Abstract

We demonstrate a novel approach to enhance the mode stability through increased effective index difference (Δneff) between the higher-order modes (LP18, LP09 and LP19) of a multimode fiber. Fibers with large diameters have bigger effective mode areas (Aeff) and can be useful for high power lasers and amplifiers. However, a large mode area (LMA) results in an increased number of modes that can be more susceptible to mode coupling. The modal effective index difference (Δneff) strongly correlates with mode stability and this increases as the modal order (m) increases. We report here that the mode spacing between the higher order modes can be further enhanced by introducing doped concentric rings in the core. In our work, we have shown a more than 35% increase in the mode spacing between the higher order modes by optimizing the doping profile of a LMA fiber. The proposed design technique is also scalable and can be applied to improve the mode spacing between different higher order modes and their neighboring antisymmetric modes, as necessary.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of inter-modal Brillouin gain in higher-order-mode fibers

Benjamin Ward and Marc Mermelstein
Opt. Express 18(3) 1952-1958 (2010)

Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers

J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni
Opt. Express 20(22) 24575-24584 (2012)

SBS gain efficiency measurements and modeling in a 1714 µm2 effective area LP08 higher-order mode optical fiber

M. D. Mermelstein, S. Ramachandran, J. M. Fini, and S. Ghalmi
Opt. Express 15(24) 15952-15963 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B,  27, B63–B92 (2010).
    [Crossref]
  2. M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron.,  20(5), 219–241 (2014).
    [Crossref]
  3. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, E. Monberg, F. DiMarcello, J. Fleming, C. Headley, D. J. DiGiovanni, S. Ghalmi, and S. Ramachandran, “A higher-order-mode Erbium-doped-fiber amplifier,” Opt. Express 18(17), 17651–17657 (2010).
    [Crossref] [PubMed]
  4. J. S. Wong, W. Wong, S. Peng, J. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” CLEO-2005, CPDB10 (2005).
  5. J. W. Nicholson, J. M. Fini, A. M. DeSantolo, X. Liu, K. Feder, P. S. Westbrook, V. R. Supradeepa, E. Monberg, F. DiMarcello, R. Ortiz, C. Headley, and D. J. DiGiovanni, “Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers,” Opt. Express 20(22), 24575–24584 (2012).
    [Crossref] [PubMed]
  6. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
    [Crossref] [PubMed]
  7. F. Stutzki, F. Jansen, H. J. Otto, C. Jauregui, J. Limpert, and A. Tunnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
    [Crossref]
  8. K. Rottwitt, S. M. M. Friis, M. A. U. Castaneda, E. N. Christensen, and J. G. Koefoed, “Higher order mode optical fiber Raman amplifiers,” 18th International Conference on Transparent Optical Networks.IEEE, (2016).
  9. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
    [Crossref] [PubMed]
  10. J. M. Fini and S. Ramachandran, “Natural bend-distortion immunity of higher-order-mode large-mode-area fibers,” Opt. Lett. 32(7), 748–750 (2007).
    [Crossref] [PubMed]
  11. A. Argyros, R. Lwin, and M. C. J. Large, “Bend loss in highly multimode fibres,” Opt. Express 16(23), 18590–18598 (2008).
    [Crossref]
  12. S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra–large effective–area, higher–order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.,  2(6), 429–448 (2008).
    [Crossref]
  13. A. W. Snyder and J. Love, “Optical Waveguide Theory” (Springer Science & Business Media, 1983).
  14. B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol.,  2(5), 682–688 (1984).
    [Crossref]
  15. B. M. A. Rahman and J. B. Davies, “Penalty function improvement of waveguide solution by finite elements,” IEEE Trans. Microw. Theory Techn.,  32(8), 922–928 (1984).
    [Crossref]
  16. S. Virally, N. Godbout, S. Lacroix, and L. Labonte, “Two-fold symmetric geometries for tailored phasematching in birefringent solid-core air-silica microstructured fibers,” Opt. Express 18(10), 10731–10741 (2010).
    [Crossref] [PubMed]
  17. M. Koshiba and K. Inoue, “Simple and efficient finite–element analysis of microwave and optical waveguides,” IEEE Trans. Microw. Theory Techn.,  40(2), 371–377 (1992).
    [Crossref]
  18. V. Rastogi and K. S. Chiang, “Analysis of segmented-cladding fiber by the radial-effective-index method,” J. Opt. Soc. Am. B,  21(2), 258–265 (2004).
    [Crossref]
  19. A. Kumar, V. Rastogi, A. Agrawal, and B. M. A. Rahman, “Birefringence analysis of segmented cladding fiber,” Appl. Opt.,  51(15), 3104–3108 (2012).
    [Crossref] [PubMed]
  20. B. M. A. Rahman and J. B. Davies, “Vector–H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).
  21. M. R. Karim, B. M. A. Rahman, and G. P. Agrawal., “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study,” Opt. Express 22(25), 31029–31040 (2014).
    [Crossref]
  22. N. Lindlein, G. Leuchs, and S. Ramachandran, “Achieving Gaussian outputs from large-mode-area higher-order-mode fibers,” Appl. Opt.,  46(22), 5147–5157 (2007).
    [Crossref] [PubMed]

2014 (3)

2012 (2)

2010 (3)

2008 (2)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra–large effective–area, higher–order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.,  2(6), 429–448 (2008).
[Crossref]

A. Argyros, R. Lwin, and M. C. J. Large, “Bend loss in highly multimode fibres,” Opt. Express 16(23), 18590–18598 (2008).
[Crossref]

2007 (3)

2006 (1)

2004 (1)

1992 (1)

M. Koshiba and K. Inoue, “Simple and efficient finite–element analysis of microwave and optical waveguides,” IEEE Trans. Microw. Theory Techn.,  40(2), 371–377 (1992).
[Crossref]

1985 (1)

B. M. A. Rahman and J. B. Davies, “Vector–H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).

1984 (2)

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol.,  2(5), 682–688 (1984).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Penalty function improvement of waveguide solution by finite elements,” IEEE Trans. Microw. Theory Techn.,  32(8), 922–928 (1984).
[Crossref]

Agrawal, A.

Agrawal., G. P.

Argyros, A.

Castaneda, M. A. U.

K. Rottwitt, S. M. M. Friis, M. A. U. Castaneda, E. N. Christensen, and J. G. Koefoed, “Higher order mode optical fiber Raman amplifiers,” 18th International Conference on Transparent Optical Networks.IEEE, (2016).

Chiang, K. S.

Christensen, E. N.

K. Rottwitt, S. M. M. Friis, M. A. U. Castaneda, E. N. Christensen, and J. G. Koefoed, “Higher order mode optical fiber Raman amplifiers,” 18th International Conference on Transparent Optical Networks.IEEE, (2016).

Clarkson, W. A.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron.,  20(5), 219–241 (2014).
[Crossref]

Davies, J. B.

B. M. A. Rahman and J. B. Davies, “Vector–H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).

B. M. A. Rahman and J. B. Davies, “Penalty function improvement of waveguide solution by finite elements,” IEEE Trans. Microw. Theory Techn.,  32(8), 922–928 (1984).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol.,  2(5), 682–688 (1984).
[Crossref]

DeSantolo, A. M.

DiGiovanni, D. J.

DiMarcello, F.

Dimarcello, F. V.

Dong, L.

J. S. Wong, W. Wong, S. Peng, J. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” CLEO-2005, CPDB10 (2005).

Feder, K.

Fini, J. M.

Fleming, J.

Friis, S. M. M.

K. Rottwitt, S. M. M. Friis, M. A. U. Castaneda, E. N. Christensen, and J. G. Koefoed, “Higher order mode optical fiber Raman amplifiers,” 18th International Conference on Transparent Optical Networks.IEEE, (2016).

Ghalmi, S.

Godbout, N.

Headley, C.

Inoue, K.

M. Koshiba and K. Inoue, “Simple and efficient finite–element analysis of microwave and optical waveguides,” IEEE Trans. Microw. Theory Techn.,  40(2), 371–377 (1992).
[Crossref]

Jansen, F.

Jauregui, C.

Karim, M. R.

Koefoed, J. G.

K. Rottwitt, S. M. M. Friis, M. A. U. Castaneda, E. N. Christensen, and J. G. Koefoed, “Higher order mode optical fiber Raman amplifiers,” 18th International Conference on Transparent Optical Networks.IEEE, (2016).

Koshiba, M.

M. Koshiba and K. Inoue, “Simple and efficient finite–element analysis of microwave and optical waveguides,” IEEE Trans. Microw. Theory Techn.,  40(2), 371–377 (1992).
[Crossref]

Kumar, A.

Labonte, L.

Lacroix, S.

Large, M. C. J.

Leuchs, G.

Limpert, J.

Lindlein, N.

Liu, X.

Love, J.

A. W. Snyder and J. Love, “Optical Waveguide Theory” (Springer Science & Business Media, 1983).

Lwin, R.

McLaughlin, J.

J. S. Wong, W. Wong, S. Peng, J. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” CLEO-2005, CPDB10 (2005).

Mermelstein, M.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra–large effective–area, higher–order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.,  2(6), 429–448 (2008).
[Crossref]

Monberg, E.

Nicholson, J. W.

Nilsson, J.

Ortiz, R.

Otto, H. J.

Peng, S.

J. S. Wong, W. Wong, S. Peng, J. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” CLEO-2005, CPDB10 (2005).

Rahman, B. M. A.

M. R. Karim, B. M. A. Rahman, and G. P. Agrawal., “Dispersion engineered Ge11.5As24Se64.5 nanowire for supercontinuum generation: A parametric study,” Opt. Express 22(25), 31029–31040 (2014).
[Crossref]

A. Kumar, V. Rastogi, A. Agrawal, and B. M. A. Rahman, “Birefringence analysis of segmented cladding fiber,” Appl. Opt.,  51(15), 3104–3108 (2012).
[Crossref] [PubMed]

B. M. A. Rahman and J. B. Davies, “Vector–H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol.,  2(5), 682–688 (1984).
[Crossref]

B. M. A. Rahman and J. B. Davies, “Penalty function improvement of waveguide solution by finite elements,” IEEE Trans. Microw. Theory Techn.,  32(8), 922–928 (1984).
[Crossref]

Ramachandran, S.

Rastogi, V.

Richardson, D. J.

Rottwitt, K.

K. Rottwitt, S. M. M. Friis, M. A. U. Castaneda, E. N. Christensen, and J. G. Koefoed, “Higher order mode optical fiber Raman amplifiers,” 18th International Conference on Transparent Optical Networks.IEEE, (2016).

Snyder, A. W.

A. W. Snyder and J. Love, “Optical Waveguide Theory” (Springer Science & Business Media, 1983).

Stutzki, F.

Supradeepa, V. R.

Tunnermann, A.

Virally, S.

Westbrook, P. S.

Wielandy, S.

Wisk, P.

Wong, J. S.

J. S. Wong, W. Wong, S. Peng, J. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” CLEO-2005, CPDB10 (2005).

Wong, W.

J. S. Wong, W. Wong, S. Peng, J. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” CLEO-2005, CPDB10 (2005).

Yan, M. F.

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra–large effective–area, higher–order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.,  2(6), 429–448 (2008).
[Crossref]

S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006).
[Crossref] [PubMed]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron.,  20(5), 219–241 (2014).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: A review,” IEEE J. Sel. Top. Quantum Electron.,  20(5), 219–241 (2014).
[Crossref]

IEEE Trans. Microw. Theory Techn. (2)

B. M. A. Rahman and J. B. Davies, “Penalty function improvement of waveguide solution by finite elements,” IEEE Trans. Microw. Theory Techn.,  32(8), 922–928 (1984).
[Crossref]

M. Koshiba and K. Inoue, “Simple and efficient finite–element analysis of microwave and optical waveguides,” IEEE Trans. Microw. Theory Techn.,  40(2), 371–377 (1992).
[Crossref]

J. Lightwave Technol. (1)

B. M. A. Rahman and J. B. Davies, “Finite-element solution of integrated optical waveguides,” J. Lightwave Technol.,  2(5), 682–688 (1984).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

S. Ramachandran, J. M. Fini, M. Mermelstein, J. W. Nicholson, S. Ghalmi, and M. F. Yan, “Ultra–large effective–area, higher–order mode fibers: a new strategy for high-power lasers,” Laser Photon. Rev.,  2(6), 429–448 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Optica (1)

Proc. IEE (1)

B. M. A. Rahman and J. B. Davies, “Vector–H finite element soluion of GaAs/GaAlAs rib waveguides,” Proc. IEE 132(6), 349–353 (1985).

Other (3)

A. W. Snyder and J. Love, “Optical Waveguide Theory” (Springer Science & Business Media, 1983).

J. S. Wong, W. Wong, S. Peng, J. McLaughlin, and L. Dong, “Robust single-mode propagation in optical fibers with record effective areas,” CLEO-2005, CPDB10 (2005).

K. Rottwitt, S. M. M. Friis, M. A. U. Castaneda, E. N. Christensen, and J. G. Koefoed, “Higher order mode optical fiber Raman amplifiers,” 18th International Conference on Transparent Optical Networks.IEEE, (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Ring doping schematic of a MMF with the change in the refractive index along r-axis.

Fig. 2
Fig. 2

Variation of neff of the LP09 mode with the mesh number (N) and convergence realized with the Aitken extrapolation technique.

Fig. 3
Fig. 3

Variations of Hy fields of the LP18, LP09, and LP19 modes along the r-axis of MMF, contour field profiles in inset and the key points of interest are also shown.

Fig. 4
Fig. 4

Refractive index profile of the modified MMF along r-axis with ±Δn at C, D and E points.

Fig. 5
Fig. 5

Variations in the Hy fields of LP09 modes along the r-axis of the undoped fiber and the fiber with C, D, and E layers doped. The contour field profiles are also shown inset.

Fig. 6
Fig. 6

Effect on Δneff of a change in width of doped layers at points C, D, and E.

Fig. 7
Fig. 7

Effect on the Δneff of a variation in the position of C, D, and E layers from center location.

Fig. 8
Fig. 8

Effect on the Δneff with the change in wavelength (λ)

Tables (5)

Tables Icon

Table 1 Zero crossing locations of field profiles of the LP18, LP09 and LP19 modes along r-axis (μm).

Tables Icon

Table 2 Field values of LP18, LP09 and LP19 at A, B, C, D, E and F points.

Tables Icon

Table 3 Individual strip doping effect on Δneff at points A, B, C, D, E, and F.

Tables Icon

Table 4 Percentage increase in the Δneff using individual and combination approach.

Tables Icon

Table 5 Percentage increase in the Δneff of LP08 mode and its neighboring antisymmetric modes using individual and combination of two or three strips doping.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eff = n eff ( r + 1 ) [ n eff ( r + 1 ) n eff ( r ) ] 2 n eff ( r + 1 ) 2 n eff ( r ) + n eff ( r 1 )