Abstract

Optical trapping of nano-objects (i.e., the nano-tweezers) has been investigated intensively. Most of those nano-tweezers, however, were focused on the trapping of a single nanoparticle, while the interactions between them were seldom considered. In this work, we propose a nano-tweezers in a slot photonic crystal cavity supporting multiple modes, where the relative positions of two trapped nanoparticles can be tuned by selective excitation of different resonant mode. Results show that both the nanoparticles are trapped at the center of the cavity when the first order mode is excited. When the incident source is tuned to the second order mode, however, these two nanoparticles push each other and are trapped stably at two separated positions. Also, the inter-distance between them can be tuned precisely by changing the relative power of the two modes. This provides a potential method to control the interactions between two nano-objects via optically tuning the separation between them, and may have applications in various related disciplinary.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles

Pin-Tso Lin, Tsan-Wen Lu, and Po-Tsung Lee
Opt. Express 22(6) 6791-6800 (2014)

Optical trapping via guided resonance modes in a Slot-Suzuki-phase photonic crystal lattice

Jing Ma, Luis Javier Martínez, and Michelle L. Povinelli
Opt. Express 20(6) 6816-6824 (2012)

Localized optical manipulation in optical ring resonators

Haotian Wang, Xiang Wu, and Deyuan Shen
Opt. Express 23(21) 27650-27660 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [PubMed]
  2. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17(11), 772–774 (1992).
    [PubMed]
  3. A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
    [PubMed]
  4. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
    [PubMed]
  5. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16(18), 13560–13568 (2008).
    [PubMed]
  6. P. T. Lin and P. T. Lee, “Efficient transportation of nano-sized particles along slotted photonic crystal waveguide,” Opt. Express 20(3), 3192–3199 (2012).
    [PubMed]
  7. C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009).
    [PubMed]
  8. Y. Zhang, T. Suyama, and B. Ding, “Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam,” Opt. Lett. 35(8), 1281–1283 (2010).
    [PubMed]
  9. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
  10. W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
    [PubMed]
  11. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
    [PubMed]
  12. J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
    [PubMed]
  13. A. E. Cetin, “FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures,” Int. Nano Lett. 5, 21–27 (2015).
  14. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
    [PubMed]
  15. A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
    [PubMed]
  16. M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).
  17. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
    [PubMed]
  18. N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
    [PubMed]
  19. S. Han and Y. Shi, “Systematic analysis of optical gradient force in photonic crystal nanobeam cavities,” Opt. Express 24(1), 452–458 (2016).
    [PubMed]
  20. P. T. Lin, T. W. Lu, and P. T. Lee, “Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles,” Opt. Express 22(6), 6791–6800 (2014).
    [PubMed]
  21. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [PubMed]
  22. A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
    [PubMed]
  23. Ø. I. Helle, B. S. Ahluwalia, and O. G. Hellesø, “Optical transport, lifting and trapping of micro-particles by planar waveguides,” Opt. Express 23(5), 6601–6612 (2015).
    [PubMed]
  24. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
  25. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [PubMed]
  26. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).
  27. T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).
  28. T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).
  29. S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009).
    [PubMed]

2017 (1)

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

2016 (1)

2015 (2)

Ø. I. Helle, B. S. Ahluwalia, and O. G. Hellesø, “Optical transport, lifting and trapping of micro-particles by planar waveguides,” Opt. Express 23(5), 6601–6612 (2015).
[PubMed]

A. E. Cetin, “FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures,” Int. Nano Lett. 5, 21–27 (2015).

2014 (2)

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[PubMed]

P. T. Lin, T. W. Lu, and P. T. Lee, “Photonic crystal waveguide cavity with waist design for efficient trapping and detection of nanoparticles,” Opt. Express 22(6), 6791–6800 (2014).
[PubMed]

2013 (1)

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[PubMed]

2012 (4)

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

P. T. Lin and P. T. Lee, “Efficient transportation of nano-sized particles along slotted photonic crystal waveguide,” Opt. Express 20(3), 3192–3199 (2012).
[PubMed]

2011 (3)

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[PubMed]

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[PubMed]

2010 (3)

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[PubMed]

Y. Zhang, T. Suyama, and B. Ding, “Longer axial trap distance and larger radial trap stiffness using a double-ring radially polarized beam,” Opt. Lett. 35(8), 1281–1283 (2010).
[PubMed]

2009 (5)

C. O. Mejean, A. W. Schaefer, E. A. Millman, P. Forscher, and E. R. Dufresne, “Multiplexed force measurements on live cells with holographic optical tweezers,” Opt. Express 17(8), 6209–6217 (2009).
[PubMed]

S. Lin, J. Hu, L. Kimerling, and K. Crozier, “Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection,” Opt. Lett. 34(21), 3451–3453 (2009).
[PubMed]

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).

2008 (1)

2006 (2)

A. Rahmani and P. C. Chaumet, “Optical trapping near a photonic crystal,” Opt. Express 14(13), 6353–6358 (2006).
[PubMed]

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).

2004 (1)

1998 (1)

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).

1992 (1)

1986 (1)

Ahluwalia, B. S.

Almeida, V. R.

Ashkin, A.

Barrios, C. A.

Barth, M.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).

Bar-Ziv, R.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).

Benson, O.

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).

Bjorkholm, J. E.

Borghs, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

Cao, Y.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Cetin, A. E.

A. E. Cetin, “FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures,” Int. Nano Lett. 5, 21–27 (2015).

Chaumet, P. C.

Chen, C.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

Chu, S.

Crozier, K.

Cui, X.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).

Descharmes, N.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[PubMed]

Dharanipathy, U. P.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[PubMed]

Diao, Z.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[PubMed]

Ding, B.

Ding, W.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Dufresne, E. R.

Dziedzic, J. M.

Ee, H. S.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).

Erickson, D.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[PubMed]

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[PubMed]

Erni, D.

Forscher, P.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).

Gordon, R.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).

Hafner, C.

Han, S.

Helle, Ø. I.

Hellesø, O. G.

Houdré, R.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[PubMed]

Hu, J.

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[PubMed]

Jiang, Z.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Juan, M. L.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).

Kang, J. H.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Kawata, S.

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).

Kim, K.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Kimerling, L.

Kotnala, A.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[PubMed]

Lee, P. T.

Lee, Y. H.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Lerdsuchatawanich, T.

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[PubMed]

Li, Y.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

Lin, P. T.

Lin, S.

Lipson, M.

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).

Lu, T. W.

Maes, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

Mahdy, M. R. C.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Mandal, S.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[PubMed]

Martin, O. J.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[PubMed]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).

Mejean, C. O.

Meller, A.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).

Millman, E. A.

Novitsky, A.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).

Park, H. G.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Pernice, W. H. P.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).

Quan, Q.

Quidant, R.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).

Rahmani, A.

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[PubMed]

Schaefer, A. W.

Schuck, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).

Seo, M. K.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Serey, X.

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[PubMed]

Shi, Y.

Sugiura, T.

Sun, F.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Suyama, T.

Tang, H. X.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).

Tlusty, T.

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).

Tonin, M.

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[PubMed]

Van Dorpe, P.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

Wang, L.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Xiong, C.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).

Xu, Q.

Yang, A. H.

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[PubMed]

Yoon, T. Y.

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[PubMed]

Zhang, Y.

Zhu, T.

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Appl. Phys. Lett. (4)

M. Barth and O. Benson, “Manipulation of dielectric particles using photonic crystal cavities,” Appl. Phys. Lett. 89, 253114 (2006).

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “High-Q aluminum nitride photonic crystal nanobeam cavities,” Appl. Phys. Lett. 100, 091105 (2012).

T. Zhu, A. Novitsky, Y. Cao, M. R. C. Mahdy, L. Wang, F. Sun, Z. Jiang, and W. Ding, “Mode conversion enables optical pulling force in photonic crystal waveguides,” Appl. Phys. Lett. 111(6), 061105 (2017).

Int. Nano Lett. (1)

A. E. Cetin, “FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures,” Int. Nano Lett. 5, 21–27 (2015).

Nano Lett. (7)

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11(9), 3763–3767 (2011).
[PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett. 10(1), 99–104 (2010).
[PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[PubMed]

A. H. Yang, T. Lerdsuchatawanich, and D. Erickson, “Forces and transport velocities for a particle in a slot waveguide,” Nano Lett. 9(3), 1182–1188 (2009).
[PubMed]

Nat. Commun. (1)

J. H. Kang, K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, “Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas,” Nat. Commun. 2, 582 (2011).
[PubMed]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).

Opt. Express (8)

Opt. Lett. (5)

Phys. Rev. Lett. (2)

T. Tlusty, A. Meller, and R. Bar-Ziv, “Optical gradient forces of strongly localized fields,” Phys. Rev. Lett. 81, 1738–1741 (1998).

N. Descharmes, U. P. Dharanipathy, Z. Diao, M. Tonin, and R. Houdré, “Observation of backaction and self-induced trapping in a planar hollow photonic crystal cavity,” Phys. Rev. Lett. 110(12), 123601 (2013).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scheme of the slotted photonic crystal cavity. See text for the detailed structural parameters. (b) The transmission spectrum of the structure, which shows two resonances at 1401 nm and 1683 nm, respectively. (c) The electric distribution (|(E)|) of xy cross section view (z = 0 nm) for the first order mode and (d) the second order mode. The arrows indicate the in-plane electric vector with the arrow lengths proportional to the amplitudes.

Fig. 2
Fig. 2

Optical forces and potential well on the polystyrene particles with radius of 10 nm, 12 nm and 15 nm, respectively, along x axis. The middle row shows the structure of the slot cavity and the nanoparticles. (a) Optical forces for the 1st order mode. (b) Optical forces for the 2nd order mode. (c) Potential wells for the 1st order mode. (d) Potential wells for the 2nd order mode.

Fig. 3
Fig. 3

Optical force on Au particles with radius of 10, 12 and 15 nm along x axis for (a) the 1st order mode and (b) the 2nd order mode. The trapping potentials on particles with radius of 10, 12 and 15 nm along x axis for the 1st and 2nd order modes are shown in (c) and (d), respectively.

Fig. 4
Fig. 4

The trapping properties in the y (left column) and z (right column) directions for the 1st order mode and the polystyrene spheres with r = 10 nm. (a) Field profile |(E)| along the y direction. It can be seen that the field intensity maximum is on the wall. (b) Optical force Fy versus the central position y of the object. (c) Potential well in the y direction. (d) Field profile |(E)| along the z direction. (e) Optical force Fz versus the central position z of the object. (f) Potential well in the z direction.

Fig. 5
Fig. 5

Optical forces as a function of power ratio α (see Eq. (4)) on the polystyrene particle with a radius of 12 nm. The inter-distance between the trapped particles can be tuned from 200 nm to about 300 nm when α changes from 0 the 1.5.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F= S T M nds ,
T M =εEE+μHH+ 1 2 I ( ε | E | 2 +μ | H | 2 ),
U( x )= x F x dx .
F=α F 1 + F 2 ,