Abstract

A compact and robust fiber temperature sensor based on a hermetically-sealed liquid-filling Fabry–Perot (FP) cavity was fabricated by low-cost but efficient processes, including fusion splicing, liquid injection, and fused tapering. Owing to the high thermal optical coefficient (TOC) of the ethanol, the optical path difference (OPD) in the FP cavity varied strongly with temperature, which consequently induced a drastic wavelength shift of the reflection spectrum. Meanwhile, the low freezing point of the ethanol caused the fiber sensor to have the ability of detecting the sub–zero temperatures. As a result, a linear sensitivity as high as 429 pm/°C was achieved in the range between -5 °C and 30 °C. In addition, our fiber temperature sensor also exhibited rapid response time, good repeatability, and stability. The biocompatible structure, low fabrication cost, and high performance of such a temperature sensor can provide it potential for biological applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact optical fiber temperature sensor with high sensitivity based on liquid-filled silica capillary tube

Yu Mao, Yuxi Zhang, Ruikai Xue, Yi Liu, Kunjian Cao, and Shiliang Qu
Appl. Opt. 57(5) 1061-1066 (2018)

Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper

Yi Liu, Changpeng Lang, Xiaocun Wei, and Shiliang Qu
Opt. Express 25(7) 7797-7806 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating–based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150, 226–229 (2010).
  2. N. T. Pham, S. L. Lee, S. Park, Y. W. Lee, and H. W. Kang, “Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy,” J. Biomed. Opt. 22(4), 45008 (2017).
    [PubMed]
  3. S. J. Liu, M. Y. Luo, and Q. Ji, “Sensing characteristics of femtosecond laser–induced long period gratings by filling cladding holes in photonic crystal fiber,” J. Lightwave Technol. 32(12), 2287–2292 (2014).
  4. Y. P. Wang, D. N. Wang, and W. Jin, “CO2 laser-grooved long period fiber grating temperature sensor system based on intensity modulation,” Appl. Opt. 45(31), 7966–7970 (2006).
    [PubMed]
  5. Y. Zhang, X. P. Chen, Y. X. Wang, K. L. Cooper, and A. B. Wang, “Microgap multicavity Fabry–Pérot biosensor,” J. Lightwave Technol. 25(7), 1797–1804 (2007).
  6. R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
    [PubMed]
  7. C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).
  8. H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).
  9. J. B. Liu, D. N. Wang, and L. Zhang, “Slightly tapered optical fiber with dual inner air–cavities for simultaneous refractive index and temperature measurement,” J. Lightwave Technol. 34(21), 4872–4876 (2016).
  10. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [PubMed]
  11. S. Hong, W. Jung, T. Nazari, S. Song, T. Kim, C. Quan, and K. Oh, “Thermo-optic characteristic of DNA thin solid film and its application as a biocompatible optical fiber temperature sensor,” Opt. Lett. 42(10), 1943–1945 (2017).
    [PubMed]
  12. B. L. Li, J. H. Chen, F. Xu, and Y. Q. Lu, “Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications,” Opt. Express 25(4), 4326–4334 (2017).
    [PubMed]
  13. F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
    [PubMed]
  14. Y. Peng, J. Hou, Y. Zhang, Z. Huang, R. Xiao, and Q. Lu, “Temperature sensing using the bandgap-like effect in a selectively liquid-filled photonic crystal fiber,” Opt. Lett. 38(3), 263–265 (2013).
    [PubMed]
  15. C. L. Zhao, Z. Wang, S. Zhang, L. Qi, C. Zhong, Z. Zhang, S. Jin, J. Guo, and H. Wei, “Phenomenon in an alcohol not full-filled temperature sensor based on an optical fiber Sagnac interferometer,” Opt. Lett. 37(22), 4789–4791 (2012).
    [PubMed]
  16. H. Liang, W. Zhang, H. Wang, P. Geng, S. Zhang, S. Gao, C. Yang, and J. Li, “Fiber in-line Mach-Zehnder interferometer based on near-elliptical core photonic crystal fiber for temperature and strain sensing,” Opt. Lett. 38(20), 4019–4022 (2013).
    [PubMed]
  17. I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
    [PubMed]
  18. X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).
  19. M. Llera, T. Aellen, J. Hervas, Y. Salvadé, P. Senn, S. Le Floch, and H. Keppner, “Liquid-air based Fabry-Pérot cavity on fiber tip sensor,” Opt. Express 24(8), 8054–8065 (2016).
    [PubMed]
  20. M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).
  21. J. Wang, S. Wu, and W. Ren, “Simultaneous measurement of refractive index and temperature using an epoxy resin-based interferometer,” Appl. Opt. 53(33), 7825–7830 (2014).
    [PubMed]
  22. C. L. Lee, H. Y. Ho, J. H. Gu, T. Y. Yeh, and C. H. Tseng, “Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids,” Opt. Lett. 40(4), 459–462 (2015).
    [PubMed]
  23. P. Fan, L. P. Sun, Z. Yu, J. Li, C. Wu, and B. O. Guan, “Higher-order diffraction of long-period microfiber gratings realized by arc discharge method,” Opt. Express 24(22), 25380–25388 (2016).
    [PubMed]
  24. J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang, “High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore,” Opt. Express 25(8), 9406–9415 (2017).
    [PubMed]

2017 (4)

2016 (7)

P. Fan, L. P. Sun, Z. Yu, J. Li, C. Wu, and B. O. Guan, “Higher-order diffraction of long-period microfiber gratings realized by arc discharge method,” Opt. Express 24(22), 25380–25388 (2016).
[PubMed]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[PubMed]

M. Llera, T. Aellen, J. Hervas, Y. Salvadé, P. Senn, S. Le Floch, and H. Keppner, “Liquid-air based Fabry-Pérot cavity on fiber tip sensor,” Opt. Express 24(8), 8054–8065 (2016).
[PubMed]

M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).

R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
[PubMed]

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

J. B. Liu, D. N. Wang, and L. Zhang, “Slightly tapered optical fiber with dual inner air–cavities for simultaneous refractive index and temperature measurement,” J. Lightwave Technol. 34(21), 4872–4876 (2016).

2015 (2)

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

C. L. Lee, H. Y. Ho, J. H. Gu, T. Y. Yeh, and C. H. Tseng, “Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids,” Opt. Lett. 40(4), 459–462 (2015).
[PubMed]

2014 (3)

2013 (2)

2012 (1)

2011 (1)

2010 (2)

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating–based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150, 226–229 (2010).

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[PubMed]

2007 (1)

2006 (1)

Aellen, T.

André, R. M.

Bang, O.

Bartelt, H.

Becker, M.

Chen, C.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

Chen, J. H.

Chen, Q. D.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

Chen, X. P.

Cooper, K. L.

Cruz-Garcia, M. A.

Dellith, J.

Fan, P.

Feng, J.

Frazão, O.

Gao, R. X.

M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).

Gao, S.

Geng, P.

Gu, J. H.

Guan, B. O.

Guo, J.

Hansen, O.

Hernández-Romano, I.

Hervas, J.

Ho, H. Y.

Hong, S.

Hou, J.

Huang, B.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

Huang, X. G.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating–based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150, 226–229 (2010).

Huang, Z.

Ji, Q.

Jiang, D. S.

Jiang, X.

Jin, S.

Jin, W.

Jing, S. M.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

Jung, W.

Kang, H. W.

N. T. Pham, S. L. Lee, S. Park, Y. W. Lee, and H. W. Kang, “Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy,” J. Biomed. Opt. 22(4), 45008 (2017).
[PubMed]

Keppner, H.

Kim, T.

Kou, J. L.

Latifi, H.

Le Floch, S.

Lee, C. L.

Lee, S. L.

N. T. Pham, S. L. Lee, S. Park, Y. W. Lee, and H. W. Kang, “Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy,” J. Biomed. Opt. 22(4), 45008 (2017).
[PubMed]

Lee, Y. W.

N. T. Pham, S. L. Lee, S. Park, Y. W. Lee, and H. W. Kang, “Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy,” J. Biomed. Opt. 22(4), 45008 (2017).
[PubMed]

Li, B. L.

Li, J.

Li, M.

M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).

Li, Y.

M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).

Liang, H.

Liang, J. F.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

Liu, J. B.

Liu, S. J.

Liu, Y.

M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).

Liu, Z. J.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

Llera, M.

López-Figueroa, E. O.

Lu, Q.

Lu, Y. Q.

Luo, M. Y.

Ma, J.

Marques, M. B.

Meng, A. H.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

Meng, H. Y.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating–based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150, 226–229 (2010).

Monzón-Hernández, D.

Moreno-Hernández, C.

Nazari, T.

Oh, K.

Paredes-Gallardo, O. E.

Park, S.

N. T. Pham, S. L. Lee, S. Park, Y. W. Lee, and H. W. Kang, “Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy,” J. Biomed. Opt. 22(4), 45008 (2017).
[PubMed]

Peng, Y.

Pham, N. T.

N. T. Pham, S. L. Lee, S. Park, Y. W. Lee, and H. W. Kang, “Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy,” J. Biomed. Opt. 22(4), 45008 (2017).
[PubMed]

Qi, L.

Qu, S. L.

M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).

Quan, C.

Ren, W.

Rothhardt, M.

Salvadé, Y.

Senn, P.

Shen, W.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating–based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150, 226–229 (2010).

Song, S.

Sun, H. B.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

Sun, L. P.

Tan, C. H.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating–based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150, 226–229 (2010).

Torres-Cisneros, M.

Tseng, C. H.

Villatoro, J.

Wang, A. B.

Wang, D. N.

Wang, F.

Wang, H.

Wang, H. H.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

Wang, J.

Wang, Q. H.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

Wang, Y. P.

Wang, Y. X.

Wang, Z.

Warren-Smith, S. C.

Wei, H.

Wu, C.

Wu, S.

Xiao, R.

Xiong, R.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

Xu, F.

Xue, Y.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

Yang, C.

Yang, R.

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

Ye, L.

Yeh, T. Y.

Yu, H. H.

Yu, W.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

Yu, Y. S.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

Yu, Z.

Yuan, W.

Zhang, G. B.

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating–based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150, 226–229 (2010).

Zhang, L.

Zhang, S.

Zhang, W.

Zhang, X.

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

Zhang, X. Y.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

Zhang, Y.

Zhang, Z.

Zhao, C. L.

Zhao, X. L.

M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).

Zhong, C.

Zhu, C. C.

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

Zibaii, M. I.

Appl. Opt. (2)

IEEE Photonics Technol. Lett. (2)

C. C. Zhu, Y. S. Yu, X. Y. Zhang, C. Chen, J. F. Liang, Z. J. Liu, A. H. Meng, S. M. Jing, and H. B. Sun, “Compact Mach–Zehnder interferometer based on tapered hollow optical fiber,” IEEE Photonics Technol. Lett. 27(12), 1277–1280 (2015).

X. Y. Zhang, Y. S. Yu, C. C. Zhu, C. Chen, R. Yang, Y. Xue, Q. D. Chen, and H. B. Sun, “Miniature end–capped fiber sensor for refractive index and temperature measurement,” IEEE Photonics Technol. Lett. 26(1), 7–10 (2014).

J. Biomed. Opt. (1)

N. T. Pham, S. L. Lee, S. Park, Y. W. Lee, and H. W. Kang, “Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy,” J. Biomed. Opt. 22(4), 45008 (2017).
[PubMed]

J. Lightwave Technol. (3)

Opt. Commun. (1)

H. H. Wang, H. Y. Meng, R. Xiong, Q. H. Wang, B. Huang, X. Zhang, W. Yu, C. H. Tan, and X. G. Huang, “Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference,” Opt. Commun. 364, 191–194 (2016).

Opt. Express (8)

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[PubMed]

R. M. André, S. C. Warren-Smith, M. Becker, J. Dellith, M. Rothhardt, M. I. Zibaii, H. Latifi, M. B. Marques, H. Bartelt, and O. Frazão, “Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips,” Opt. Express 24(13), 14053–14065 (2016).
[PubMed]

M. Llera, T. Aellen, J. Hervas, Y. Salvadé, P. Senn, S. Le Floch, and H. Keppner, “Liquid-air based Fabry-Pérot cavity on fiber tip sensor,” Opt. Express 24(8), 8054–8065 (2016).
[PubMed]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[PubMed]

B. L. Li, J. H. Chen, F. Xu, and Y. Q. Lu, “Periodic micro-structures in optical microfibers induced by Plateau-Rayleigh instability and its applications,” Opt. Express 25(4), 4326–4334 (2017).
[PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[PubMed]

P. Fan, L. P. Sun, Z. Yu, J. Li, C. Wu, and B. O. Guan, “Higher-order diffraction of long-period microfiber gratings realized by arc discharge method,” Opt. Express 24(22), 25380–25388 (2016).
[PubMed]

J. Ma, H. H. Yu, X. Jiang, and D. S. Jiang, “High-performance temperature sensing using a selectively filled solid-core photonic crystal fiber with a central air-bore,” Opt. Express 25(8), 9406–9415 (2017).
[PubMed]

Opt. Lett. (5)

Sens. Actuators B Chem. (2)

H. Y. Meng, W. Shen, G. B. Zhang, C. H. Tan, and X. G. Huang, “Fiber Bragg grating–based fiber sensor for simultaneous measurement of refractive index and temperature,” Sens. Actuators B Chem. 150, 226–229 (2010).

M. Li, Y. Liu, R. X. Gao, Y. Li, X. L. Zhao, and S. L. Qu, “Ultracompact fiber sensor tip based on liquid polymer–filled Fabry–Perot cavity with high temperature sensitivity,” Sens. Actuators B Chem. 233, 496–501 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the fabrication processes of the biocompatible temperature sensor.
Fig. 2
Fig. 2 (a) Schematic diagram of the fiber temperature sensor. (b) Processed distal end of the SCT2.
Fig. 3
Fig. 3 (a)–(c) Microscope images of the ethanol-filled FP cavities with different cavity lengths of 24, 36, 45 um measured by a microscope. (d)–(f) The corresponding reflection spectra before and after ethanol filling.
Fig. 4
Fig. 4 (a) Evolution of the reflection spectra with the variation of the temperature. (b) Relationship between the temperature variation and the dip wavelength shift.
Fig. 5
Fig. 5 (a) Dip wavelength response to the three cycles of alternating temperature between 25 °C and –5 °C. (b) Dip wavelength variation for 100 times temperature measurements of the ice–water mixture.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 +2 I 1 I 2 cos( 4π n e L λ + φ 0 +π) ,
4π n e L λ m +π=(2m+1)π,m=0,1,2,3....,
FSR= λ m λ m+1 2 n e L ,m=0,1,2,3...... .
Δ λ m = λ m ( σ TOC n e + α TEC )ΔT,
Δ λ m = λ m σ TOC n e ΔT ,

Metrics