Abstract

We present an 8-beam local oscillator (LO) for the astronomically significant [OI] line at 4.7 THz. The beams are generated using a quantum cascade laser (QCL) in combination with a Fourier phase grating. The grating is fully characterized using a third order distributed feedback (DFB) QCL with a single mode emission at 4.7 THz as the input. The measured diffraction efficiency of 74.3% is in an excellent agreement with the calculated result of 75.4% using a 3D simulation. We show that the power distribution among the diffracted beams is uniform enough for pumping an array receiver. To validate the grating bandwidth, we apply a far-infrared (FIR) gas laser emission at 5.3 THz as the input and find a very similar performance in terms of efficiency, power distribution, and spatial configuration of the diffracted beams. Both results represent the highest operating frequencies of THz phase gratings reported in the literature. By injecting one of the eight diffracted 4.7 THz beams into a superconducting hot electron bolometer (HEB) mixer, we find that the coupled power, taking the optical loss into account, is in consistency with the QCL power value.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of a fully integrated superconducting receiver with a 2.7 THz quantum cascade laser

Wei Miao, Zheng Lou, Gang-Yi Xu, Jie Hu, Shao-Liang Li, Wen Zhang, Kang-Min Zhou, Qi-Jun Yao, Kun Zhang, Wen-Ying Duan, Sheng-Cai Shi, Raffaele Colombelli, Harvey E. Beere, and David A. Ritchie
Opt. Express 23(4) 4453-4458 (2015)

Efficiency of multi-beam Fourier phase gratings at 1.4 THz

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi
Opt. Express 25(6) 6581-6588 (2017)

Terahertz quantum cascade laser as local oscillator in a heterodyne receiver

H.-W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield
Opt. Express 13(15) 5890-5896 (2005)

References

  • View by:
  • |
  • |
  • |

  1. C. Kulesa, “Terahertz spectroscopy for astronomy: from comets to cosmology,” IEEE Trans. THz. Sci. Tech. (Paris) 1, 232–240 (2011).
  2. C. Walker, Terahertz Astronomy (CRC, Taylor & Francis Group, 2016), Chap. 5 and 6.
  3. J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.
  4. C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.
  5. J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).
  6. U. U. Garf and S. Heyminck, “Fourier gratings as submillimeter beam splitters,” IEEE Trans. Antenn. Propag. 49, 542–546 (2001).
  7. A. G. G. M. Tielens and D. Hollenbach, “Photodissociation regions. I. basic model. II. A model for the Orion photodissociation Region,” Astrophys. J. 291, 722–754 (1985).
  8. S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).
  9. B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).
  10. M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence Terahertz photonic-wire laser,” Opt. Express 18(6), 6390–6395 (2010).
    [PubMed]
  11. B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
    [PubMed]
  12. M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).
  13. W. C. Elmore and M. A. Heald, Physics of waves (Dover Publications, Inc., New York, 1969).
  14. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).
  15. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Resonant phonon terahertz quantum-cascade laser operating at 2.1 THz (λ ≈ 141 μm),” Electron. Lett. 40, 431–433 (2004).
  16. J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
  17. W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).
  18. H. Ekström, B. S. Karasik, E. Kollberg, and K. S. Yngvesson, “Conversion gain and noise of niobium superconducting hot-electron-mixers,” IEEE Trans. Microw. Theory Tech. 43, 938–947 (1995).
  19. L. P. Boivin, “Multiple Imaging Using Various Types of Simple Phase Gratings,” Appl. Opt. 11(8), 1782–1792 (1972).
    [PubMed]
  20. The quoted optical loss is contributed by the HEB-antenna coupling (0.5 dB), the spiral antenna (3 dB, for a linearly polarized Gaussian beam), the Si lens reflection loss (1.2 dB), the QMC heat filter (0.4 dB), the HEB cryostat UHMW-PE window (1.4 dB), the HDPE focusing lens (1.2 dB), the air loss (1 dB), the phase grating (10 dB), the beam stop (in combination with two mirrors) (12.5 dB), and the UHMW-PE window of the QCL cryostat (1.4 dB).
  21. The quoted optical loss is contributed by the HEB-antenna coupling (0.5 dB), the spiral antenna (3 dB, for a linearly polarized Gaussian beam), the AR coated Si lens reflection loss (0.15 dB), the QMC heat filter (0.4 dB), the HEB cryostat UHMW-PE window (1.4 dB), the Si focusing lens with AR coating on both sides (0.3 dB), the phase grating (10 dB), the beam splitter (9 dB), and the UHMW-PE window of the QCL cryostat (1.4 dB).
  22. T. Y. Kao, X. Cai, A. W. M. Lee, J. L. Reno, and Q. Hu, “Antenna coupled photonic wire lasers,” Opt. Express 23(13), 17091–17100 (2015).
    [PubMed]
  23. A. Khalatpour, J. L. Reno, N. P. Kherani, and Q. Hu, “Unidirectional photonic wire laser,” Nat. Photonics 11, 555–559 (2017).

2017 (2)

2015 (2)

T. Y. Kao, X. Cai, A. W. M. Lee, J. L. Reno, and Q. Hu, “Antenna coupled photonic wire lasers,” Opt. Express 23(13), 17091–17100 (2015).
[PubMed]

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

2013 (2)

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

2011 (1)

C. Kulesa, “Terahertz spectroscopy for astronomy: from comets to cosmology,” IEEE Trans. THz. Sci. Tech. (Paris) 1, 232–240 (2011).

2010 (2)

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

M. I. Amanti, G. Scalari, F. Castellano, M. Beck, and J. Faist, “Low divergence Terahertz photonic-wire laser,” Opt. Express 18(6), 6390–6395 (2010).
[PubMed]

2007 (1)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).

2004 (1)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Resonant phonon terahertz quantum-cascade laser operating at 2.1 THz (λ ≈ 141 μm),” Electron. Lett. 40, 431–433 (2004).

2001 (1)

U. U. Garf and S. Heyminck, “Fourier gratings as submillimeter beam splitters,” IEEE Trans. Antenn. Propag. 49, 542–546 (2001).

1999 (1)

J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).

1995 (1)

H. Ekström, B. S. Karasik, E. Kollberg, and K. S. Yngvesson, “Conversion gain and noise of niobium superconducting hot-electron-mixers,” IEEE Trans. Microw. Theory Tech. 43, 938–947 (1995).

1985 (1)

A. G. G. M. Tielens and D. Hollenbach, “Photodissociation regions. I. basic model. II. A model for the Orion photodissociation Region,” Astrophys. J. 291, 722–754 (1985).

1972 (1)

1963 (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).

Amanti, M. I.

Bansal, T.

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

Barden, J.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Beck, M.

Boivin, L. P.

Bruneau, P.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Cai, X.

Castellano, F.

Cecil, T.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Colgan, R.

J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).

Cui, M.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).

Ekström, H.

H. Ekström, B. S. Karasik, E. Kollberg, and K. S. Yngvesson, “Conversion gain and noise of niobium superconducting hot-electron-mixers,” IEEE Trans. Microw. Theory Tech. 43, 938–947 (1995).

Faist, J.

Gao, J. R.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[PubMed]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

Garf, U. U.

U. U. Garf and S. Heyminck, “Fourier gratings as submillimeter beam splitters,” IEEE Trans. Antenn. Propag. 49, 542–546 (2001).

Gerin, M.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Golish, D.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Groppi, C.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[PubMed]

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Gusdorf, A.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Gusten, R.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Hayton, D. J.

B. Mirzaei, J. R. G. Silva, Y. C. Luo, X. X. Liu, L. Wei, D. J. Hayton, J. R. Gao, and C. Groppi, “Efficiency of multi-beam Fourier phase gratings at 1.4 THz,” Opt. Express 25(6), 6581–6588 (2017).
[PubMed]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

Heyminck, S.

U. U. Garf and S. Heyminck, “Fourier gratings as submillimeter beam splitters,” IEEE Trans. Antenn. Propag. 49, 542–546 (2001).

Hollenbach, D.

A. G. G. M. Tielens and D. Hollenbach, “Photodissociation regions. I. basic model. II. A model for the Orion photodissociation Region,” Astrophys. J. 291, 722–754 (1985).

Hovenier, J. N.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

Hu, Q.

A. Khalatpour, J. L. Reno, N. P. Kherani, and Q. Hu, “Unidirectional photonic wire laser,” Nat. Photonics 11, 555–559 (2017).

T. Y. Kao, X. Cai, A. W. M. Lee, J. L. Reno, and Q. Hu, “Antenna coupled photonic wire lasers,” Opt. Express 23(13), 17091–17100 (2015).
[PubMed]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Resonant phonon terahertz quantum-cascade laser operating at 2.1 THz (λ ≈ 141 μm),” Electron. Lett. 40, 431–433 (2004).

Hubers, H. W.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Jacobs, K.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Jones, G.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Kao, T. Y.

T. Y. Kao, X. Cai, A. W. M. Lee, J. L. Reno, and Q. Hu, “Antenna coupled photonic wire lasers,” Opt. Express 23(13), 17091–17100 (2015).
[PubMed]

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

Karasik, B. S.

H. Ekström, B. S. Karasik, E. Kollberg, and K. S. Yngvesson, “Conversion gain and noise of niobium superconducting hot-electron-mixers,” IEEE Trans. Microw. Theory Tech. 43, 938–947 (1995).

Kawamura, J.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Khalatpour, A.

A. Khalatpour, J. L. Reno, N. P. Kherani, and Q. Hu, “Unidirectional photonic wire laser,” Nat. Photonics 11, 555–559 (2017).

Kherani, N. P.

A. Khalatpour, J. L. Reno, N. P. Kherani, and Q. Hu, “Unidirectional photonic wire laser,” Nat. Photonics 11, 555–559 (2017).

Khosropanah, P.

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

Klapwijk, T. M.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

Kloosterman, J.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Kloosterman, J. L.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

Kollberg, E.

H. Ekström, B. S. Karasik, E. Kollberg, and K. S. Yngvesson, “Conversion gain and noise of niobium superconducting hot-electron-mixers,” IEEE Trans. Microw. Theory Tech. 43, 938–947 (1995).

Kooi, J.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Kuiper, T.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Kulesa, C.

C. Kulesa, “Terahertz spectroscopy for astronomy: from comets to cosmology,” IEEE Trans. THz. Sci. Tech. (Paris) 1, 232–240 (2011).

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Kumar, S.

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Resonant phonon terahertz quantum-cascade laser operating at 2.1 THz (λ ≈ 141 μm),” Electron. Lett. 40, 431–433 (2004).

Lanigan, W.

J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).

Lee, A. W. M.

Lee, C.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Leurini, S.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Levrier, F.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Lichtenberger, A.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Lin, R. H.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Liu, X. X.

Luo, Y. C.

Maestrini, A.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Mani, H.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Mehdi, I.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Menten, K. M.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Miao, W.

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

Mirzaei, B.

Murphy, J. A.

J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).

Narayanan, G.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Peralta, A.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).

Ren, Y.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

Reno, J. L.

A. Khalatpour, J. L. Reno, N. P. Kherani, and Q. Hu, “Unidirectional photonic wire laser,” Nat. Photonics 11, 555–559 (2017).

T. Y. Kao, X. Cai, A. W. M. Lee, J. L. Reno, and Q. Hu, “Antenna coupled photonic wire lasers,” Opt. Express 23(13), 17091–17100 (2015).
[PubMed]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Resonant phonon terahertz quantum-cascade laser operating at 2.1 THz (λ ≈ 141 μm),” Electron. Lett. 40, 431–433 (2004).

Richter, H.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Ricken, O.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Scalari, G.

Schlecht, E.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Segall, B.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).

Shi, S. C.

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

Siles, J. V.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

Silva, J. R. G.

Sullivan, C. O.

J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).

Tielens, A. G. G. M.

A. G. G. M. Tielens and D. Hollenbach, “Photodissociation regions. I. basic model. II. A model for the Orion photodissociation Region,” Astrophys. J. 291, 722–754 (1985).

Trappe, N.

J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).

Vercruyssen, N.

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

Walker, C.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Walker, C. K.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

Wei, L.

Weinreb, S.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Wiesemeyer, H.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Williams, B. S.

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Resonant phonon terahertz quantum-cascade laser operating at 2.1 THz (λ ≈ 141 μm),” Electron. Lett. 40, 431–433 (2004).

Wittington, S.

J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).

Wyrowski, F.

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Yngvesson, K. S.

H. Ekström, B. S. Karasik, E. Kollberg, and K. S. Yngvesson, “Conversion gain and noise of niobium superconducting hot-electron-mixers,” IEEE Trans. Microw. Theory Tech. 43, 938–947 (1995).

Zhang, W.

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Cui, J. N. Hovenier, Y. Ren, N. Vercruyssen, J. R. Gao, T. Y. Kao, Q. Hu, and J. L. Reno, “Beam and phase distributions of a terahertz quantum cascade wire laser,” Appl. Phys. Lett. 102, 111113 (2013).

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).

Astron. Astrophys. (1)

S. Leurini, F. Wyrowski, H. Wiesemeyer, A. Gusdorf, R. Gusten, K. M. Menten, M. Gerin, F. Levrier, H. W. Hubers, K. Jacobs, O. Ricken, and H. Richter, “Spectroscopically resolved far-IR observations of the massive star-forming region G5.89-0.39,” Astron. Astrophys. 584, A70 (2015).

Astrophys. J. (1)

A. G. G. M. Tielens and D. Hollenbach, “Photodissociation regions. I. basic model. II. A model for the Orion photodissociation Region,” Astrophys. J. 291, 722–754 (1985).

Electron. Lett. (1)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Resonant phonon terahertz quantum-cascade laser operating at 2.1 THz (λ ≈ 141 μm),” Electron. Lett. 40, 431–433 (2004).

IEEE Trans. Antenn. Propag. (1)

U. U. Garf and S. Heyminck, “Fourier gratings as submillimeter beam splitters,” IEEE Trans. Antenn. Propag. 49, 542–546 (2001).

IEEE Trans. Microw. Theory Tech. (1)

H. Ekström, B. S. Karasik, E. Kollberg, and K. S. Yngvesson, “Conversion gain and noise of niobium superconducting hot-electron-mixers,” IEEE Trans. Microw. Theory Tech. 43, 938–947 (1995).

IEEE Trans. THz. Sci. Tech. (Paris) (1)

C. Kulesa, “Terahertz spectroscopy for astronomy: from comets to cosmology,” IEEE Trans. THz. Sci. Tech. (Paris) 1, 232–240 (2011).

Int. J. Inf Mill. Waves (1)

J. A. Murphy, C. O. Sullivan, N. Trappe, W. Lanigan, R. Colgan, and S. Wittington, “Modal Analysis of the Quasi-Optical Performance of Phase Gratings,” Int. J. Inf Mill. Waves 20, 1469–1486 (1999).

J. Appl. Phys. (1)

W. Zhang, P. Khosropanah, J. R. Gao, T. Bansal, T. M. Klapwijk, W. Miao, and S. C. Shi, “Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz,” J. Appl. Phys. 108, 093102 (2010).

Nat. Photonics (2)

B. S. Williams, “Terahertz quantum-cascade lasers,” Nat. Photonics 1, 517–525 (2007).

A. Khalatpour, J. L. Reno, N. P. Kherani, and Q. Hu, “Unidirectional photonic wire laser,” Nat. Photonics 11, 555–559 (2017).

Opt. Express (3)

Phys. Rev. (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of aluminum,” Phys. Rev. 132, 1918–1928 (1963).

Other (6)

W. C. Elmore and M. A. Heald, Physics of waves (Dover Publications, Inc., New York, 1969).

The quoted optical loss is contributed by the HEB-antenna coupling (0.5 dB), the spiral antenna (3 dB, for a linearly polarized Gaussian beam), the Si lens reflection loss (1.2 dB), the QMC heat filter (0.4 dB), the HEB cryostat UHMW-PE window (1.4 dB), the HDPE focusing lens (1.2 dB), the air loss (1 dB), the phase grating (10 dB), the beam stop (in combination with two mirrors) (12.5 dB), and the UHMW-PE window of the QCL cryostat (1.4 dB).

The quoted optical loss is contributed by the HEB-antenna coupling (0.5 dB), the spiral antenna (3 dB, for a linearly polarized Gaussian beam), the AR coated Si lens reflection loss (0.15 dB), the QMC heat filter (0.4 dB), the HEB cryostat UHMW-PE window (1.4 dB), the Si focusing lens with AR coating on both sides (0.3 dB), the phase grating (10 dB), the beam splitter (9 dB), and the UHMW-PE window of the QCL cryostat (1.4 dB).

C. Walker, Terahertz Astronomy (CRC, Taylor & Francis Group, 2016), Chap. 5 and 6.

J. V. Siles, R. H. Lin, C. Lee, E. Schlecht, A. Maestrini, P. Bruneau, A. Peralta, J. Kloosterman, J. Kawamura, and I. Mehdi, “Development of high-power multi-pixel LO sources at 1.47 THz and 1.9 THz for astrophysics: present and future,” in Proceedings of the 26th International Symposium on Space Terahertz Technology (Cambridge, MA, 2015), pp. 40–42.

C. Groppi, C. Walker, C. Kulesa, D. Golish, J. Kloosterman, S. Weinreb, G. Jones, J. Barden, H. Mani, T. Kuiper, J. Kooi, A. Lichtenberger, T. Cecil, and G. Narayanan, P. Pu ̈tz and A. Hedden, “SuperCam: A 64 pixel heterodyne array receiver for the 350 GHz atmospheric window,” in Proceedings of the 20th International Symposium on Space Terahertz Technology (Charlottesville, 2009), pp. 90–96.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) 3D drawing of 16 unit cells of the phase grating. A single unit cell is shown in colour. The height is out of scale for clarity, (b), (c) The calculated and manufactured 2D cross-section profiles of a unit cell. Z shows the height, and X and Y are the two lateral directions. The dashed black and solid red curves are the manufactured and calculated results respectively.
Fig. 2
Fig. 2 (a) Quantum cascade laser beam pattern measured in front of the cryostat window, (b) Optical setup for collimation and filtering the laser beam. the line thickness is an indication of the intensity, (c) incoming collimated beam to the grating
Fig. 3
Fig. 3 Measured diffraction patterns of the grating at 4.7 THz using a quantum cascade laser with 25° of incidence in two different orthogonal directions.
Fig. 4
Fig. 4 The current-voltage characteristics of the HEB mixer at different levels of the LO power, which is zero in the top curve (in brown) and sufficient to fully pump the device in the bottom curve (in red). Inset: Measured receiver noise temperature (Trec) of a hot electron bolometer (HEB) mixer versus the current at a bias voltage of 0.8 mV. The current is inversely proportional to the absorbed local oscillator (LO) power.
Fig. 5
Fig. 5 (a) Grating efficiency and the surface minimum radius of curvature (MRC), versus the number of applied Fourier coefficients (FCs) in design, (b), (c) 3D profiles of the unit cells made by 6 and 13 FCs, respectively.
Fig. 6
Fig. 6 Diffraction beam pattern measured at a distance of 15 cm from the grating (left) and the incident beam (right) at 5.3 THz measured using a FIR gas laser.

Metrics