Abstract

Network virtualization technology has been proposed to allow multiple heterogeneous virtual networks (VNs) to coexist on a shared substrate network, which increases the utilization of the substrate network. Efficiently mapping VNs on the substrate network is a major challenge on account of the VN embedding (VNE) problem. Meanwhile, energy efficiency has been widely considered in the network design in terms of operation expenses and the ecological awareness. In this paper, we aim to solve the energy-aware VNE problem in flexi-grid optical networks. We provide an integer linear programming (ILP) formulation to minimize the electricity cost of each arriving VN request. We also propose a polynomial-time heuristic algorithm where virtual links are embedded sequentially to keep a reasonable acceptance ratio and maintain a low electricity cost. Numerical results show that the heuristic algorithm performs closely to the ILP for a small size network, and we also demonstrate its applicability to larger networks.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dynamic Virtual Network Embedding Over Multilayer Optical Networks

Jiawei Zhang, Yuefeng Ji, Mei Song, Hui Li, Rentao Gu, Yongli Zhao, and Jie Zhang
J. Opt. Commun. Netw. 7(9) 918-927 (2015)

Availability-Aware Survivable Virtual Network Embedding in Optical Datacenter Networks

Huihui Jiang, Yixiang Wang, Long Gong, and Zuqing Zhu
J. Opt. Commun. Netw. 7(12) 1160-1171 (2015)

Survivable Impairment-Constrained Virtual Optical Network Mapping in Flexible-Grid Optical Networks

Weisheng Xie, Jason P. Jue, Qiong Zhang, Xi Wang, Qingya She, Paparao Palacharla, and Motoyoshi Sekiya
J. Opt. Commun. Netw. 6(11) 1008-1017 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. M. K. Chowdhury and R. Boutaba, “Network virtualization: state of the art and research challenges,” IEEE Commun. Mag. 47(7), 20–26 (2009).
    [Crossref]
  2. A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
    [Crossref]
  3. J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared substrate,” Washington University, Technical Report WUCSE-2006-35 (2006).
  4. I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network mapping algorithm,” in Proc. IEEE International Conference on Communications, 5634–5640 (2008).
  5. A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
    [Crossref]
  6. M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding substrate support for path splitting and migration,” SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008).
    [Crossref]
  7. J. Lischka and H. Karl, “A virtual network mapping algorithm based on subgraph isomorphism detection,” in Proc. SIGCOMM Workshop on Virtualized Infrastruct Systems & Architectures, 81–88 (2009).
  8. M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual network embedding algorithms with coordinated node and link mapping,” IEEE/ACM Trans. Netw. 20(1), 206–219 (2012).
    [Crossref]
  9. M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
    [Crossref]
  10. G. Shen and M. Zukerman, “Spectrum-efficient and agile co-ofdm optical transport networks: architecture, design, and operation,” IEEE Commun. Mag. 50(5), 82–89 (2012).
    [Crossref]
  11. G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on ofdm-based elastic core optical networking,” IEEE Commun. Surv. Tutorials 15(1), 65–87 (2013).
    [Crossref]
  12. L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. IEEE International Conference on Communications, 3466–3470 (2013).
  13. L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over elastic optical networks,” J. Lightwave Technol. 32(3), 450–460 (2014).
    [Crossref]
  14. M. Mills, “The cloud begins with coal: Big data, big networks, big infrastructure, and big power - An Overview of the Electricity Used By the Global Digital Ecosystem,” National Mining Association and American Coalition for Clean Coal Electricity (2013).
  15. United States Environmental Protection Agency, “Report to congress on server and data center energy efficiency public law,” 109–431 (2007). Available: http://www.energystar.gov/ia/partners/ .
  16. L. Nonde, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “Energy efficient virtual network embedding for cloud networks,” J. Lightwave Technol. 33(9), 1828–1849 (2015).
    [Crossref]
  17. J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
    [Crossref]
  18. S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-aware virtual network embedding through consolidation,” in Proc. IEEE International Conference on Computer Communications Workshops, 127–132 (2012).
  19. B. Wang, X. Chang, J. Liu, and J. K. Muppala, “Reducing power consumption in embedding virtual infrastructures,” in Proc. IEEE Global Communications Conference Workshops, 714–718 (2012).
  20. V. Eramo, E. Miucci, and M. Ammar, “Study of reconfiguration cost and energy aware vne policies in cycle-stationary traffic scenarios,” IEEE J. Sel. Areas Commun. 34(5), 1281–1297 (2016).
    [Crossref]
  21. G. Shen and R. S. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE/OSA J. Opt. Commun. Netw. 1(1), 176–186 (2009).
    [Crossref]
  22. J. L. Vizcano, Y. Ye, and I. T. Monroy, “Energy efficiency analysis for flexible-grid OFDM-based optical networks,” Computer Networks 56(10), 2400–2419 (2012).
    [Crossref]
  23. X. Fan, W. D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized computer,” In Proc. ACM International Symposium on Computer Architecture, 13–23 (2007).
  24. ILOG CPLEX, ILOG, Inc., Mountain View, CA[Online], Available: http://www.ilog.com/products/cplex/ .
  25. A. Deylamsalehi, Y. Cui, P. Afsharlar, and V. M. Vokkarane, “Minimizing electricity cost and emissions in optical data center networks,” IEEE/OSA J. Opt. Commun. Netw. 9(4), 257–274 (2017)
    [Crossref]
  26. Federal Energy Regulatory Commission, “OE energy markey snapshot - national data through May 2017,” Available: https://www.ferc.gov/market-oversight/mkt-snp-sht/2017/06-2017-snapshot-national.pdf

2017 (1)

A. Deylamsalehi, Y. Cui, P. Afsharlar, and V. M. Vokkarane, “Minimizing electricity cost and emissions in optical data center networks,” IEEE/OSA J. Opt. Commun. Netw. 9(4), 257–274 (2017)
[Crossref]

2016 (1)

V. Eramo, E. Miucci, and M. Ammar, “Study of reconfiguration cost and energy aware vne policies in cycle-stationary traffic scenarios,” IEEE J. Sel. Areas Commun. 34(5), 1281–1297 (2016).
[Crossref]

2015 (2)

L. Nonde, T. E. H. El-Gorashi, and J. M. H. Elmirghani, “Energy efficient virtual network embedding for cloud networks,” J. Lightwave Technol. 33(9), 1828–1849 (2015).
[Crossref]

A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
[Crossref]

2014 (1)

2013 (2)

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on ofdm-based elastic core optical networking,” IEEE Commun. Surv. Tutorials 15(1), 65–87 (2013).
[Crossref]

2012 (4)

J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
[Crossref]

M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual network embedding algorithms with coordinated node and link mapping,” IEEE/ACM Trans. Netw. 20(1), 206–219 (2012).
[Crossref]

G. Shen and M. Zukerman, “Spectrum-efficient and agile co-ofdm optical transport networks: architecture, design, and operation,” IEEE Commun. Mag. 50(5), 82–89 (2012).
[Crossref]

J. L. Vizcano, Y. Ye, and I. T. Monroy, “Energy efficiency analysis for flexible-grid OFDM-based optical networks,” Computer Networks 56(10), 2400–2419 (2012).
[Crossref]

2010 (1)

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

2009 (2)

N. M. K. Chowdhury and R. Boutaba, “Network virtualization: state of the art and research challenges,” IEEE Commun. Mag. 47(7), 20–26 (2009).
[Crossref]

G. Shen and R. S. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE/OSA J. Opt. Commun. Netw. 1(1), 176–186 (2009).
[Crossref]

2008 (1)

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding substrate support for path splitting and migration,” SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008).
[Crossref]

Afsharlar, P.

A. Deylamsalehi, Y. Cui, P. Afsharlar, and V. M. Vokkarane, “Minimizing electricity cost and emissions in optical data center networks,” IEEE/OSA J. Opt. Commun. Netw. 9(4), 257–274 (2017)
[Crossref]

Ammar, M.

V. Eramo, E. Miucci, and M. Ammar, “Study of reconfiguration cost and energy aware vne policies in cycle-stationary traffic scenarios,” IEEE J. Sel. Areas Commun. 34(5), 1281–1297 (2016).
[Crossref]

Barroso, L. A.

X. Fan, W. D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized computer,” In Proc. ACM International Symposium on Computer Architecture, 13–23 (2007).

Beck, M.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

Botero, J.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

Botero, J. F.

J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
[Crossref]

Boutaba, R.

M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual network embedding algorithms with coordinated node and link mapping,” IEEE/ACM Trans. Netw. 20(1), 206–219 (2012).
[Crossref]

N. M. K. Chowdhury and R. Boutaba, “Network virtualization: state of the art and research challenges,” IEEE Commun. Mag. 47(7), 20–26 (2009).
[Crossref]

Chang, X.

B. Wang, X. Chang, J. Liu, and J. K. Muppala, “Reducing power consumption in embedding virtual infrastructures,” in Proc. IEEE Global Communications Conference Workshops, 714–718 (2012).

Cheng, X.

S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-aware virtual network embedding through consolidation,” in Proc. IEEE International Conference on Computer Communications Workshops, 127–132 (2012).

Chiang, M.

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding substrate support for path splitting and migration,” SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008).
[Crossref]

Chowdhury, M.

M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual network embedding algorithms with coordinated node and link mapping,” IEEE/ACM Trans. Netw. 20(1), 206–219 (2012).
[Crossref]

Chowdhury, N. M. K.

N. M. K. Chowdhury and R. Boutaba, “Network virtualization: state of the art and research challenges,” IEEE Commun. Mag. 47(7), 20–26 (2009).
[Crossref]

Cui, Y.

A. Deylamsalehi, Y. Cui, P. Afsharlar, and V. M. Vokkarane, “Minimizing electricity cost and emissions in optical data center networks,” IEEE/OSA J. Opt. Commun. Netw. 9(4), 257–274 (2017)
[Crossref]

De Meer, H.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
[Crossref]

Deylamsalehi, A.

A. Deylamsalehi, Y. Cui, P. Afsharlar, and V. M. Vokkarane, “Minimizing electricity cost and emissions in optical data center networks,” IEEE/OSA J. Opt. Commun. Netw. 9(4), 257–274 (2017)
[Crossref]

Duelli, M.

J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
[Crossref]

El-Gorashi, T. E. H.

Elmirghani, J. M. H.

Eramo, V.

V. Eramo, E. Miucci, and M. Ammar, “Study of reconfiguration cost and energy aware vne policies in cycle-stationary traffic scenarios,” IEEE J. Sel. Areas Commun. 34(5), 1281–1297 (2016).
[Crossref]

Fan, X.

X. Fan, W. D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized computer,” In Proc. ACM International Symposium on Computer Architecture, 13–23 (2007).

Fischer, A.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
[Crossref]

Gong, L.

L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over elastic optical networks,” J. Lightwave Technol. 32(3), 450–460 (2014).
[Crossref]

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. IEEE International Conference on Communications, 3466–3470 (2013).

Hesselbach, X.

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
[Crossref]

Hirano, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Houidi, I.

I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network mapping algorithm,” in Proc. IEEE International Conference on Communications, 5634–5640 (2008).

Jarray, A.

A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
[Crossref]

Jinno, M.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Karl, H.

J. Lischka and H. Karl, “A virtual network mapping algorithm based on subgraph isomorphism detection,” in Proc. SIGCOMM Workshop on Virtualized Infrastruct Systems & Architectures, 81–88 (2009).

Karmouch, A.

A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
[Crossref]

Kozicki, B.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Leenheer, M. D.

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on ofdm-based elastic core optical networking,” IEEE Commun. Surv. Tutorials 15(1), 65–87 (2013).
[Crossref]

Lischka, J.

J. Lischka and H. Karl, “A virtual network mapping algorithm based on subgraph isomorphism detection,” in Proc. SIGCOMM Workshop on Virtualized Infrastruct Systems & Architectures, 81–88 (2009).

Liu, J.

B. Wang, X. Chang, J. Liu, and J. K. Muppala, “Reducing power consumption in embedding virtual infrastructures,” in Proc. IEEE Global Communications Conference Workshops, 714–718 (2012).

Louati, W.

I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network mapping algorithm,” in Proc. IEEE International Conference on Communications, 5634–5640 (2008).

Lu, J.

J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared substrate,” Washington University, Technical Report WUCSE-2006-35 (2006).

Luo, Y.

S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-aware virtual network embedding through consolidation,” in Proc. IEEE International Conference on Computer Communications Workshops, 127–132 (2012).

Mills, M.

M. Mills, “The cloud begins with coal: Big data, big networks, big infrastructure, and big power - An Overview of the Electricity Used By the Global Digital Ecosystem,” National Mining Association and American Coalition for Clean Coal Electricity (2013).

Miucci, E.

V. Eramo, E. Miucci, and M. Ammar, “Study of reconfiguration cost and energy aware vne policies in cycle-stationary traffic scenarios,” IEEE J. Sel. Areas Commun. 34(5), 1281–1297 (2016).
[Crossref]

Monroy, I. T.

J. L. Vizcano, Y. Ye, and I. T. Monroy, “Energy efficiency analysis for flexible-grid OFDM-based optical networks,” Computer Networks 56(10), 2400–2419 (2012).
[Crossref]

Morea, A.

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on ofdm-based elastic core optical networking,” IEEE Commun. Surv. Tutorials 15(1), 65–87 (2013).
[Crossref]

Mukherjee, B.

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on ofdm-based elastic core optical networking,” IEEE Commun. Surv. Tutorials 15(1), 65–87 (2013).
[Crossref]

Muppala, J. K.

B. Wang, X. Chang, J. Liu, and J. K. Muppala, “Reducing power consumption in embedding virtual infrastructures,” in Proc. IEEE Global Communications Conference Workshops, 714–718 (2012).

Nonde, L.

Rahman, M. R.

M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual network embedding algorithms with coordinated node and link mapping,” IEEE/ACM Trans. Netw. 20(1), 206–219 (2012).
[Crossref]

Rexford, J.

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding substrate support for path splitting and migration,” SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008).
[Crossref]

Schlosser, D.

J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
[Crossref]

Shen, G.

G. Shen and M. Zukerman, “Spectrum-efficient and agile co-ofdm optical transport networks: architecture, design, and operation,” IEEE Commun. Mag. 50(5), 82–89 (2012).
[Crossref]

G. Shen and R. S. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE/OSA J. Opt. Commun. Netw. 1(1), 176–186 (2009).
[Crossref]

Sone, Y.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Su, S.

S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-aware virtual network embedding through consolidation,” in Proc. IEEE International Conference on Computer Communications Workshops, 127–132 (2012).

Takara, H.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Tanaka, T.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Tucker, R. S.

G. Shen and R. S. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE/OSA J. Opt. Commun. Netw. 1(1), 176–186 (2009).
[Crossref]

Turner, J.

J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared substrate,” Washington University, Technical Report WUCSE-2006-35 (2006).

Vizcano, J. L.

J. L. Vizcano, Y. Ye, and I. T. Monroy, “Energy efficiency analysis for flexible-grid OFDM-based optical networks,” Computer Networks 56(10), 2400–2419 (2012).
[Crossref]

Vokkarane, V. M.

A. Deylamsalehi, Y. Cui, P. Afsharlar, and V. M. Vokkarane, “Minimizing electricity cost and emissions in optical data center networks,” IEEE/OSA J. Opt. Commun. Netw. 9(4), 257–274 (2017)
[Crossref]

Wang, B.

B. Wang, X. Chang, J. Liu, and J. K. Muppala, “Reducing power consumption in embedding virtual infrastructures,” in Proc. IEEE Global Communications Conference Workshops, 714–718 (2012).

Wang, J.

S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-aware virtual network embedding through consolidation,” in Proc. IEEE International Conference on Computer Communications Workshops, 127–132 (2012).

Wang, Y.

S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-aware virtual network embedding through consolidation,” in Proc. IEEE International Conference on Computer Communications Workshops, 127–132 (2012).

Watanabe, A.

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

Weber, W. D.

X. Fan, W. D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized computer,” In Proc. ACM International Symposium on Computer Architecture, 13–23 (2007).

Wen, Y.

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. IEEE International Conference on Communications, 3466–3470 (2013).

Ye, Y.

J. L. Vizcano, Y. Ye, and I. T. Monroy, “Energy efficiency analysis for flexible-grid OFDM-based optical networks,” Computer Networks 56(10), 2400–2419 (2012).
[Crossref]

Yi, Y.

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding substrate support for path splitting and migration,” SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008).
[Crossref]

Yu, M.

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding substrate support for path splitting and migration,” SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008).
[Crossref]

Zeghlache, D.

I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network mapping algorithm,” in Proc. IEEE International Conference on Communications, 5634–5640 (2008).

Zhang, G.

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on ofdm-based elastic core optical networking,” IEEE Commun. Surv. Tutorials 15(1), 65–87 (2013).
[Crossref]

Zhang, Z.

S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-aware virtual network embedding through consolidation,” in Proc. IEEE International Conference on Computer Communications Workshops, 127–132 (2012).

Zhao, W.

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. IEEE International Conference on Communications, 3466–3470 (2013).

Zhu, Z.

L. Gong and Z. Zhu, “Virtual optical network embedding (VONE) over elastic optical networks,” J. Lightwave Technol. 32(3), 450–460 (2014).
[Crossref]

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. IEEE International Conference on Communications, 3466–3470 (2013).

Zukerman, M.

G. Shen and M. Zukerman, “Spectrum-efficient and agile co-ofdm optical transport networks: architecture, design, and operation,” IEEE Commun. Mag. 50(5), 82–89 (2012).
[Crossref]

Computer Networks (1)

J. L. Vizcano, Y. Ye, and I. T. Monroy, “Energy efficiency analysis for flexible-grid OFDM-based optical networks,” Computer Networks 56(10), 2400–2419 (2012).
[Crossref]

IEEE Commun. Lett. (1)

J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and H. de Meer, “Energy efficient virtual network embedding,” IEEE Commun. Lett. 16(5), 756–759 (2012).
[Crossref]

IEEE Commun. Mag. (3)

N. M. K. Chowdhury and R. Boutaba, “Network virtualization: state of the art and research challenges,” IEEE Commun. Mag. 47(7), 20–26 (2009).
[Crossref]

M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano, “Distance-adaptive spectrum resource allocation in spectrumsliced elastic optical path network,” IEEE Commun. Mag. 48(8), 138–145 (2010).
[Crossref]

G. Shen and M. Zukerman, “Spectrum-efficient and agile co-ofdm optical transport networks: architecture, design, and operation,” IEEE Commun. Mag. 50(5), 82–89 (2012).
[Crossref]

IEEE Commun. Surv. Tutorials (2)

G. Zhang, M. D. Leenheer, A. Morea, and B. Mukherjee, “A survey on ofdm-based elastic core optical networking,” IEEE Commun. Surv. Tutorials 15(1), 65–87 (2013).
[Crossref]

A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual network embedding: a survey,” IEEE Commun. Surv. Tutorials 15(4), 1888–1906 (2013).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

V. Eramo, E. Miucci, and M. Ammar, “Study of reconfiguration cost and energy aware vne policies in cycle-stationary traffic scenarios,” IEEE J. Sel. Areas Commun. 34(5), 1281–1297 (2016).
[Crossref]

IEEE/ACM Trans. Netw. (2)

A. Jarray and A. Karmouch, “Decomposition approaches for virtual network embedding with one-shot node and link mapping,” IEEE/ACM Trans. Netw. 23(3), 1012–1025 (2015).
[Crossref]

M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual network embedding algorithms with coordinated node and link mapping,” IEEE/ACM Trans. Netw. 20(1), 206–219 (2012).
[Crossref]

IEEE/OSA J. Opt. Commun. Netw. (2)

A. Deylamsalehi, Y. Cui, P. Afsharlar, and V. M. Vokkarane, “Minimizing electricity cost and emissions in optical data center networks,” IEEE/OSA J. Opt. Commun. Netw. 9(4), 257–274 (2017)
[Crossref]

G. Shen and R. S. Tucker, “Energy-minimized design for IP over WDM networks,” IEEE/OSA J. Opt. Commun. Netw. 1(1), 176–186 (2009).
[Crossref]

J. Lightwave Technol. (2)

SIGCOMM Comput. Commun. Rev. (1)

M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding substrate support for path splitting and migration,” SIGCOMM Comput. Commun. Rev. 38(2), 17–29 (2008).
[Crossref]

Other (11)

J. Lischka and H. Karl, “A virtual network mapping algorithm based on subgraph isomorphism detection,” in Proc. SIGCOMM Workshop on Virtualized Infrastruct Systems & Architectures, 81–88 (2009).

S. Su, Z. Zhang, X. Cheng, Y. Wang, Y. Luo, and J. Wang, “Energy-aware virtual network embedding through consolidation,” in Proc. IEEE International Conference on Computer Communications Workshops, 127–132 (2012).

B. Wang, X. Chang, J. Liu, and J. K. Muppala, “Reducing power consumption in embedding virtual infrastructures,” in Proc. IEEE Global Communications Conference Workshops, 714–718 (2012).

X. Fan, W. D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized computer,” In Proc. ACM International Symposium on Computer Architecture, 13–23 (2007).

ILOG CPLEX, ILOG, Inc., Mountain View, CA[Online], Available: http://www.ilog.com/products/cplex/ .

J. Lu and J. Turner, “Efficient mapping of virtual networks onto a shared substrate,” Washington University, Technical Report WUCSE-2006-35 (2006).

I. Houidi, W. Louati, and D. Zeghlache, “A distributed virtual network mapping algorithm,” in Proc. IEEE International Conference on Communications, 5634–5640 (2008).

L. Gong, W. Zhao, Y. Wen, and Z. Zhu, “Dynamic transparent virtual network embedding over elastic optical infrastructures,” in Proc. IEEE International Conference on Communications, 3466–3470 (2013).

Federal Energy Regulatory Commission, “OE energy markey snapshot - national data through May 2017,” Available: https://www.ferc.gov/market-oversight/mkt-snp-sht/2017/06-2017-snapshot-national.pdf

M. Mills, “The cloud begins with coal: Big data, big networks, big infrastructure, and big power - An Overview of the Electricity Used By the Global Digital Ecosystem,” National Mining Association and American Coalition for Clean Coal Electricity (2013).

United States Environmental Protection Agency, “Report to congress on server and data center energy efficiency public law,” 109–431 (2007). Available: http://www.energystar.gov/ia/partners/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

VNE in network virtualization.

Fig. 2
Fig. 2

An end-to-end transmission in flexi-grid networks.

Fig. 3
Fig. 3

Network topologies.

Fig. 4
Fig. 4

(a) The substrate network. (b) The proposed auxiliary graph with continue available slots from f to f + rij − 1.

Fig. 5
Fig. 5

Eight-node network with variable network loads.

Fig. 6
Fig. 6

USnet network with variable network loads.

Tables (4)

Tables Icon

Table 1 VNE solutions of six VN requests

Tables Icon

Algorithm 1 Virtual network embedding

Tables Icon

Algorithm 2 Auxiliary graph

Tables Icon

Table 2 Simulation parameter setting

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

P m n E D F A = [ L m n / 80 1 + 2 ] 13
P t B V O X C = 85 d e g ( t ) + 150
M i n i m i z e : i N v k N s c k A k i [ Δ u k ( r i ) P s e r v e r + ( 1 α k ) P s e r v e r i d l e ] + i N v k N s c k A k i [ ( t N v r i t + t N v r t i ) P s l o t + ( 1 β k ) P B V T i d l e ] + k N s c k Z k ( 1 γ k ) P k B V O X C + m n L s c m n Y m n ( 1 δ m n ) P m n E D F A
k N s A k i = 1 ; i N v
i N v A k i 1 ; k N s
f F m N s M m k , f i j f F n N s M k n , f i j = A k j A k i ; i j L v , k N s
i j L v f F ( m N s M m k , f i j + n N s M k n , f i j ) V Z k ; k N s
i j L v f F M m n , f i j V Y m n ; m n L s
f F T f i j = 1 ; i j L v
m n L s M m n , f i j T f i j ; i j L v , f F
m n L s M m n , f i j V T f i j ; i j L v , f F
i N v r i A k i U k ; k N s
r i j M m n , f i j t = f , f + 1 , .. , f + r i j 1 U m n , t ; i j L v , m n L s , f F
i j L v t = f r i j + 1 , f r i j + 2 , .. , f M m n , t i j U m n , f ; m n L s , f F
P m n = { ( 1 δ m n ) c m n P m n E D F A + ( 1 γ n ) c n P n B V O X C , m i , n j Δ u n ( r i ) c n P s e r v e r + ( t N v r i t + t N v r t i ) c n P s l o t + ( 1 α n ) c n P s e r v e r i d l e + ( 1 β n ) c n P B V T i d l e + ( 1 γ n ) c n P n B V O X C , m = i Δ u m ( r j ) c m P s e r v e r + ( t N v r j t + t N v r t j ) c m P s l o t + ( 1 α m ) c m P s e r v e r i d l e + ( 1 β m ) c m P B V T i d l e , n = j
c m n = { P m n + θ , m i , n j V ( P i n + R n 1 ) , m = i V ( P m j + R m 1 ) , n = j
R t = Σ e E ( t ) Σ f F U s ( e ) d ( e ) , f | E ( t ) | , t N s ,