Abstract

A new light lab facility has been commissioned at Rochester Institute of Technology with the research goal of studying human visual adaptation under temporally dynamic lighting. The lab uses five-channel LED luminaires with 16 bits of addressable depth per channel, addressed via DMX. Based on spectral measurements, a very accurate multi-primary additive color model has been built that can be used to provide “colorimetric plus” multi-primary channel intensity solutions optimized for spectral accuracy, color fidelity, color gamut, or other attributes. Several spectral tuning and multi-primary solutions are compared, for which accuracy results and IES TM-30-15 color rendition measures are shown.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength dependence of colorimetric properties of lighting sources based on multi-color LEDs

Hongtao Li, Xianglong Mao, Yanjun Han, and Yi Luo
Opt. Express 21(3) 3775-3783 (2013)

Development and evaluation of colour control interfaces for LED lighting

Wenye Hu and Wendy Davis
Opt. Express 25(8) A346-A360 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Murdoch, M. G. M. Stokkermans, and M. Lambooij, “Towards perceptual accuracy in 3D visualizations of illuminated indoor environments,” J. Solid State Lighting 2(1), 12 (2015).
  2. C. Miller, Y. Ohno, W. Davis, Y. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), pp. 5–9.
  3. IEC, Default RGB colour space – sRGB, International Standard IEC 61966–2-1 (IEC, 1999).
  4. M. Fairchild and D. Wyble, “Colorimetric characterization of the Apple studio display (Flat panel LCD),” Munsell Color Science Laboratory Technical Report (1998).
  5. M. J. Murdoch, M. E. Miller, and P. J. Kane, “Perfecting the color reproduction of RGBW OLED,” in Proceedings of International Congress on Imaging Science 2006 (IS&T, 2006), pp. 448–451.
  6. T. Ajito, K. Ohsawa, T. Obi, M. Yamaguchi, and N. Ohyama, “Color Conversion Method for Multiprimary Display Using Matrix Switching,” Opt. Rev. 8(3), 191–197 (2001).
  7. H. Motomura, “Color conversion for a multi-primary display using linear interpolation on equi-luminance plane method (LIQUID),” J. Soc. Inf. Disp. 11(2), 371–378 (2003).
  8. A. Žukauskas, R. Vaicekauskas, P. Vitta, A. Tuzikas, A. Petrulis, and M. Shur, “Color rendition engine,” Opt. Express 20(5), 5356–5367 (2012).
    [PubMed]
  9. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
  10. H. Ries, I. Leike, and J. Muschaweck, “Optimized additive mixing of colored light-emitting diode sources,” Opt. Eng. 43(7), 1531–1536 (2004).
  11. F. Zhang, H. Xu, and Z. Wang, “Optimizing spectral compositions of multichannel LED light sources by IES color fidelity index and luminous efficacy of radiation,” Appl. Opt. 56(7), 1962–1971 (2017).
    [PubMed]
  12. M. C. Chien and C. H. Tien, “Multispectral mixing scheme for LED clusters with extended operational temperature window,” Opt. Express 20(Suppl 2), A245–A254 (2012).
    [PubMed]
  13. N.-C. Hu, Y.-C. Feng, C. C. Wu, and S. L. Hsiao, “Optimal radiant flux selection for multi-channel light-emitting diodes for spectrum-tunable lighting,” Light. Res. Technol. 46, 434–452 (2014).
  14. S. Afshari, L. Moynihan, and S. Mishra, “An optimisation toolbox for multi-colour LED lighting,” Light. Res. Technol. 0, 1–15 (2016).
  15. Illuminating Engineering Society, IES Method for Evaluating Light Source Color Rendition. IES TM-30–15 2015; ISBN 978–0-87995–312–6
  16. A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
    [PubMed]
  17. International Commission on Illumination, “CIE 13.3-1995: Method of Measuring and Specifying Colour Rendering Properties of Light Sources.” (CIE, 1995).
  18. Philips Lighting, SkyRibbon Intellihue, http://www.colorkinetics.com/ls/IntelliHue/skyribbon-wall-washing/
  19. ENTTEC, “DMX USB Pro Widget API Specification 1.44,” https://dol2kh495zr52.cloudfront.net/pdf/misc/dmx_usb_pro_api_spec.pdf
  20. DMXKing, ultraDMX Micro, https://dmxking.com/usbdmx/ultradmxmicro
  21. Photo Research, SpectraScan® Spectroradiometer PR-655, http://www.photoresearch.com/content/spectrascan%C2%AE-spectroradiometer
  22. MathWorks, MATLAB 2014b, https://www.mathworks.com/products/new_products/release2014b.html
  23. International Commission on Illumination, “CIE 15: Colorimetry, 3ed” (CIE, 2004).

2017 (1)

2016 (1)

S. Afshari, L. Moynihan, and S. Mishra, “An optimisation toolbox for multi-colour LED lighting,” Light. Res. Technol. 0, 1–15 (2016).

2015 (2)

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[PubMed]

M. J. Murdoch, M. G. M. Stokkermans, and M. Lambooij, “Towards perceptual accuracy in 3D visualizations of illuminated indoor environments,” J. Solid State Lighting 2(1), 12 (2015).

2014 (1)

N.-C. Hu, Y.-C. Feng, C. C. Wu, and S. L. Hsiao, “Optimal radiant flux selection for multi-channel light-emitting diodes for spectrum-tunable lighting,” Light. Res. Technol. 46, 434–452 (2014).

2012 (2)

2005 (1)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).

2004 (1)

H. Ries, I. Leike, and J. Muschaweck, “Optimized additive mixing of colored light-emitting diode sources,” Opt. Eng. 43(7), 1531–1536 (2004).

2003 (1)

H. Motomura, “Color conversion for a multi-primary display using linear interpolation on equi-luminance plane method (LIQUID),” J. Soc. Inf. Disp. 11(2), 371–378 (2003).

2001 (1)

T. Ajito, K. Ohsawa, T. Obi, M. Yamaguchi, and N. Ohyama, “Color Conversion Method for Multiprimary Display Using Matrix Switching,” Opt. Rev. 8(3), 191–197 (2001).

Afshari, S.

S. Afshari, L. Moynihan, and S. Mishra, “An optimisation toolbox for multi-colour LED lighting,” Light. Res. Technol. 0, 1–15 (2016).

Ajito, T.

T. Ajito, K. Ohsawa, T. Obi, M. Yamaguchi, and N. Ohyama, “Color Conversion Method for Multiprimary Display Using Matrix Switching,” Opt. Rev. 8(3), 191–197 (2001).

Chien, M. C.

David, A.

Davis, W.

C. Miller, Y. Ohno, W. Davis, Y. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), pp. 5–9.

Dowling, K.

C. Miller, Y. Ohno, W. Davis, Y. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), pp. 5–9.

Feng, Y.-C.

N.-C. Hu, Y.-C. Feng, C. C. Wu, and S. L. Hsiao, “Optimal radiant flux selection for multi-channel light-emitting diodes for spectrum-tunable lighting,” Light. Res. Technol. 46, 434–452 (2014).

Fini, P. T.

Houser, K. W.

Hsiao, S. L.

N.-C. Hu, Y.-C. Feng, C. C. Wu, and S. L. Hsiao, “Optimal radiant flux selection for multi-channel light-emitting diodes for spectrum-tunable lighting,” Light. Res. Technol. 46, 434–452 (2014).

Hu, N.-C.

N.-C. Hu, Y.-C. Feng, C. C. Wu, and S. L. Hsiao, “Optimal radiant flux selection for multi-channel light-emitting diodes for spectrum-tunable lighting,” Light. Res. Technol. 46, 434–452 (2014).

Kane, P. J.

M. J. Murdoch, M. E. Miller, and P. J. Kane, “Perfecting the color reproduction of RGBW OLED,” in Proceedings of International Congress on Imaging Science 2006 (IS&T, 2006), pp. 448–451.

Lambooij, M.

M. J. Murdoch, M. G. M. Stokkermans, and M. Lambooij, “Towards perceptual accuracy in 3D visualizations of illuminated indoor environments,” J. Solid State Lighting 2(1), 12 (2015).

Leike, I.

H. Ries, I. Leike, and J. Muschaweck, “Optimized additive mixing of colored light-emitting diode sources,” Opt. Eng. 43(7), 1531–1536 (2004).

Miller, C.

C. Miller, Y. Ohno, W. Davis, Y. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), pp. 5–9.

Miller, M. E.

M. J. Murdoch, M. E. Miller, and P. J. Kane, “Perfecting the color reproduction of RGBW OLED,” in Proceedings of International Congress on Imaging Science 2006 (IS&T, 2006), pp. 448–451.

Mishra, S.

S. Afshari, L. Moynihan, and S. Mishra, “An optimisation toolbox for multi-colour LED lighting,” Light. Res. Technol. 0, 1–15 (2016).

Motomura, H.

H. Motomura, “Color conversion for a multi-primary display using linear interpolation on equi-luminance plane method (LIQUID),” J. Soc. Inf. Disp. 11(2), 371–378 (2003).

Moynihan, L.

S. Afshari, L. Moynihan, and S. Mishra, “An optimisation toolbox for multi-colour LED lighting,” Light. Res. Technol. 0, 1–15 (2016).

Murdoch, M. J.

M. J. Murdoch, M. G. M. Stokkermans, and M. Lambooij, “Towards perceptual accuracy in 3D visualizations of illuminated indoor environments,” J. Solid State Lighting 2(1), 12 (2015).

M. J. Murdoch, M. E. Miller, and P. J. Kane, “Perfecting the color reproduction of RGBW OLED,” in Proceedings of International Congress on Imaging Science 2006 (IS&T, 2006), pp. 448–451.

Muschaweck, J.

H. Ries, I. Leike, and J. Muschaweck, “Optimized additive mixing of colored light-emitting diode sources,” Opt. Eng. 43(7), 1531–1536 (2004).

Obi, T.

T. Ajito, K. Ohsawa, T. Obi, M. Yamaguchi, and N. Ohyama, “Color Conversion Method for Multiprimary Display Using Matrix Switching,” Opt. Rev. 8(3), 191–197 (2001).

Ohno, Y.

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, M. Wei, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–15906 (2015).
[PubMed]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).

C. Miller, Y. Ohno, W. Davis, Y. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), pp. 5–9.

Ohsawa, K.

T. Ajito, K. Ohsawa, T. Obi, M. Yamaguchi, and N. Ohyama, “Color Conversion Method for Multiprimary Display Using Matrix Switching,” Opt. Rev. 8(3), 191–197 (2001).

Ohyama, N.

T. Ajito, K. Ohsawa, T. Obi, M. Yamaguchi, and N. Ohyama, “Color Conversion Method for Multiprimary Display Using Matrix Switching,” Opt. Rev. 8(3), 191–197 (2001).

Petrulis, A.

Ries, H.

H. Ries, I. Leike, and J. Muschaweck, “Optimized additive mixing of colored light-emitting diode sources,” Opt. Eng. 43(7), 1531–1536 (2004).

Royer, M. P.

Shur, M.

Smet, K. A. G.

Stokkermans, M. G. M.

M. J. Murdoch, M. G. M. Stokkermans, and M. Lambooij, “Towards perceptual accuracy in 3D visualizations of illuminated indoor environments,” J. Solid State Lighting 2(1), 12 (2015).

Tien, C. H.

Tuzikas, A.

Vaicekauskas, R.

Vitta, P.

Wang, Z.

Wei, M.

Whitehead, L.

Wu, C. C.

N.-C. Hu, Y.-C. Feng, C. C. Wu, and S. L. Hsiao, “Optimal radiant flux selection for multi-channel light-emitting diodes for spectrum-tunable lighting,” Light. Res. Technol. 46, 434–452 (2014).

Xu, H.

Yamaguchi, M.

T. Ajito, K. Ohsawa, T. Obi, M. Yamaguchi, and N. Ohyama, “Color Conversion Method for Multiprimary Display Using Matrix Switching,” Opt. Rev. 8(3), 191–197 (2001).

Zhang, F.

Zong, Y.

C. Miller, Y. Ohno, W. Davis, Y. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), pp. 5–9.

Žukauskas, A.

Appl. Opt. (1)

J. Soc. Inf. Disp. (1)

H. Motomura, “Color conversion for a multi-primary display using linear interpolation on equi-luminance plane method (LIQUID),” J. Soc. Inf. Disp. 11(2), 371–378 (2003).

J. Solid State Lighting (1)

M. J. Murdoch, M. G. M. Stokkermans, and M. Lambooij, “Towards perceptual accuracy in 3D visualizations of illuminated indoor environments,” J. Solid State Lighting 2(1), 12 (2015).

Light. Res. Technol. (2)

N.-C. Hu, Y.-C. Feng, C. C. Wu, and S. L. Hsiao, “Optimal radiant flux selection for multi-channel light-emitting diodes for spectrum-tunable lighting,” Light. Res. Technol. 46, 434–452 (2014).

S. Afshari, L. Moynihan, and S. Mishra, “An optimisation toolbox for multi-colour LED lighting,” Light. Res. Technol. 0, 1–15 (2016).

Opt. Eng. (2)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).

H. Ries, I. Leike, and J. Muschaweck, “Optimized additive mixing of colored light-emitting diode sources,” Opt. Eng. 43(7), 1531–1536 (2004).

Opt. Express (3)

Opt. Rev. (1)

T. Ajito, K. Ohsawa, T. Obi, M. Yamaguchi, and N. Ohyama, “Color Conversion Method for Multiprimary Display Using Matrix Switching,” Opt. Rev. 8(3), 191–197 (2001).

Other (12)

Illuminating Engineering Society, IES Method for Evaluating Light Source Color Rendition. IES TM-30–15 2015; ISBN 978–0-87995–312–6

International Commission on Illumination, “CIE 13.3-1995: Method of Measuring and Specifying Colour Rendering Properties of Light Sources.” (CIE, 1995).

Philips Lighting, SkyRibbon Intellihue, http://www.colorkinetics.com/ls/IntelliHue/skyribbon-wall-washing/

ENTTEC, “DMX USB Pro Widget API Specification 1.44,” https://dol2kh495zr52.cloudfront.net/pdf/misc/dmx_usb_pro_api_spec.pdf

DMXKing, ultraDMX Micro, https://dmxking.com/usbdmx/ultradmxmicro

Photo Research, SpectraScan® Spectroradiometer PR-655, http://www.photoresearch.com/content/spectrascan%C2%AE-spectroradiometer

MathWorks, MATLAB 2014b, https://www.mathworks.com/products/new_products/release2014b.html

International Commission on Illumination, “CIE 15: Colorimetry, 3ed” (CIE, 2004).

C. Miller, Y. Ohno, W. Davis, Y. Zong, and K. Dowling, “NIST spectrally tunable lighting facility for color rendering and lighting experiments,,” in Proceedings of Light and Lighting Conference with Special Emphasis on LEDs and Solid State Lighting (CIE, 2009), pp. 5–9.

IEC, Default RGB colour space – sRGB, International Standard IEC 61966–2-1 (IEC, 1999).

M. Fairchild and D. Wyble, “Colorimetric characterization of the Apple studio display (Flat panel LCD),” Munsell Color Science Laboratory Technical Report (1998).

M. J. Murdoch, M. E. Miller, and P. J. Kane, “Perfecting the color reproduction of RGBW OLED,” in Proceedings of International Congress on Imaging Science 2006 (IS&T, 2006), pp. 448–451.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Photograph of the 3.66 x 4.27 m DVA Lab with rear wall illuminated by a spatial gradient from cool white 9000K to warm white 2000K.
Fig. 2
Fig. 2 SPDs of maximum output of the 5 LED primaries.
Fig. 3
Fig. 3 1964 u'v' UCS plot of the 5 primaries (labeled vertices of the black polygons) and the 1,024 colors measured to verify the additive system model (colored dots). The colored curve represents the spectral locus, the physical boundary of monochromatic light.
Fig. 4
Fig. 4 At left, the u'v' chromaticity values of 101 target colors from 2000K to 9000K, labeled, and plotted in approximate color. The black polygons are the same as plotted in Fig. 3. At right, the XYZ tristimulus values of these colors (showing constant luminance of 175 cd/m2), plotted versus CCT. The 101 target colors are spaced evenly in the more perceptually-uniform uv’ space, thus the unintuitive spacing of the CCT axis labels.
Fig. 5
Fig. 5 Plots of primary intensity versus CCT for an RGB-only colorimetric solution (top) and for an RGBW solution using maximum W replacement (bottom).
Fig. 6
Fig. 6 Three panels show the aim SPD (black) with the RGB-only solution SPD (red) and the spectral-match SPD (cyan) for three example CCTs: 2700K (A), 4000K (B), and 6500K (C).
Fig. 7
Fig. 7 Spectral Match and Max-Rf. Plots of primary intensity versus CCT for a colorimetric plus spectral match (top) and for a colorimetric plus max-Rf solution (bottom).
Fig. 8
Fig. 8 Each plot shows the TM-30 (Rf, Rg) values of the 101 test colors over the CCT range, where Rf, or fidelity, indicates how similarly, on average, a light source renders object colors relative to a reference source; and Rg, or gamut, indicates the average chroma of rendered object colors relative to the reference. The point (100, 100) corresponds to a perfect match in color rendition to the reference. Plot A shows the colorimetric RGB-only solution, B shows the colorimetric plus Max- Rf solution, and C shows the colorimetric plus goal of (85, 105).

Tables (2)

Tables Icon

Table 1 Mean, median, and max model errors were computed over 1,024 verification colors, each measured twice. Luminance Y values are in units of cd/m2, and the average measured luminance of the verification colors was 338 cd/m2.

Tables Icon

Table 2 Mean, median, and max errors in Delta uv’ were computed over 101 target CCT colors ranging from 2000 to 9000 K for each of the multi-primary solutions, in columns.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[ X Y Z ] est =[ X R Y R Z R X G Y G Z G X B Y B Z B ][ R G B ]+ [ X Y Z ] flare
[ S( λ 1 ) S( λ m ) ] est =[ S ( λ 1 ) 1 S ( λ m ) 1 S ( λ 1 ) n S ( λ m ) n ][ P 1 P n ]+ [ S( λ 1 ) S( λ m ) ] flare
S (λ) est = i=1 n p i S (λ) i +S (λ) flare
[ X Y Z ] est =[ 265 67.8 135 203 188 127 192 104 232 182 0.273 13.7 820 82.9 113 ][ R G B M W ]

Metrics