Abstract

Anisotropic coherent radiation has been generated from an isotropic medium, in the absence of an external magnetic field, by the spin polarization of an atomic excited state. Lasing on specific hyperfine lines of the 6p2P326s2S12 (D2) transition of Cs at 852.1 nm has been realized by photoexciting Cs-rare gas thermal collision pairs with a circularly-polarized (σ+) optical field. Subsequent dissociation of the transient Cs-rare gas B2Σ12+ diatomic molecule selectively populates the F = 4, 5 hyperfine levels of the Cs6p2P32 state. Not only does electronic spin polarization of the upper laser level yield circularly-polarized coherent emission, but the effective degeneracy (g2) of the 6p2P32 state is altered by the non-statistical hyperfine state population distribution, thereby permitting control of the laser small signal gain with an elliptically-polarized pump optical field. The D2 laser efficiency and output power correlate directly with the molecular orbital structure of the Cs-rare gas B2Σ+ state in the region of internuclear separation at which the diatomic complex is born.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cs 894.3 nm laser pumped by photoassociation of Cs-Kr pairs: excitation of the Cs D2 blue and red satellites

J. D. Readle, J. T. Verdeyen, J. G. Eden, S. J. Davis, K. L. Galbally-Kinney, W. T. Rawlins, and W. J. Kessler
Opt. Lett. 34(23) 3638-3640 (2009)

Characterization of the retrofluorescence inhibition at the interface between glass and optically thick Cs vapor

Karine Le Bris, Jean-Marie Gagné, François Babin, and Marie-Claude Gagné
J. Opt. Soc. Am. B 18(11) 1701-1710 (2001)

High-contrast dark resonances with linearly polarized light on the D1 line of alkali atoms with large nuclear spin

Ken-ichi Watabe, Takeshi Ikegami, Akifumi Takamizawa, Shinya Yanagimachi, Shin-ichi Ohshima, and Svenja Knappe
Appl. Opt. 48(6) 1098-1103 (2009)

References

  • View by:
  • |
  • |
  • |

  1. M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D 40, R179 (2007).
    [Crossref]
  2. W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
    [Crossref]
  3. T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
    [Crossref]
  4. A. E. Mironov, J. D. Hewitt, and J. G. Eden, “Spin Polarization of Rb and Cs np2P32 (n = 5, 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule,” Phys. Rev. Lett. 118, 113201 (2017).
    [Crossref]
  5. A. Einstein, “On the quantum theory of radiation,” Physikalische Zeitschrift 18, 121 (1917).
  6. J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
    [Crossref]
  7. A. Jabloński, “General theory of pressure broadening of spectral lines,” Phys. Rev. 68, 78–93 (1945).
    [Crossref]
  8. R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6, 1519–1544 (1972).
    [Crossref]
  9. J. Tellinghuisen, in Photodissociation and Photoionization, vol. LX of Advances in Chemical Physics (Wiley, 1985). pp 299–369.
  10. J. Pascale and J. Vandeplanque, “Excited molecular terms of the alkali-rare gas atom pairs,” J. Chem. Phys. 60, 2278 (1974).
    [Crossref]
  11. M. Ehara and H. Nakatsuji, “Collision induced absorption spectra and line broadening of CsRg system (Rg=Xe, Kr, Ar, Ne) studied by the symmetry adapted cluster-configuration interaction (SAC-Cl) method,” J. Chem. Phys. 102, 6822–6830 (1995).
    [Crossref]
  12. J. D. Hewitt, A. E. Mironov, and J. G. Eden (unpublished).
  13. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold Company, 1950).

2017 (1)

A. E. Mironov, J. D. Hewitt, and J. G. Eden, “Spin Polarization of Rb and Cs np2P32 (n = 5, 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule,” Phys. Rev. Lett. 118, 113201 (2017).
[Crossref]

2009 (1)

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
[Crossref]

2007 (1)

M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D 40, R179 (2007).
[Crossref]

1997 (1)

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
[Crossref]

1995 (1)

M. Ehara and H. Nakatsuji, “Collision induced absorption spectra and line broadening of CsRg system (Rg=Xe, Kr, Ar, Ne) studied by the symmetry adapted cluster-configuration interaction (SAC-Cl) method,” J. Chem. Phys. 102, 6822–6830 (1995).
[Crossref]

1984 (1)

W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
[Crossref]

1974 (1)

J. Pascale and J. Vandeplanque, “Excited molecular terms of the alkali-rare gas atom pairs,” J. Chem. Phys. 60, 2278 (1974).
[Crossref]

1972 (1)

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6, 1519–1544 (1972).
[Crossref]

1945 (1)

A. Jabloński, “General theory of pressure broadening of spectral lines,” Phys. Rev. 68, 78–93 (1945).
[Crossref]

1917 (1)

A. Einstein, “On the quantum theory of radiation,” Physikalische Zeitschrift 18, 121 (1917).

Bhattacharya, P.

M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D 40, R179 (2007).
[Crossref]

Carroll, D. L.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
[Crossref]

Drummond, D. L.

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6, 1519–1544 (1972).
[Crossref]

Eden, J. G.

A. E. Mironov, J. D. Hewitt, and J. G. Eden, “Spin Polarization of Rb and Cs np2P32 (n = 5, 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule,” Phys. Rev. Lett. 118, 113201 (2017).
[Crossref]

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
[Crossref]

J. D. Hewitt, A. E. Mironov, and J. G. Eden (unpublished).

Ehara, M.

M. Ehara and H. Nakatsuji, “Collision induced absorption spectra and line broadening of CsRg system (Rg=Xe, Kr, Ar, Ne) studied by the symmetry adapted cluster-configuration interaction (SAC-Cl) method,” J. Chem. Phys. 102, 6822–6830 (1995).
[Crossref]

Einstein, A.

A. Einstein, “On the quantum theory of radiation,” Physikalische Zeitschrift 18, 121 (1917).

Gallagher, A.

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6, 1519–1544 (1972).
[Crossref]

Happer, W.

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
[Crossref]

W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
[Crossref]

Hedges, R. E. M.

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6, 1519–1544 (1972).
[Crossref]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold Company, 1950).

Hewitt, J. D.

A. E. Mironov, J. D. Hewitt, and J. G. Eden, “Spin Polarization of Rb and Cs np2P32 (n = 5, 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule,” Phys. Rev. Lett. 118, 113201 (2017).
[Crossref]

J. D. Hewitt, A. E. Mironov, and J. G. Eden (unpublished).

Holub, M.

M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D 40, R179 (2007).
[Crossref]

Jablonski, A.

A. Jabloński, “General theory of pressure broadening of spectral lines,” Phys. Rev. 68, 78–93 (1945).
[Crossref]

Miron, E.

W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
[Crossref]

Mironov, A. E.

A. E. Mironov, J. D. Hewitt, and J. G. Eden, “Spin Polarization of Rb and Cs np2P32 (n = 5, 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule,” Phys. Rev. Lett. 118, 113201 (2017).
[Crossref]

J. D. Hewitt, A. E. Mironov, and J. G. Eden (unpublished).

Nakatsuji, H.

M. Ehara and H. Nakatsuji, “Collision induced absorption spectra and line broadening of CsRg system (Rg=Xe, Kr, Ar, Ne) studied by the symmetry adapted cluster-configuration interaction (SAC-Cl) method,” J. Chem. Phys. 102, 6822–6830 (1995).
[Crossref]

Pascale, J.

J. Pascale and J. Vandeplanque, “Excited molecular terms of the alkali-rare gas atom pairs,” J. Chem. Phys. 60, 2278 (1974).
[Crossref]

Readle, J. D.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
[Crossref]

Schaefer, S.

W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
[Crossref]

Schreiber, D.

W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
[Crossref]

Spinka, T. M.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
[Crossref]

Tellinghuisen, J.

J. Tellinghuisen, in Photodissociation and Photoionization, vol. LX of Advances in Chemical Physics (Wiley, 1985). pp 299–369.

van Wijngaarden, W. A.

W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
[Crossref]

Vandeplanque, J.

J. Pascale and J. Vandeplanque, “Excited molecular terms of the alkali-rare gas atom pairs,” J. Chem. Phys. 60, 2278 (1974).
[Crossref]

Verdeyen, J. T.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
[Crossref]

Wagner, C. J.

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
[Crossref]

Walker, T. G.

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
[Crossref]

Zeng, X.

W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
[Crossref]

Appl. Phys. Lett. (1)

J. D. Readle, C. J. Wagner, J. T. Verdeyen, T. M. Spinka, D. L. Carroll, and J. G. Eden, “Pumping of atomic alkali lasers by photoexcitation of a resonance line blue satellite and alkali-rare gas excimer dissociation,” Appl. Phys. Lett. 94, 251112 (2009).
[Crossref]

J. Chem. Phys. (2)

J. Pascale and J. Vandeplanque, “Excited molecular terms of the alkali-rare gas atom pairs,” J. Chem. Phys. 60, 2278 (1974).
[Crossref]

M. Ehara and H. Nakatsuji, “Collision induced absorption spectra and line broadening of CsRg system (Rg=Xe, Kr, Ar, Ne) studied by the symmetry adapted cluster-configuration interaction (SAC-Cl) method,” J. Chem. Phys. 102, 6822–6830 (1995).
[Crossref]

J. Phys. D (1)

M. Holub and P. Bhattacharya, “Spin-polarized light-emitting diodes and lasers,” J. Phys. D 40, R179 (2007).
[Crossref]

Phys. Rev. (1)

A. Jabloński, “General theory of pressure broadening of spectral lines,” Phys. Rev. 68, 78–93 (1945).
[Crossref]

Phys. Rev. A (2)

R. E. M. Hedges, D. L. Drummond, and A. Gallagher, “Extreme-Wing Line Broadening and Cs-Inert-Gas Potentials,” Phys. Rev. A 6, 1519–1544 (1972).
[Crossref]

W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden, and X. Zeng, “Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms,” Phys. Rev. A 29, 3092–3110 (1984).
[Crossref]

Phys. Rev. Lett. (1)

A. E. Mironov, J. D. Hewitt, and J. G. Eden, “Spin Polarization of Rb and Cs np2P32 (n = 5, 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule,” Phys. Rev. Lett. 118, 113201 (2017).
[Crossref]

Physikalische Zeitschrift (1)

A. Einstein, “On the quantum theory of radiation,” Physikalische Zeitschrift 18, 121 (1917).

Rev. Mod. Phys. (1)

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629–642 (1997).
[Crossref]

Other (3)

J. Tellinghuisen, in Photodissociation and Photoionization, vol. LX of Advances in Chemical Physics (Wiley, 1985). pp 299–369.

J. D. Hewitt, A. E. Mironov, and J. G. Eden (unpublished).

G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I. Spectra of Diatomic Molecules (Van Nostrand Reinhold Company, 1950).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Generalized energy level diagram (not to scale) for several of the lowest-lying states of CsXe and Cs, illustrating the optical generation of spin polarization in the 6 p 2 P 3 2 excited state of Cs. Circularly-polarized (σ) laser emission on the F′ = 5 → F″ = 4 and F′ = 4 → F″ = 3 transitions of the D2 line of Cs ( 6 p 2 P 3 2 6 s 2 S 1 2 ) is observed following the photoexcitation of thermalized Cs-Xe pairs in the λ = 838–850 nm wavelength interval.

Fig. 2
Fig. 2

Experimental arrangement for the circularly-polarized Cs and Rb lasers (852.1 nm and 780.0 nm, respectively). The polarization of the D2 laser and pump beams are indicated at several points in the optical train by red and blue arrows, respectively. The optical components at upper left serve to measure the degree of circular polarization of the Cs or Rb atomic laser output. The acronyms PBS, HR, and OC represent (respectively) polarizing beamsplitters, a high reflector (R = 99.9%) laser mirror, and an output coupler (R = 50%).

Fig. 3
Fig. 3

(a, b) False color intensity maps showing an overview of the dependence of the Cs D2 line laser pulse energy on the pump wavelength in the 840–848 nm region (D2 blue satellite), and the pump pulse energy, for a Cs-Xe mixture. The pump energy Ep was varied up to 5 mJ, and the color scale for the output laser pulse energy is at right. Results are illustrated for both linearly and circularly (σ+) polarized pump pulses, and all of the data were recorded for [Cs]=1.8 · 1015 cm−3 and [Xe]=2.6 · 1019 cm−3 (pressure of 800 Torr at 300 K). The white lines indicate the pathway along which the data in the lower panels were recorded. (c, d) At left, the variation of D2 laser output energy with the pump pulse energy. The pump wavelength was fixed at 842.7 nm. Laser excitation spectra for Cs-Xe are given at lower right when Ep is maintained at 4.5 mJ.

Fig. 4
Fig. 4

Measurements of the D2 line (852.1 nm) ASE pulse energy by two detectors as the energy of the σ+-polarized pump pulse is increased to 2.5 mJ. Obtained by removing the optical resonator of Fig. 2 and employing the optical train of Ref. [4], these data show that most of the ASE generated is σ-polarized. A comparison of the two data sets near threshold (0.2 ≤Ep≤0.6 mJ) is provided by the inset.

Fig. 5
Fig. 5

(a) Laser excitation spectra for Cs-Ar in the 833–849 nm range in pump wavelength. The Cs and Ar number densities are [Cs] = 1.8 · 1015 cm−3 and [Ar] = 2.6 · 1019 cm−3 and the pump pulse energy Ep was fixed at 5.7 mJ. A comparison of the normalized spectra is given by the inset; (b) Dependence of the D2 laser pulse energy on Ep for λp = 836.6 nm and all other experimental conditions identical to those in (a). The black lines are least squares fits to the data.

Fig. 6
Fig. 6

Dependence on rare gas pressure of the factor by which the Cs D2 laser slope efficiency increases when the pump optical field polarization is changed from linear to circular (σ+). Data are shown for Cs-Ar (blue), Cs-Kr (black), and Cs-Xe (red) alkali-rare gas pairs. The pump wavelength for each data set coincided with the peak of the B2Σ+X2Σ+ spectrum: 842.7 nm for Cs-Xe, 841.1 nm for Cs-Kr, and 836.6 nm for Cs-Ar. Note the suppression of zero on the ordinate.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ ( ν ) σ ( ν ) { N 2 ( g 2 g 1 ) N 1 }