Abstract

We present a silicon side heater with integrated diode to provide multiplexed control of different elements in a photonic circuit based on the polarity of the driving signal. The diode introduces an asymmetric electrical response where the heater is only active under forward bias. This can be used to address multiple heaters through the same electrical electrical contacts. We demonstrate push-pull operation on a Mach-Zehnder interferometer with heaters in both arms, as well as time-multiplexed operation of multiple heaters by modulating the driving signal. We extend this work by demonstrating how pulse width modulation (PWM) and duobinary-PWM can be used to improve the linearity of the response of the phase shifters.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband linearized silicon modulator

Anatol Khilo, Cheryl M. Sorace, and Franz X. Kärtner
Opt. Express 19(5) 4485-4500 (2011)

25-Gb/s broadband silicon modulator with 0.31-V·cm VπL based on forward-biased PIN diodes embedded with passive equalizer

Takeshi Baba, Suguru Akiyama, Masahiko Imai, and Tatsuya Usuki
Opt. Express 23(26) 32950-32960 (2015)

Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter

Wei Li, Wen Hui Sun, Wen Ting Wang, Li Xian Wang, Jian Guo Liu, and Ning Hua Zhu
Opt. Express 22(5) 5522-5527 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
    [Crossref] [PubMed]
  2. G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).
  3. Y. Maegami, G. Cong, M. Ohno, M. Okano, and K. Yamada, “Strip-loaded waveguide-based optical phase shifter for high-efficiency silicon optical modulators,” Photon. Res. 4, 222–226 (2016).
    [Crossref]
  4. Y. Yang, Q. Fang, M. Yu, X. Tu, R. Rusli, and G. Lo, “High-efficiency Si optical modulator using Cu travelling-wave electrode,” Opt. Express 22, 29978–29985 (2014).
    [Crossref]
  5. J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
    [Crossref]
  6. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” Group IV Photonics, South Korea (2013), p.ThC2.
  7. A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, Fabrication and “Characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
    [Crossref]
  8. D. Schall, M. Mohsin, A. Sagade, M. Otto, B. Chmielak, S. Suckow, A. Giesecke, D. Neumaier, and H. Kurz, “Infrared transparent graphene heater for silicon photonic integrated circuits,” Opt. Express 24, 7871–7878 (2016).
    [Crossref] [PubMed]
  9. B. Lee, M. Zhang, F. Barbosa, S. Miller, A. Mohanty, R. St-Gelais, and M. Lipson, “On-chip thermo-optic tuning of suspended microresonators,” Opt. Express 25, 12109–12120 (2017).
    [Crossref] [PubMed]
  10. A. Rosa, A. Gutierrez, A. Brimont, A. Griol, and P. Sanchis, “High performace silicon 2×2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes,” Opt. Express 24, 191–198 (2016).
    [Crossref] [PubMed]
  11. L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3, 159–166 (2016).
    [Crossref]
  12. P. P. Absil, P. Verheyen, P. D. Heyn, M. Pantouvaki, G. Lepage, J. D. Coster, and J. V. Campenhout, “Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical i/o’s,” Opt. Express 23, 9369–9378 (2015).
    [Crossref] [PubMed]
  13. W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The ipkiss photonic design framework,” Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1E.1.

2017 (1)

2016 (4)

2015 (1)

2014 (2)

2013 (2)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

M. R. Watts, J. Sun, C. DeRose, D. C. Trotter, R. W. Young, and G. N. Nielson, “Adiabatic thermo-optic Mach-Zehnder switch,” Opt. Lett. 38, 733–735 (2013).
[Crossref] [PubMed]

2012 (1)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Absil, P.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, Fabrication and “Characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” Group IV Photonics, South Korea (2013), p.ThC2.

Absil, P. P.

Barbosa, F.

Bogaerts, W.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, Fabrication and “Characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The ipkiss photonic design framework,” Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1E.1.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” Group IV Photonics, South Korea (2013), p.ThC2.

Brimont, A.

Campenhout, J. V.

Chen, S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Chmielak, B.

Cong, G.

Coster, J. D.

Dai, D.

DeRose, C.

Dumon, P.

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The ipkiss photonic design framework,” Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1E.1.

Fang, Q.

Fiers, M.

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The ipkiss photonic design framework,” Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1E.1.

Gardes, F. Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Giesecke, A.

Goossens, D.

Griol, A.

Gutierrez, A.

He, S.

Heinert, D.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Heyn, P. D.

Hofmann, G.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Hsu, S. S.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Hu, Y.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Komma, J.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Kurz, H.

Lee, B.

Lepage, G.

Li, K.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Lipson, M.

Lo, G.

Maegami, Y.

Mashanovich, G. Z.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Masood, A.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, Fabrication and “Characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” Group IV Photonics, South Korea (2013), p.ThC2.

Miller, S.

Mohanty, A.

Mohsin, M.

Nawrodt, R.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Nedeljkovic, M.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Neumaier, D.

Nielson, G. N.

Ohno, M.

Okano, M.

Otto, M.

Pantouvaki, M.

Reed, G. T.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Rosa, A.

Rusli, R.

Sagade, A.

Sanchis, P.

Schall, D.

Schwarz, C.

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Shi, Y.

Sivilotti, M.

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The ipkiss photonic design framework,” Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1E.1.

St-Gelais, R.

Suckow, S.

Sun, J.

Thomson, D. J.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Trotter, D. C.

Tu, X.

Van Campenhout, J.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, Fabrication and “Characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” Group IV Photonics, South Korea (2013), p.ThC2.

Van Thourhout, D.

A. Masood, M. Pantouvaki, D. Goossens, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, Fabrication and “Characterization of CMOS-compatible integrated tungsten heaters for thermo-optic tuning in silicon photonics devices,” Opt. Mater. Express 4(7), 1383–1388 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” Group IV Photonics, South Korea (2013), p.ThC2.

Verheyen, P.

Watts, M. R.

Wilson, P. R.

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Yamada, K.

Yang, Y.

Yin, Y.

Young, R. W.

Yu, L.

Yu, M.

Zhang, M.

Appl. Phys. Lett. (1)

J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt, “Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures,” Appl. Phys. Lett. 101(4), 041905 (2012).
[Crossref]

Nanophotonics (1)

G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S. Chen, and S. S. Hsu, “Recent breakthroughs in carrier depletion based silicon optical modulators,” Nanophotonics 3(4–5), 229–245 (2013).

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. (1)

Other (2)

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” Group IV Photonics, South Korea (2013), p.ThC2.

W. Bogaerts, M. Fiers, M. Sivilotti, and P. Dumon, “The ipkiss photonic design framework,” Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1E.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) The diode heater is implemented as a side heater using a strip waveguide (insert). Multiple heaters can be placed in parallel to increase the power output, and the waveguide can be routed to surround the heaters, increasing the power efficiency of the phase shifter. (b) The equivalent electric circuit (insert) and the I–V curve of a measured device shows a clear diode behaviour, with negligible current flow (and power dissipation) for reverse bias up to −7V.

Fig. 2
Fig. 2

(a) Schematic of the ring resonators circuit, (b) schematic of the MZI with diode heaters in a push-pull configuration, and (c) the electric circuit equivalent. For a given polarity either D1 or D2 will be conducting.

Fig. 3
Fig. 3

Microscope image of the fabricated MZI using diode heaters on both arms to operate in push-pull configuration.

Fig. 4
Fig. 4

(a) The response of the measured MZI for different driving DC voltages and (b) the correlation between the applied voltage and the obtained spectrum shift (in nm).

Fig. 5
Fig. 5

(a) Spectrum shift as function of duty cycle of the PWM driving signal and (b) a comparison between the spectrum shift in function of a DC driving signal and a PWM signal. The points where the duty cycle value is negative indicates that the polarity of the PWM signal is negative. For the PWM measurement we applied a signal with a frequency f = 2MHz with an amplitude of 5V.

Fig. 6
Fig. 6

The spectral response of the ring resonator circuit as a function of the applied voltage at the contact pads. Depending on the polarity of the driving signal either Ring A or Ring B will respond to the stimulus.

Fig. 7
Fig. 7

(a) Correspondence between the duty-cycle values of the duobinary PWM driving signal (rows 1 and 3) and the measured spectrum shift for the resonances of the two rings (rows 2 and 4). The bottom row shows the respective duobinary PWM signal. (b) Zoomed-in traces of transitions showing the change in the duobinary PWM signal.

Fig. 8
Fig. 8

The thermal RC model of the phase shifter(a) is used to determine the frequency domain response of the phase shifter. From the transient response of the circuit(b) it is possible to extract its RC constant (τ) and feed it back to the RC model. The obtained values for the RC constants were τcharging = 77.5μs and τdischarging = 97.5μs.

Fig. 9
Fig. 9

(a) The measured RC constant is used to feed the RC model and, with that, obtain the frequency domain response of the circuit. (b) The measured relative phase shift fluctuation for different frequencies of the PWM signal shows a constant phase response for the signal frequency f = 500KHz. The expected attenuation for the frequencies plotted in (b) are marked in the diagram in (a).