia, J.

Kang, H.

Kim, H.

Kim, H.-J.

Kim, S.-B.

Kim, S.-H.

Ko, S.-B.

Kurihara, T.

Lee, B.

Li, B.

Li, X.

Liu, J.

Magnor, M.

Miura, H.

Onural, L.

Pan, Y.

Park, J.-H.

Shoham, S.

Sonehara, T.

Takaki, Y.

Utsugi, T.

Wang, Y.

Watson, J.

Yamaguchi, M.

Yaras, F.

Yeh, C. F.

Yeom, H.

Yeom, H.-J.

Yokouchi, M.

Zhang, H.

Appl. Opt. (6)

J. Inf. Displ. (1)

J.-H. Park, “Recent progresses in computer generated holography for three-dimensional scene,” J. Inf. Displ. 18(1), 1–12 (2017).

Opt. Express (8)

Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express 19(8), 7567–7579 (2011).
[PubMed]

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009).
[PubMed]

T. Kurihara and Y. Takaki, “Speckle-free, shaded 3D images produced by computer-generated holography,” Opt. Express 21(4), 4044–4054 (2013).
[PubMed]

T. Utsugi and M. Yamaguchi, “Speckle-suppression in hologram calculation using ray-sampling plane,” Opt. Express 22(14), 17193–17206 (2014).
[PubMed]

J.-H. Park, H.-J. Yeom, H.-J. Kim, H. Zhang, B. Li, Y.-M. Ji, and S.-H. Kim, “Removal of line artifacts on mesh boundary in computer generated hologram by mesh phase matching,” Opt. Express 23(6), 8006–8013 (2015).
[PubMed]

J.-H. Park, S.-B. Kim, H.-J. Yeom, H.-J. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and S.-B. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
[PubMed]

H.-J. Yeom and J.-H. Park, “Calculation of reflectance distribution using angular spectrum convolution in mesh-based computer generated hologram,” Opt. Express 24(17), 19801–19813 (2016).
[PubMed]

Y.-M. Ji, H. Yeom, and J.-H. Park, “Efficient texture mapping by adaptive mesh division in mesh-based computer generated hologram,” Opt. Express 24(24), 28154–28169 (2016).
[PubMed]

Other (1)

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Company Publishers, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

An example of the angular spectrum with a single plane carrier wave.

Fig. 2
Fig. 2

Conceptual illustration of the proposed method.

Fig. 3
Fig. 3

Configuration of experimental setup.

Fig. 4
Fig. 4

Angular spectrum and reconstructions when two plane carrier waves are used in the synthesis of the hologram. (a) Reconstruction when the Fourier plane aperture passes the angular spectrum associated with two carrier waves, (b) reconstruction when the aperture passes only one carrier wave component.

Fig. 5
Fig. 5

Non-real-time experimental result with the LCoS SLM. (a) conventional temporal averaging method (b) proposed method.

Fig. 6
Fig. 6

Real-time experimental result with DMD SLM. (a) conventional temporal averaging method (b) proposed method

Fig. 7
Fig. 7

Real-time experimental result with DMD SLM for speckle measurement. (a) conventional temporal averaging method (b) proposed method.

Fig. 8
Fig. 8

Measured speckle contrast (a) real-time experiment using DMD SLM (b) non-real-time experiment using LCoS SLM.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G( f x,y ; ν x,y ;a( ν x,y ) )=B( f x,y ; ν x,y )a( ν x,y )exp[ j2π ν x,y,z T r x,y,z o ] e j2π f xl,yl,zl T c det( A ) f zl f z ,
B( f x,y ; ν x,y )= G r ( A T [ 1 0 0 0 1 0 ]R{ f x,y,z ν x,y,z } ),
G( f x,y )= G( f x,y ; ν x,y ;a( ν x,y ) ) d ν x,y ,
G( f x,y ){ D( f x,y )B( f x,y ;[ 0 0 ] ) } e j2π f xl,yl,zl T c det( A ) f zl f z ,
D( f x,y )=a( f x,y )exp[ j2π f x,y,z T r x,y,z o ].
D n ( f x,y )= m δ( f x,y mΔ ν x,y s x,y (n) ) ,