Abstract

Ultrafast vibronic dynamics induced by the interaction of the Frenkel exciton with the coherent molecular vibrations in a layer-structured zinc chlorin aggregates prepared for artificial photosynthesis have been studied by 7.1 fs real-time vibrational spectroscopy with multi-spectrum detection. The fast decay of 100 ± 5fs is ascribed to the relaxation from the higher multi-exciton state (MES) to the one-exciton state, and the slow one of 863 ± 70fs is assigned to the relaxation from Q-exciton state to the dark nonfluorescent charge-transfer (CT) state, respectively. In addition, the wavelength dependences of the exciton-vibration coupling strength are found to follow the zeroth derivative of the transient absorption spectra of the exciton. It could be explained in term of the transition dipole moment modulated by dynamic intensity borrowing between the B transition and the Q transition through the vibronic interactions.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong coupling in a microcavity containing β-carotene

Richard T. Grant, Rahul Jayaprakash, David M Coles, Andrew Musser, Simone De Liberato, Ifor D.W. Samuel, Graham A. Turnbull, Jenny Clark, and David G. Lidzey
Opt. Express 26(3) 3320-3327 (2018)

Spectral modulation observed in Chl-a by ultrafast laser spectroscopy

Juan Du, Kazuaki Nakata, Yongliang Jiang, Eiji Tokunaga, and Takayoshi Kobayashi
Opt. Express 19(23) 22480-22485 (2011)

Ultrafast dynamics induced by coherent exciton–plasmon coupling in quantum dot-metallic nanoshell systems

S. M. Sadeghi and K. D. Patty
J. Opt. Soc. Am. B 31(1) 120-127 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
    [PubMed]
  2. J. Harada, T. Mizoguchi, Y. Tsukatani, M. Noguchi, and H. Tamiaki, “A seventh bacterial chlorophyll driving a large light-harvesting antenna,” Sci. Rep. 2(9), 671 (2012).
    [PubMed]
  3. D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
    [PubMed]
  4. S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
    [PubMed]
  5. S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
    [PubMed]
  6. G. T. Oostergetel, H. van Amerongen, and E. J. Boekema, “The chlorosome: a prototype for efficient light harvesting in photosynthesis,” Photosynth. Res. 104(2-3), 245–255 (2010).
    [PubMed]
  7. G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
    [PubMed]
  8. S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
    [PubMed]
  9. T. Miyatake and H. Tamiaki, “Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems,” Coord. Chem. Rev. 254(21–22), 2593–2602 (2010).
  10. Y. Takeuchi and Y. Amao, “Light-harvesting properties of zinc complex of chlorophyll-a from spirulina in surfactant micellar media,” Biometals 18(1), 15–21 (2005).
    [PubMed]
  11. J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
    [PubMed]
  12. J. M. Linnanto and J. E. I. Korppi-Tommola, “Exciton Description of Chlorosome to Baseplate Excitation Energy Transfer in Filamentous Anoxygenic Phototrophs and Green Sulfur Bacteria,” J. Phys. Chem. B 117(38), 11144–11161 (2013).
    [PubMed]
  13. D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
    [PubMed]
  14. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
    [PubMed]
  15. D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).
  16. H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
    [PubMed]
  17. T. Miyatake, S. Tanigawa, S. Kato, and H. Tamiaki, “Aqueous self-aggregates of amphiphilic zinc 31-hydroxy- and 31-methoxy-chlorins for supramolecular light-harvesting systems,” Tetrahedron Lett. 48(13), 2251–2254 (2007).
  18. V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).
  19. S. Akimoto, T. Yamazaki, I. Yamazaki, and A. Osuka, “Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy,” Chem. Phys. Lett. 309(3–4), 177–182 (1999).
  20. D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
    [PubMed]
  21. J. Knoester and F. C. Spano, “Unusual Behavior of Two-Photon Absorption from Three-Level Molecules in a One-Dimensional Lattice,” Phys. Rev. Lett. 74(14), 2780–2783 (1995).
    [PubMed]
  22. H. Kano, T. Saito, and T. Kobayashi, “Dynamic intensity borrowing in porphyrin J-aggregates revealed by sub-5-fs spectroscopy,” J. Phys. Chem. B 105(2), 413–419 (2001).
  23. H. Kano, A. T. Saito, and T. Kobayashi, “Observation of Herzberg-Teller-type wave packet motion in porphyrin J-aggregates studied by sub-5-fs spectroscopy,” J. Phys. Chem. A 106(14), 3445–3453 (2002).
  24. O. A. Sytina, V. I. Novoderezhkin, R. van Grondelle, and M. L. Groot, “Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution,” J. Phys. Chem. A 115(43), 11944–11951 (2011).
    [PubMed]
  25. B. Bruggemann and V. May, “Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system,” J. Chem. Phys. 120(5), 2325–2336 (2004).
    [PubMed]
  26. H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific, 2000)
  27. J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
    [PubMed]
  28. T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
    [PubMed]
  29. J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19(23), 22480–22485 (2011).
    [PubMed]

2016 (1)

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

2015 (2)

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

2014 (1)

S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
[PubMed]

2013 (1)

J. M. Linnanto and J. E. I. Korppi-Tommola, “Exciton Description of Chlorosome to Baseplate Excitation Energy Transfer in Filamentous Anoxygenic Phototrophs and Green Sulfur Bacteria,” J. Phys. Chem. B 117(38), 11144–11161 (2013).
[PubMed]

2012 (2)

J. Harada, T. Mizoguchi, Y. Tsukatani, M. Noguchi, and H. Tamiaki, “A seventh bacterial chlorophyll driving a large light-harvesting antenna,” Sci. Rep. 2(9), 671 (2012).
[PubMed]

J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
[PubMed]

2011 (3)

O. A. Sytina, V. I. Novoderezhkin, R. van Grondelle, and M. L. Groot, “Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution,” J. Phys. Chem. A 115(43), 11944–11951 (2011).
[PubMed]

T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
[PubMed]

J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19(23), 22480–22485 (2011).
[PubMed]

2010 (2)

G. T. Oostergetel, H. van Amerongen, and E. J. Boekema, “The chlorosome: a prototype for efficient light harvesting in photosynthesis,” Photosynth. Res. 104(2-3), 245–255 (2010).
[PubMed]

T. Miyatake and H. Tamiaki, “Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems,” Coord. Chem. Rev. 254(21–22), 2593–2602 (2010).

2009 (1)

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

2007 (2)

T. Miyatake, S. Tanigawa, S. Kato, and H. Tamiaki, “Aqueous self-aggregates of amphiphilic zinc 31-hydroxy- and 31-methoxy-chlorins for supramolecular light-harvesting systems,” Tetrahedron Lett. 48(13), 2251–2254 (2007).

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

2006 (1)

G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
[PubMed]

2005 (1)

Y. Takeuchi and Y. Amao, “Light-harvesting properties of zinc complex of chlorophyll-a from spirulina in surfactant micellar media,” Biometals 18(1), 15–21 (2005).
[PubMed]

2004 (1)

B. Bruggemann and V. May, “Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system,” J. Chem. Phys. 120(5), 2325–2336 (2004).
[PubMed]

2002 (2)

H. Kano, A. T. Saito, and T. Kobayashi, “Observation of Herzberg-Teller-type wave packet motion in porphyrin J-aggregates studied by sub-5-fs spectroscopy,” J. Phys. Chem. A 106(14), 3445–3453 (2002).

V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).

2001 (1)

H. Kano, T. Saito, and T. Kobayashi, “Dynamic intensity borrowing in porphyrin J-aggregates revealed by sub-5-fs spectroscopy,” J. Phys. Chem. B 105(2), 413–419 (2001).

1999 (1)

S. Akimoto, T. Yamazaki, I. Yamazaki, and A. Osuka, “Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy,” Chem. Phys. Lett. 309(3–4), 177–182 (1999).

1998 (1)

1996 (2)

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
[PubMed]

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[PubMed]

1995 (2)

J. Knoester and F. C. Spano, “Unusual Behavior of Two-Photon Absorption from Three-Level Molecules in a One-Dimensional Lattice,” Phys. Rev. Lett. 74(14), 2780–2783 (1995).
[PubMed]

S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
[PubMed]

1987 (1)

D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
[PubMed]

Akimoto, S.

S. Akimoto, T. Yamazaki, I. Yamazaki, and A. Osuka, “Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy,” Chem. Phys. Lett. 309(3–4), 177–182 (1999).

Amakawa, M.

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
[PubMed]

Amao, Y.

Y. Takeuchi and Y. Amao, “Light-harvesting properties of zinc complex of chlorophyll-a from spirulina in surfactant micellar media,” Biometals 18(1), 15–21 (2005).
[PubMed]

Augulis, R.

J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
[PubMed]

Bateson, M. M.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Baumeister, U.

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Blankenship, R. E.

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[PubMed]

S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
[PubMed]

D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
[PubMed]

Bocian, D. F.

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[PubMed]

Boekema, E. J.

G. T. Oostergetel, H. van Amerongen, and E. J. Boekema, “The chlorosome: a prototype for efficient light harvesting in photosynthesis,” Photosynth. Res. 104(2-3), 245–255 (2010).
[PubMed]

Bruggemann, B.

B. Bruggemann and V. May, “Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system,” J. Chem. Phys. 120(5), 2325–2336 (2004).
[PubMed]

Brune, D. C.

D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
[PubMed]

Bryant, D. A.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Buda, F.

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Chew, A. G. M.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Costas, A. M.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

de Groot, H. J.

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Diers, J. R.

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[PubMed]

Dostál, J.

J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
[PubMed]

Du, J.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19(23), 22480–22485 (2011).
[PubMed]

Ganapathy, S.

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Groot, M. L.

O. A. Sytina, V. I. Novoderezhkin, R. van Grondelle, and M. L. Groot, “Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution,” J. Phys. Chem. A 115(43), 11944–11951 (2011).
[PubMed]

Han, D.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

Harada, J.

J. Harada, T. Mizoguchi, Y. Tsukatani, M. Noguchi, and H. Tamiaki, “A seventh bacterial chlorophyll driving a large light-harvesting antenna,” Sci. Rep. 2(9), 671 (2012).
[PubMed]

Heidelberg, J. F.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Holzwarth, A. R.

V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
[PubMed]

Hostetler, J.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Huber, V.

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Ihee, H.

S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
[PubMed]

Infosino, A.

D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
[PubMed]

Isaji, M.

S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
[PubMed]

Jiang, Y.

Jun, S.

S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
[PubMed]

Kano, H.

H. Kano, A. T. Saito, and T. Kobayashi, “Observation of Herzberg-Teller-type wave packet motion in porphyrin J-aggregates studied by sub-5-fs spectroscopy,” J. Phys. Chem. A 106(14), 3445–3453 (2002).

H. Kano, T. Saito, and T. Kobayashi, “Dynamic intensity borrowing in porphyrin J-aggregates revealed by sub-5-fs spectroscopy,” J. Phys. Chem. B 105(2), 413–419 (2001).

Kato, S.

T. Miyatake, S. Tanigawa, S. Kato, and H. Tamiaki, “Aqueous self-aggregates of amphiphilic zinc 31-hydroxy- and 31-methoxy-chlorins for supramolecular light-harvesting systems,” Tetrahedron Lett. 48(13), 2251–2254 (2007).

Kim, J.

S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
[PubMed]

King, G. H.

D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
[PubMed]

Klatt, C. G.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Knoester, J.

J. Knoester and F. C. Spano, “Unusual Behavior of Two-Photon Absorption from Three-Level Molecules in a One-Dimensional Lattice,” Phys. Rev. Lett. 74(14), 2780–2783 (1995).
[PubMed]

Kobayashi, T.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

J. Du, K. Nakata, Y. Jiang, E. Tokunaga, and T. Kobayashi, “Spectral modulation observed in Chl-a by ultrafast laser spectroscopy,” Opt. Express 19(23), 22480–22485 (2011).
[PubMed]

T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
[PubMed]

H. Kano, A. T. Saito, and T. Kobayashi, “Observation of Herzberg-Teller-type wave packet motion in porphyrin J-aggregates studied by sub-5-fs spectroscopy,” J. Phys. Chem. A 106(14), 3445–3453 (2002).

H. Kano, T. Saito, and T. Kobayashi, “Dynamic intensity borrowing in porphyrin J-aggregates revealed by sub-5-fs spectroscopy,” J. Phys. Chem. B 105(2), 413–419 (2001).

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
[PubMed]

Korppi-Tommola, J. E. I.

J. M. Linnanto and J. E. I. Korppi-Tommola, “Exciton Description of Chlorosome to Baseplate Excitation Energy Transfer in Filamentous Anoxygenic Phototrophs and Green Sulfur Bacteria,” J. Phys. Chem. B 117(38), 11144–11161 (2013).
[PubMed]

Leng, Y.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

Li, Y.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

Lin, S.

S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
[PubMed]

Linnanto, J. M.

J. M. Linnanto and J. E. I. Korppi-Tommola, “Exciton Description of Chlorosome to Baseplate Excitation Energy Transfer in Filamentous Anoxygenic Phototrophs and Green Sulfur Bacteria,” J. Phys. Chem. B 117(38), 11144–11161 (2013).
[PubMed]

Mancal, T.

J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
[PubMed]

Maresca, J. A.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

May, V.

B. Bruggemann and V. May, “Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system,” J. Chem. Phys. 120(5), 2325–2336 (2004).
[PubMed]

Miyatake, T.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

T. Miyatake and H. Tamiaki, “Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems,” Coord. Chem. Rev. 254(21–22), 2593–2602 (2010).

T. Miyatake, S. Tanigawa, S. Kato, and H. Tamiaki, “Aqueous self-aggregates of amphiphilic zinc 31-hydroxy- and 31-methoxy-chlorins for supramolecular light-harvesting systems,” Tetrahedron Lett. 48(13), 2251–2254 (2007).

V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).

Mizoguchi, T.

J. Harada, T. Mizoguchi, Y. Tsukatani, M. Noguchi, and H. Tamiaki, “A seventh bacterial chlorophyll driving a large light-harvesting antenna,” Sci. Rep. 2(9), 671 (2012).
[PubMed]

Müller, M. G.

V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).

Nakata, K.

Nelson, W. C.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Noguchi, M.

J. Harada, T. Mizoguchi, Y. Tsukatani, M. Noguchi, and H. Tamiaki, “A seventh bacterial chlorophyll driving a large light-harvesting antenna,” Sci. Rep. 2(9), 671 (2012).
[PubMed]

Novoderezhkin, V. I.

O. A. Sytina, V. I. Novoderezhkin, R. van Grondelle, and M. L. Groot, “Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution,” J. Phys. Chem. A 115(43), 11944–11951 (2011).
[PubMed]

Oostergetel, G. T.

G. T. Oostergetel, H. van Amerongen, and E. J. Boekema, “The chlorosome: a prototype for efficient light harvesting in photosynthesis,” Photosynth. Res. 104(2-3), 245–255 (2010).
[PubMed]

Osuka, A.

S. Akimoto, T. Yamazaki, I. Yamazaki, and A. Osuka, “Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy,” Chem. Phys. Lett. 309(3–4), 177–182 (1999).

Prokhorenko, V. I.

V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).

Pšencík, J.

J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
[PubMed]

Rumbles, G.

G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
[PubMed]

Saito, A. T.

H. Kano, A. T. Saito, and T. Kobayashi, “Observation of Herzberg-Teller-type wave packet motion in porphyrin J-aggregates studied by sub-5-fs spectroscopy,” J. Phys. Chem. A 106(14), 3445–3453 (2002).

Saito, T.

H. Kano, T. Saito, and T. Kobayashi, “Dynamic intensity borrowing in porphyrin J-aggregates revealed by sub-5-fs spectroscopy,” J. Phys. Chem. B 105(2), 413–419 (2001).

Sakane, I.

Savikhin, S.

S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
[PubMed]

Schaffner, K.

V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
[PubMed]

Scholes, G. D.

G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
[PubMed]

Sengupta, S.

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Shimono, Y.

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
[PubMed]

Shirakawa, A.

Spano, F. C.

J. Knoester and F. C. Spano, “Unusual Behavior of Two-Photon Absorption from Three-Level Molecules in a One-Dimensional Lattice,” Phys. Rev. Lett. 74(14), 2780–2783 (1995).
[PubMed]

Steiner, T.

D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
[PubMed]

Struve, W. S.

S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
[PubMed]

Sytina, O. A.

O. A. Sytina, V. I. Novoderezhkin, R. van Grondelle, and M. L. Groot, “Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution,” J. Phys. Chem. A 115(43), 11944–11951 (2011).
[PubMed]

Takeuchi, Y.

Y. Takeuchi and Y. Amao, “Light-harvesting properties of zinc complex of chlorophyll-a from spirulina in surfactant micellar media,” Biometals 18(1), 15–21 (2005).
[PubMed]

Tallon, L. J.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Tamiaki, H.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

D. Han, Y. Li, J. Du, K. Wang, Y. Li, T. Miyatake, H. Tamiaki, T. Kobayashi, and Y. Leng, “Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy,” Chin. Opt. Lett. 13(12), 121401 (2015).

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
[PubMed]

J. Harada, T. Mizoguchi, Y. Tsukatani, M. Noguchi, and H. Tamiaki, “A seventh bacterial chlorophyll driving a large light-harvesting antenna,” Sci. Rep. 2(9), 671 (2012).
[PubMed]

T. Miyatake and H. Tamiaki, “Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems,” Coord. Chem. Rev. 254(21–22), 2593–2602 (2010).

T. Miyatake, S. Tanigawa, S. Kato, and H. Tamiaki, “Aqueous self-aggregates of amphiphilic zinc 31-hydroxy- and 31-methoxy-chlorins for supramolecular light-harvesting systems,” Tetrahedron Lett. 48(13), 2251–2254 (2007).

V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
[PubMed]

Tanigawa, S.

T. Miyatake, S. Tanigawa, S. Kato, and H. Tamiaki, “Aqueous self-aggregates of amphiphilic zinc 31-hydroxy- and 31-methoxy-chlorins for supramolecular light-harvesting systems,” Tetrahedron Lett. 48(13), 2251–2254 (2007).

Tanikaga, R.

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
[PubMed]

Thewalt, M. L.

D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
[PubMed]

Tokunaga, E.

Tsukatani, Y.

J. Harada, T. Mizoguchi, Y. Tsukatani, M. Noguchi, and H. Tamiaki, “A seventh bacterial chlorophyll driving a large light-harvesting antenna,” Sci. Rep. 2(9), 671 (2012).
[PubMed]

Vácha, F.

J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
[PubMed]

van Amerongen, H.

G. T. Oostergetel, H. van Amerongen, and E. J. Boekema, “The chlorosome: a prototype for efficient light harvesting in photosynthesis,” Photosynth. Res. 104(2-3), 245–255 (2010).
[PubMed]

van Grondelle, R.

O. A. Sytina, V. I. Novoderezhkin, R. van Grondelle, and M. L. Groot, “Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution,” J. Phys. Chem. A 115(43), 11944–11951 (2011).
[PubMed]

van Noort, P. I.

S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
[PubMed]

Wang, K.

Ward, D. M.

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Wawrzyniak, P. K.

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Würthner, F.

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Xing, X.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

Xue, B.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

Yabushita, A.

T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
[PubMed]

Yamazaki, I.

S. Akimoto, T. Yamazaki, I. Yamazaki, and A. Osuka, “Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy,” Chem. Phys. Lett. 309(3–4), 177–182 (1999).

Yamazaki, T.

S. Akimoto, T. Yamazaki, I. Yamazaki, and A. Osuka, “Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy,” Chem. Phys. Lett. 309(3–4), 177–182 (1999).

Yang, C.

S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
[PubMed]

Yuan, W.

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

Zhu, Y.

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[PubMed]

S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
[PubMed]

Zigmantas, D.

J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
[PubMed]

Biochemistry (1)

D. C. Brune, G. H. King, A. Infosino, T. Steiner, M. L. Thewalt, and R. E. Blankenship, “Antenna organization in green photosynthetic bacteria. 2. Excitation transfer in detached and membrane-bound chlorosomes from Chloroflexus aurantiacus,” Biochemistry 26(26), 8652–8658 (1987).
[PubMed]

Biometals (1)

Y. Takeuchi and Y. Amao, “Light-harvesting properties of zinc complex of chlorophyll-a from spirulina in surfactant micellar media,” Biometals 18(1), 15–21 (2005).
[PubMed]

Chem. Phys. (1)

S. Savikhin, P. I. van Noort, Y. Zhu, S. Lin, R. E. Blankenship, and W. S. Struve, “Ultrafast energy transfer in light-harvesting chlorosomes from the green sulfur bacterium Chlorobium tepidum,” Chem. Phys. 194(2-3), 245–258 (1995).
[PubMed]

Chem. Phys. Lett. (1)

S. Akimoto, T. Yamazaki, I. Yamazaki, and A. Osuka, “Excitation relaxation of zinc and free-base porphyrin probed by femtosecond fluorescence spectroscopy,” Chem. Phys. Lett. 309(3–4), 177–182 (1999).

Chem. Rec. (1)

T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
[PubMed]

Chin. Opt. Lett. (1)

Coord. Chem. Rev. (1)

T. Miyatake and H. Tamiaki, “Self-aggregates of natural chlorophylls and their synthetic analogues in aqueous media for making light-harvesting systems,” Coord. Chem. Rev. 254(21–22), 2593–2602 (2010).

J. Am. Chem. Soc. (1)

J. Dostál, T. Mančal, R. Augulis, F. Vácha, J. Pšenčík, and D. Zigmantas, “Two-Dimensional Electronic Spectroscopy Reveals Ultrafast Energy Diffusion in Chlorosomes,” J. Am. Chem. Soc. 134(28), 11611–11617 (2012).
[PubMed]

J. Chem. Phys. (1)

B. Bruggemann and V. May, “Exciton exciton annihilation dynamics in chromophore complexes. II. Intensity dependent transient absorption of the LH2 antenna system,” J. Chem. Phys. 120(5), 2325–2336 (2004).
[PubMed]

J. Phys. Chem. (1)

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates. Effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[PubMed]

J. Phys. Chem. A (2)

H. Kano, A. T. Saito, and T. Kobayashi, “Observation of Herzberg-Teller-type wave packet motion in porphyrin J-aggregates studied by sub-5-fs spectroscopy,” J. Phys. Chem. A 106(14), 3445–3453 (2002).

O. A. Sytina, V. I. Novoderezhkin, R. van Grondelle, and M. L. Groot, “Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution,” J. Phys. Chem. A 115(43), 11944–11951 (2011).
[PubMed]

J. Phys. Chem. B (4)

H. Kano, T. Saito, and T. Kobayashi, “Dynamic intensity borrowing in porphyrin J-aggregates revealed by sub-5-fs spectroscopy,” J. Phys. Chem. B 105(2), 413–419 (2001).

J. M. Linnanto and J. E. I. Korppi-Tommola, “Exciton Description of Chlorosome to Baseplate Excitation Energy Transfer in Filamentous Anoxygenic Phototrophs and Green Sulfur Bacteria,” J. Phys. Chem. B 117(38), 11144–11161 (2013).
[PubMed]

D. Han, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, Y. Li, and Y. Leng, “Excitonic Relaxation and Coherent Vibrational Dynamics in Zinc Chlorin Aggregates for Artificial Photosynthetic Systems,” J. Phys. Chem. B 119(37), 12265–12273 (2015).
[PubMed]

V. I. Prokhorenko, A. R. Holzwarth, M. G. Müller, K. Schaffner, T. Miyatake, and H. Tamiaki, “Energy Transfer in Supramolecular Artificial Antennae Units of Synthetic Zinc Chlorins and Co-aggregated Energy Traps. A Time-Resolved Fluorescence Study,” J. Phys. Chem. B 106(22), 5761–5768 (2002).

J. Phys. Chem. Lett. (1)

S. Jun, C. Yang, M. Isaji, H. Tamiaki, J. Kim, and H. Ihee, “Coherent Oscillations in Chlorosome Elucidated by Two-Dimensional Electronic Spectroscopy,” J. Phys. Chem. Lett. 5(8), 1386–1392 (2014).
[PubMed]

Nat. Mater. (1)

G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nat. Mater. 5(9), 683–696 (2006).
[PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. (1)

H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Holzwarth, and K. Schaffner, “Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria,” Photochem. Photobiol. 63(1), 92–99 (1996).
[PubMed]

Photosynth. Res. (1)

G. T. Oostergetel, H. van Amerongen, and E. J. Boekema, “The chlorosome: a prototype for efficient light harvesting in photosynthesis,” Photosynth. Res. 104(2-3), 245–255 (2010).
[PubMed]

Phys. Chem. Chem. Phys. (1)

D. Han, B. Xue, J. Du, T. Kobayashi, T. Miyatake, H. Tamiaki, X. Xing, W. Yuan, Y. Li, and Y. Leng, “Excitonic and vibrational coherence in artificial photosynthetic systems studied by negative-time ultrafast laser spectroscopy,” Phys. Chem. Chem. Phys. 18(35), 24252–24260 (2016).
[PubMed]

Phys. Rev. Lett. (1)

J. Knoester and F. C. Spano, “Unusual Behavior of Two-Photon Absorption from Three-Level Molecules in a One-Dimensional Lattice,” Phys. Rev. Lett. 74(14), 2780–2783 (1995).
[PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Ganapathy, S. Sengupta, P. K. Wawrzyniak, V. Huber, F. Buda, U. Baumeister, F. Würthner, and H. J. de Groot, “Zinc chlorins for artificial light-harvesting self-assemble into antiparallel stacks forming a microcrystalline solid-state material,” Proc. Natl. Acad. Sci. U.S.A. 106(28), 11472–11477 (2009).
[PubMed]

Sci. Rep. (1)

J. Harada, T. Mizoguchi, Y. Tsukatani, M. Noguchi, and H. Tamiaki, “A seventh bacterial chlorophyll driving a large light-harvesting antenna,” Sci. Rep. 2(9), 671 (2012).
[PubMed]

Science (1)

D. A. Bryant, A. M. Costas, J. A. Maresca, A. G. M. Chew, C. G. Klatt, M. M. Bateson, L. J. Tallon, J. Hostetler, W. C. Nelson, J. F. Heidelberg, and D. M. Ward, “Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium,” Science 317(5837), 523–526 (2007).
[PubMed]

Tetrahedron Lett. (1)

T. Miyatake, S. Tanigawa, S. Kato, and H. Tamiaki, “Aqueous self-aggregates of amphiphilic zinc 31-hydroxy- and 31-methoxy-chlorins for supramolecular light-harvesting systems,” Tetrahedron Lett. 48(13), 2251–2254 (2007).

Other (1)

H. van Amerongen, L. Valkunas, and R. van Grondelle, Photosynthetic Excitons (World Scientific, 2000)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Structure of the Zn Chl Aggregate. (b) the normalized spectrum: NOPA laser spectrum (black line), stationary absorption spectrum (red line), fluorescence spectrum (blue line).
Fig. 2
Fig. 2 (a) Two-dimensional plot of the absorbance changes (probe wavelength versus delay time). (b) The time dependence of the absorbance change at five wavelengths.
Fig. 3
Fig. 3 (a) Lifetime τ1 and τ2. (b) Time resolved difference absorption spectrum. (c) Spectral a(λ), b(λ), and c(λ).
Fig. 4
Fig. 4 (a) Two-dimensional plot of FT amplitude spectra of the pump-probe signal (bottom figure), probe wavelength dependence of difference absorption at 500 fs (top figure). (b) Probe delay time dependence of integrated difference absorption in the Q band. (c) FFT power spectra of the integrated difference absorption.
Fig. 5
Fig. 5 Energy diagram of the zinc chlorin aggregates.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔA(λ,t)=a(λ) e t/ τ 1 +b(λ) e t/ τ 2 +c(λ)
δΔA(ω,t)=ΔA(ω,t)- ΔA(ω,t) ¯ ( δ( μ 2 (t)) μ 2 (t) ΔA(ω,t)+δω(t) dΔA(ω,t) dω +δΔω(τ) d 2 ΔA(ω,t) d 2 ω )cos( ω υ t+φ)

Metrics