Abstract

In this study, a novel fiber-optic, multipoint, laser–ultrasonic actuator based on fiber core-opened tapers (COTs) is proposed and demonstrated. The COTs were fabricated by splicing single-mode fibers using a standard fiber splicer. A COT can effectively couple part of a core mode into cladding modes, and the coupling ratio can be controlled by adjusting the taper length. Such characteristics are used to obtain a multipoint, laser–ultrasonic actuator with balanced signal strength by reasonably controlling the taper lengths of the COTs. As a prototype, we constructed an actuator that generated ultrasound at four points with a balanced ultrasonic strength by connecting four COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8% in a fiber link. This simple-to-fabricate, multipoint, laser–ultrasonic actuator with balanced ultrasound signal strength has potential applications in fiber-optic ultrasound testing technology.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multipoint fiber-optic laser–ultrasound generation along a fiber based on the core-offset splicing of fibers

Xiaolong Dong, Shimin Gao, Jiajun Tian, and Yong Yao
Photon. Res. 5(4) 287-292 (2017)

Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings

Jiajun Tian, Qi Zhang, and Ming Han
Opt. Express 21(5) 6109-6114 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard, I. Papakonstantinou, and A. E. Desjardins, “Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging,” Biomed. Opt. Express 6(4), 1502–1511 (2015).
    [PubMed]
  2. B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).
  3. J. B. Spicer, A. D. W. McKie, and J. W. Wagner, “Quantitative theory for laser ultrasonic waves in a thin plate,” Appl. Phys. Lett. 57(18), 1882–1884 (1990).
  4. K. Diamanti and C. Soutis, “Structural health monitoring techniques for aircraft composite structures,” Prog. Aerosp. Sci. 46(8), 342–352 (2010).
  5. N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Technol. 65(15), 2575–2587 (2005).
  6. P. A. Fomitchov, A. K. Kromine, and S. Krishnaswamy, “Photoacoustic probes for nondestructive testing and biomedical applications,” Appl. Opt. 41(22), 4451–4459 (2002).
    [PubMed]
  7. E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).
  8. Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).
  9. L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).
  10. C. Hu, Z. Yu, and A. Wang, “An all fiber-optic multi-parameter structure health monitoring system,” Opt. Express 24(18), 20287–20296 (2016).
    [PubMed]
  11. T. Liu, L. Hu, and M. Han, “Adaptive ultrasonic sensor using a fiber ring laser with tandem fiber Bragg gratings,” Opt. Lett. 39(15), 4462–4465 (2014).
    [PubMed]
  12. T. Liu, L. Hu, and M. Han, “Multiplexed fiber-ring laser sensors for ultrasonic detection,” Opt. Express 21(25), 30474–30480 (2013).
    [PubMed]
  13. E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
    [PubMed]
  14. X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
    [PubMed]
  15. N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).
  16. H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
    [PubMed]
  17. V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).
  18. J. Tian, Q. Zhang, and M. Han, “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings,” Opt. Express 21(5), 6109–6114 (2013).
    [PubMed]
  19. C. Shen, Y. Wang, J. Chu, Y. Lu, Y. Li, and X. Dong, “Optical fiber axial micro-displacement sensor based on Mach-Zehnder interferometer,” Opt. Express 22(26), 31984–31992 (2014).
    [PubMed]
  20. C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).
  21. B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
    [PubMed]
  22. D. Wu, T. Zhu, M. Deng, D. W. Duan, L. L. Shi, J. Yao, and Y. J. Rao, “Refractive index sensing based on Mach-Zehnder interferometer formed by three cascaded single-mode fiber tapers,” Appl. Opt. 50(11), 1548–1553 (2011).
    [PubMed]
  23. S. Zhang, W. Zhang, P. Geng, and S. Gao, “Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications,” Opt. Commun. 288, 47–51 (2013).
  24. Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).
  25. G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).
  26. C. H. Yew, K. G. Chen, and D. L. Wang, “An experimental study of interaction between surface waves and a surface breaking crack,” J. Acoust. Soc. Am. 75(1), 189–196 (1984).
  27. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Quantitative studies of thermally generated elastic waves in laser-irradiated metal,” J. Appl. Phys. 51(12), 6210–6216 (1980).

2016 (1)

2015 (2)

2014 (7)

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[PubMed]

T. Liu, L. Hu, and M. Han, “Adaptive ultrasonic sensor using a fiber ring laser with tandem fiber Bragg gratings,” Opt. Lett. 39(15), 4462–4465 (2014).
[PubMed]

C. Shen, Y. Wang, J. Chu, Y. Lu, Y. Li, and X. Dong, “Optical fiber axial micro-displacement sensor based on Mach-Zehnder interferometer,” Opt. Express 22(26), 31984–31992 (2014).
[PubMed]

B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

2013 (4)

S. Zhang, W. Zhang, P. Geng, and S. Gao, “Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications,” Opt. Commun. 288, 47–51 (2013).

J. Tian, Q. Zhang, and M. Han, “Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings,” Opt. Express 21(5), 6109–6114 (2013).
[PubMed]

T. Liu, L. Hu, and M. Han, “Multiplexed fiber-ring laser sensors for ultrasonic detection,” Opt. Express 21(25), 30474–30480 (2013).
[PubMed]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).

2012 (1)

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

2011 (1)

2010 (1)

K. Diamanti and C. Soutis, “Structural health monitoring techniques for aircraft composite structures,” Prog. Aerosp. Sci. 46(8), 342–352 (2010).

2009 (1)

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

2008 (1)

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

2007 (1)

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).

2005 (1)

N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Technol. 65(15), 2575–2587 (2005).

2002 (1)

2001 (1)

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[PubMed]

1997 (1)

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).

1990 (1)

J. B. Spicer, A. D. W. McKie, and J. W. Wagner, “Quantitative theory for laser ultrasonic waves in a thin plate,” Appl. Phys. Lett. 57(18), 1882–1884 (1990).

1984 (1)

C. H. Yew, K. G. Chen, and D. L. Wang, “An experimental study of interaction between surface waves and a surface breaking crack,” J. Acoust. Soc. Am. 75(1), 189–196 (1984).

1980 (1)

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Quantitative studies of thermally generated elastic waves in laser-irradiated metal,” J. Appl. Phys. 51(12), 6210–6216 (1980).

Ashkenazi, S.

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).

Baac, H. W.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

Baldwin, B.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Barnes, J.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Beard, P. C.

Belsito, L.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

Biagi, E.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[PubMed]

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).

Bock, W.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Brenci, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).

Chen, D. B.

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Chen, K. G.

C. H. Yew, K. G. Chen, and D. L. Wang, “An experimental study of interaction between surface waves and a surface breaking crack,” J. Acoust. Soc. Am. 75(1), 189–196 (1984).

Chen, Y. C.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

Chu, J.

Chu, J. L.

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Colchester, R. J.

Deng, M.

Desjardins, A. E.

Dewhurst, R. J.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Quantitative studies of thermally generated elastic waves in laser-irradiated metal,” J. Appl. Phys. 51(12), 6210–6216 (1980).

Diamanti, K.

K. Diamanti and C. Soutis, “Structural health monitoring techniques for aircraft composite structures,” Prog. Aerosp. Sci. 46(8), 342–352 (2010).

Dong, X.

Dong, X. Y.

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Duan, D. W.

Ferri, M.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

Flanagan, K.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Fomitchov, P. A.

Fontani, S.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).

Fraser, J. M.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Gao, S.

S. Zhang, W. Zhang, P. Geng, and S. Gao, “Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications,” Opt. Commun. 288, 47–51 (2013).

Geng, P.

S. Zhang, W. Zhang, P. Geng, and S. Gao, “Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications,” Opt. Commun. 288, 47–51 (2013).

Giurgiutiu, V.

B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).

Greig, P.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Guo, L. J.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).

Han, M.

Hart, A. J.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

He, J.

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[PubMed]

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

Hou, Y.

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).

Hu, C.

Hu, L.

Huang, S. W.

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).

Huang, Y.

Hutchins, D. A.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Quantitative studies of thermally generated elastic waves in laser-irradiated metal,” J. Appl. Phys. 51(12), 6210–6216 (1980).

Jin, S. Z.

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Kim, J. S.

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).

Kochergin, E.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Kochergin, V.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Kojima, S.

N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Technol. 65(15), 2575–2587 (2005).

Krishnaswamy, S.

Kromine, A. K.

Kuwahara, J.

N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Technol. 65(15), 2575–2587 (2005).

Lee, K. T.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

Li, Y.

C. Shen, Y. Wang, J. Chu, Y. Lu, Y. Li, and X. Dong, “Optical fiber axial micro-displacement sensor based on Mach-Zehnder interferometer,” Opt. Express 22(26), 31984–31992 (2014).
[PubMed]

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Liao, C.

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[PubMed]

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

Lin, B.

B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).

Liu, S.

Liu, T.

Liu, Y.

Lu, Y.

Lu, Y. F.

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Mancarella, F.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

Margheri, F.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[PubMed]

Masotti, L.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).

Maxwell, A.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

McKie, A. D. W.

J. B. Spicer, A. D. W. McKie, and J. W. Wagner, “Quantitative theory for laser ultrasonic waves in a thin plate,” Appl. Phys. Lett. 57(18), 1882–1884 (1990).

Menichelli, D.

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[PubMed]

Mosse, C. A.

O’Donnell, M.

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).

Ogisu, T.

N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Technol. 65(15), 2575–2587 (2005).

Ok, J. G.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

Okabe, Y.

N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Technol. 65(15), 2575–2587 (2005).

Oleschuk, R. D.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Palmer, S. B.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Quantitative studies of thermally generated elastic waves in laser-irradiated metal,” J. Appl. Phys. 51(12), 6210–6216 (1980).

Papakonstantinou, I.

Pedrick, M.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Pieraccini, M.

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).

Plaisted, T.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Rao, Y. J.

Roncaglia, A.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

Scruby, C. B.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Quantitative studies of thermally generated elastic waves in laser-irradiated metal,” J. Appl. Phys. 51(12), 6210–6216 (1980).

Shen, C.

Shen, C. Y.

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Shi, L. L.

Shi, Z.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Soutis, C.

K. Diamanti and C. Soutis, “Structural health monitoring techniques for aircraft composite structures,” Prog. Aerosp. Sci. 46(8), 342–352 (2010).

Spicer, J. B.

J. B. Spicer, A. D. W. McKie, and J. W. Wagner, “Quantitative theory for laser ultrasonic waves in a thin plate,” Appl. Phys. Lett. 57(18), 1882–1884 (1990).

Sun, B.

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[PubMed]

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

Takeda, N.

N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Technol. 65(15), 2575–2587 (2005).

Tang, J.

Tian, J.

Tian, Y.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[PubMed]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).

Tian, Z.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Vannacci, E.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

Veronese, G. P.

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

Vicari, L.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Wagner, J. W.

J. B. Spicer, A. D. W. McKie, and J. W. Wagner, “Quantitative theory for laser ultrasonic waves in a thin plate,” Appl. Phys. Lett. 57(18), 1882–1884 (1990).

Wang, A.

Wang, C.

Wang, D. L.

C. H. Yew, K. G. Chen, and D. L. Wang, “An experimental study of interaction between surface waves and a surface breaking crack,” J. Acoust. Soc. Am. 75(1), 189–196 (1984).

Wang, G.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

Wang, X.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[PubMed]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).

Wang, Y.

Wu, D.

Wu, N.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[PubMed]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).

Xu, Z.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

Yam, S. S. H.

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

Yao, J.

Yellampalle, B.

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Yew, C. H.

C. H. Yew, K. G. Chen, and D. L. Wang, “An experimental study of interaction between surface waves and a surface breaking crack,” J. Acoust. Soc. Am. 75(1), 189–196 (1984).

Yin, G.

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[PubMed]

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

Yoon, E.

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

Yu, Z.

Zhang, E. Z.

Zhang, Q.

Zhang, S.

S. Zhang, W. Zhang, P. Geng, and S. Gao, “Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications,” Opt. Commun. 288, 47–51 (2013).

Zhang, W.

S. Zhang, W. Zhang, P. Geng, and S. Gao, “Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications,” Opt. Commun. 288, 47–51 (2013).

Zhao, J.

Zhong, C.

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Zhong, X.

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

Zhou, J.

B. Sun, Y. Huang, S. Liu, C. Wang, J. He, C. Liao, G. Yin, J. Zhao, Y. Liu, J. Tang, J. Zhou, and Y. Wang, “Asymmetrical in-fiber Mach-Zehnder interferometer for curvature measurement,” Opt. Express 23(11), 14596–14602 (2015).
[PubMed]

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

Zhu, T.

Zou, X.

X. Zou, N. Wu, Y. Tian, and X. Wang, “Broadband miniature fiber optic ultrasound generator,” Opt. Express 22(15), 18119–18127 (2014).
[PubMed]

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. B. Spicer, A. D. W. McKie, and J. W. Wagner, “Quantitative theory for laser ultrasonic waves in a thin plate,” Appl. Phys. Lett. 57(18), 1882–1884 (1990).

Y. Hou, J. S. Kim, S. Ashkenazi, S. W. Huang, L. J. Guo, and M. O’Donnell, “Broadband all-optical ultrasound transducers,” Appl. Phys. Lett. 91(7), 073507 (2007).

Biomed. Opt. Express (1)

Compos. Sci. Technol. (1)

N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Technol. 65(15), 2575–2587 (2005).

IEEE Photonics Technol. Lett. (3)

C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, X. Y. Dong, and S. Z. Jin, “High Sensitive Micro-Displacement Sensor Basedon M-Z Interferometer by a Bowknot Type Taper,” IEEE Photonics Technol. Lett. 26(1), 62–65 (2014).

Z. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, and R. D. Oleschuk, “Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers,” IEEE Photonics Technol. Lett. 20(8), 626–628 (2008).

G. Yin, Y. Wang, C. Liao, J. Zhou, X. Zhong, G. Wang, B. Sun, and J. He, “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photonics Technol. Lett. 26(7), 689–701 (2014).

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

E. Biagi, F. Margheri, and D. Menichelli, “Efficient laser-ultrasound generation by using heavily absorbing films as targets,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1669–1680 (2001).
[PubMed]

J. Acoust. Soc. Am. (1)

C. H. Yew, K. G. Chen, and D. L. Wang, “An experimental study of interaction between surface waves and a surface breaking crack,” J. Acoust. Soc. Am. 75(1), 189–196 (1984).

J. Appl. Phys. (1)

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, “Quantitative studies of thermally generated elastic waves in laser-irradiated metal,” J. Appl. Phys. 51(12), 6210–6216 (1980).

J. Micromech. Microeng. (1)

L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P. Veronese, E. Biagi, and A. Roncaglia, “Fabrication of fiber-optic broadband ultrasound emitters by micro-opto-mechanical technology,” J. Micromech. Microeng. 24(8), 085003 (2014).

Opt. Commun. (1)

S. Zhang, W. Zhang, P. Geng, and S. Gao, “Fiber Mach-Zehnder interferometer based on concatenated down-and up-tapers for refractive index sensing applications,” Opt. Commun. 288, 47–51 (2013).

Opt. Express (6)

Opt. Lett. (1)

Opt. Rev. (1)

E. Biagi, M. Brenci, S. Fontani, L. Masotti, and M. Pieraccini, “Photoacoustic generation: optical fiber ultrasonic sources for non-destructive evaluation and clinical diagnosis,” Opt. Rev. 4(4), 481–483 (1997).

Proc. SPIE (3)

N. Wu, Y. Tian, X. Zou, and X. Wang, “Fiber optic photoacoustic ultrasound generator based on gold nanocomposite,” Proc. SPIE 8694, 86940Q (2013).

B. Lin and V. Giurgiutiu, “Development of optical equipment for ultrasonic guided wave structural health monitoring,” Proc. SPIE 9062, 90620R (2014).

V. Kochergin, K. Flanagan, Z. Shi, M. Pedrick, B. Baldwin, T. Plaisted, B. Yellampalle, E. Kochergin, and L. Vicari, “All-fiber optic ultrasonic structural health monitoring system,” Proc. SPIE 7292, 72923D (2009).

Prog. Aerosp. Sci. (1)

K. Diamanti and C. Soutis, “Structural health monitoring techniques for aircraft composite structures,” Prog. Aerosp. Sci. 46(8), 342–352 (2010).

Sci. Rep. (1)

H. W. Baac, J. G. Ok, A. Maxwell, K. T. Lee, Y. C. Chen, A. J. Hart, Z. Xu, E. Yoon, and L. J. Guo, “Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy,” Sci. Rep. 2, 989 (2012).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Structural diagram of the COT; (b) COT photographed using a microscope.

Fig. 2
Fig. 2

Simulation results: (a) Transmission light field distribution of COT; (b) Evolution of core mode energy through the entire structure; (c) Correlation curve between taper length of COT and the energy coupling ratio of the fiber core and cladding.

Fig. 3
Fig. 3

COTs with coupling ratios of 24.5%, 33.01%, 49.51%, and 87.8%.

Fig. 4
Fig. 4

Experimental demonstration: (a) Schematic of experimental setup; (b) COT etched after 900-μm taper region; (c) Prepared transducer unit based on COT. AP:Aluminum Plate.

Fig. 5
Fig. 5

Demonstration of laser characteristics and generated ultrasound signal: (a) Laser spectrum after passing through EDFA; (b) Single laser pulse after EDFA, inset: single seed laser pulse; (c) Pulse sequence in a large view with a 3-kHz repetition rate after EDFA; (d) Ultrasonic pulse sequence generated by the first COT with a 3-kHz repetition rate.

Fig. 6
Fig. 6

(a)–(d) Ultrasonic pulse signals generated from four COTs; and (e)–(h) their Fourier transforms.