Abstract

Broadband mid-infrared emissions are obtained from Dy3+/Er3+ co-doped tellurite glasses under 808 or 980 nm excitation. The maximum effective emission bandwidths of mid-infrared emission is 92.45 nm in Dy3+/Er3+ co-doped tellurite glass pumped by 808 nm, while it can reach 209.00 nm pumped by 980 nm. The effects of different laser excitations on the energy transfer mechanism between Dy3+ and Er3+ ions have been investigated in tellurite glasses. Under 808 nm excitation, the energy transfer efficiency from Er3+:4I13/2 to Dy3+:6H11/2 level is 73.1% and the energy transfer coefficient from Er3+:4I11/2 to Dy3+:6H5/2 level and from Er3+:4I13/2 to Dy3+:6H11/2 level are 6.89 × 10−38 and 0.01 × 10−38 cm6/s, respectively. Under 980 nm excitation, the energy transfer efficiency from Er3+:4I13/2 to Dy3+:6H11/2 level can reach as high as 80%. Moreover, the maximum emission cross-section of 2500-3100 nm broadband emission when pumped by 808 nm is 1.90 × 1020 cm2 at 2765 nm, while it can reach as high as 4.99 × 1020 cm2 at 2724 nm pumped by 980 nm. Thus, the 980 nm excitation is more efficient for Dy3+/Er3+ co-doped tellurite glass to realize low-threshold and high gain applications at broadband mid-infrared laser.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparative study of 2.7 μm emission of Ho3+ desensitized Er3+ in tellurite and bismuth glass

Guoying Zhao, Wentian Jin, Yongzheng Fang, Yubiao He, Yingjie Li, Yufeng Liu, Meisong Liao, and Jun Zou
Opt. Mater. Express 7(4) 1147-1156 (2017)

Synthesis, theoretical analysis, and characterization of highly Er3+ doped fluoroaluminate–tellurite glass with 2.7 μm emission

Ying Tian, Xufeng Jing, Bingpeng Li, Pengcheng Li, Yinyan Li, Ruoshan Lei, Junjie Zhang, and Shiqing Xu
Opt. Mater. Express 6(10) 3274-3285 (2016)

Spectroscopy of mid-infrared (2.9 μm) fluorescence and energy transfer in Dy3+-doped tellurite glasses

Laércio Gomes, Joris Lousteau, Daniel Milanese, Emanuele Mura, and Stuart D. Jackson
J. Opt. Soc. Am. B 31(3) 429-435 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, “Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation,” Chin. Opt. Lett. 14, 123201 (2016).
  2. Z. Qin, G. Xie, J. Ma, P. Yuan, and L. Qian, “Mid-infrared Er:ZBLAN fiber laser reaching 3.68 μm wavelength,” Chin. Opt. Lett. 15, 111402 (2017).
  3. Z. Zheng, D. Yang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber,” Photon. Res. 4, 135–139 (2016).
  4. R. Guo, N. Chen, B. Wang, and J. Cong, “Monitoring and alignment system for mid-infrared solid-state laser,” Hongwai Yu Jiguang Gongcheng 42(12), 3185–3189 (2013).
  5. P. Wang, H. Shi, F. Tan, and P. Wang, “Tunable femtosecond pulse source from 1.6 to 2.3 μm with 100 kW peak power in an all-fiber system,” Chin. Opt. Lett. 14, 091405 (2016).
  6. C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).
  7. F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).
  8. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+ -doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).
  9. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
    [PubMed]
  10. Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. 113(1), 87–95 (2011).
  11. X. Zhu and R. Jain, “Watt-Level 100-nm Tunable 3- μm Fiber Laser,” IEEE Photonic. Tech. Lett. 20(2), 156–158 (2008).
  12. Y. Ma, X. Li, F. Huang, and L. Hu, “2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass,” Mater. Sci. Eng. B 196, 23–27 (2015).
  13. X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2-5µm mid-infrared nonlinear applications,” Opt. Express 21(16), 18949–18954 (2013).
    [PubMed]
  14. R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, “Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass,” Photon. Res. 4, 214–221 (2016).
  15. P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).
  16. Y. Tian, R. Xu, L. Hu, and J. Zhang, “Synthesis and infrared photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass,” Mater. Lett. 69(69), 72–75 (2012).
  17. J. Heo, K. Kim, and K. Yong, “Populations and Emission Properties of the 5I6 and 5I7 Levels in Ho3+ Doped into PbO–Bi2O3 –Ga2O3 Glasses,” J. Am. Ceram. Soc. 91(3), 938–941 (2010).
  18. G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0µm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
  19. Z. Yan, C. Lu, Y. Ni, Q. Zhang, and Z. Xu, “Optical Properties of Dy3+ Doped in Boroaluminasilicate Glass,” J. Rare Earths 25(2), 99–103 (2007).
  20. R. Balda, J. Fernández, and J. M. Fernández-Navarro, “Study of broadband near-infrared emission in Tm3+-Er3+ codoped TeO2-WO3-PbO glasses,” Opt. Express 17(11), 8781–8788 (2009).
    [PubMed]
  21. B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).
  22. G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).
  23. S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Branching ratio of uv and blue upconversions of Tm3+ ions in glasses,” Phys. Rev. B Condens. Matter 53(13), 8358–8362 (1996).
    [PubMed]
  24. Y. Tian, R. Xu, L. Hu, and J. Zhang, “Broadband 2.84μm luminescence properties and Judd–Ofelt analysis in Dy3+ doped ZrF4–BaF2–LaF3–AlF3–YF3 glass,” J. Lumin. 132(1), 128–131 (2012).
  25. S. Ivanova and F. Pellé, “Strong 153 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” J. Opt. Soc. Am. B 26(10), 1930–1938 (2009).
  26. Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31-µm emission properties of Dy3 + -doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).
  27. M. J. D. Castro and J. M. F. Navarro, “Infrared luminescence of erbium-doped sodium lead germanate glass,” Appl. Phys. B 106(3), 669–675 (2012).
  28. S. N. Rasool, L. Rama Moorthy, and C. K. Jayasankar, “Optical and luminescence properties of Dy3+ ions in phosphate based glasses,” Solid State Sci. 22(8), 82–90 (2013).
  29. D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).
  30. B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).
  31. T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).
  32. S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619 (1992).
  33. E. O. Serqueira, N. O. Dantas, and M. Bell, “Control of spectroscopic fluorescence parameters of Nd3+ ions as a function of concentration in a SiO2–Na2O–Al2O3–B2O3 glass system,” Chem. Phys. Lett. 508(1–3), 125–129 (2011).
  34. D. E. Mccumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
  35. B. Richards, T. Teddyfernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).
  36. G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).
  37. T. Förster, “Intermolecular energy transference and fluorescence,” Ann. Phys. 2, 55–75 (1948).
  38. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).
  39. B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).
  40. T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
    [PubMed]
  41. L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+ /Er3+ -doped phosphate glasses,” Opt. Mater. 17(3), 371–377 (2001).
  42. R. Balda, J. Fernández, S. García-Revilla, and J. M. Fernández Navarro, “Spectroscopy and concentration quenching of the infrared emissions in Tm3+-doped TeO2-TiO2-Nb2O5 glass,” Opt. Express 15(11), 6750–6761 (2007).
    [PubMed]
  43. Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 Glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).

2017 (3)

Z. Qin, G. Xie, J. Ma, P. Yuan, and L. Qian, “Mid-infrared Er:ZBLAN fiber laser reaching 3.68 μm wavelength,” Chin. Opt. Lett. 15, 111402 (2017).

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

2016 (8)

Z. Zheng, D. Yang, J. Zhao, M. Liu, S. Ruan, P. Yan, and J. Wang, “Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber,” Photon. Res. 4, 135–139 (2016).

S. Vyas, T. Tanabe, M. Tiwari, and G. Singh, “Chalcogenide photonic crystal fiber for ultraflat mid-infrared supercontinuum generation,” Chin. Opt. Lett. 14, 123201 (2016).

P. Wang, H. Shi, F. Tan, and P. Wang, “Tunable femtosecond pulse source from 1.6 to 2.3 μm with 100 kW peak power in an all-fiber system,” Chin. Opt. Lett. 14, 091405 (2016).

R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, “Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass,” Photon. Res. 4, 214–221 (2016).

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0µm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).

2015 (3)

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

Y. Ma, X. Li, F. Huang, and L. Hu, “2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass,” Mater. Sci. Eng. B 196, 23–27 (2015).

2013 (4)

X. Feng, J. Shi, M. Segura, N. M. White, P. Kannan, W. H. Loh, L. Calvez, X. Zhang, and L. Brilland, “Halo-tellurite glass fiber with low OH content for 2-5µm mid-infrared nonlinear applications,” Opt. Express 21(16), 18949–18954 (2013).
[PubMed]

R. Guo, N. Chen, B. Wang, and J. Cong, “Monitoring and alignment system for mid-infrared solid-state laser,” Hongwai Yu Jiguang Gongcheng 42(12), 3185–3189 (2013).

S. N. Rasool, L. Rama Moorthy, and C. K. Jayasankar, “Optical and luminescence properties of Dy3+ ions in phosphate based glasses,” Solid State Sci. 22(8), 82–90 (2013).

B. Richards, T. Teddyfernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).

2012 (4)

B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Broadband 2.84μm luminescence properties and Judd–Ofelt analysis in Dy3+ doped ZrF4–BaF2–LaF3–AlF3–YF3 glass,” J. Lumin. 132(1), 128–131 (2012).

M. J. D. Castro and J. M. F. Navarro, “Infrared luminescence of erbium-doped sodium lead germanate glass,” Appl. Phys. B 106(3), 669–675 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Synthesis and infrared photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass,” Mater. Lett. 69(69), 72–75 (2012).

2011 (2)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. 113(1), 87–95 (2011).

E. O. Serqueira, N. O. Dantas, and M. Bell, “Control of spectroscopic fluorescence parameters of Nd3+ ions as a function of concentration in a SiO2–Na2O–Al2O3–B2O3 glass system,” Chem. Phys. Lett. 508(1–3), 125–129 (2011).

2010 (1)

J. Heo, K. Kim, and K. Yong, “Populations and Emission Properties of the 5I6 and 5I7 Levels in Ho3+ Doped into PbO–Bi2O3 –Ga2O3 Glasses,” J. Am. Ceram. Soc. 91(3), 938–941 (2010).

2009 (3)

2008 (2)

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[PubMed]

X. Zhu and R. Jain, “Watt-Level 100-nm Tunable 3- μm Fiber Laser,” IEEE Photonic. Tech. Lett. 20(2), 156–158 (2008).

2007 (2)

2003 (1)

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).

2001 (2)

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31-µm emission properties of Dy3 + -doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+ /Er3+ -doped phosphate glasses,” Opt. Mater. 17(3), 371–377 (2001).

2000 (1)

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 Glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).

1996 (1)

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Branching ratio of uv and blue upconversions of Tm3+ ions in glasses,” Phys. Rev. B Condens. Matter 53(13), 8358–8362 (1996).
[PubMed]

1992 (1)

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619 (1992).

1964 (1)

D. E. Mccumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).

1962 (2)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).

1953 (1)

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).

1948 (1)

T. Förster, “Intermolecular energy transference and fluorescence,” Ann. Phys. 2, 55–75 (1948).

Balda, R.

Bell, M.

E. O. Serqueira, N. O. Dantas, and M. Bell, “Control of spectroscopic fluorescence parameters of Nd3+ ions as a function of concentration in a SiO2–Na2O–Al2O3–B2O3 glass system,” Chem. Phys. Lett. 508(1–3), 125–129 (2011).

Binks, D.

B. Richards, T. Teddyfernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+ -doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[PubMed]

Brilland, L.

Cai, M.

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

Calvez, L.

Castro, M. J. D.

M. J. D. Castro and J. M. F. Navarro, “Infrared luminescence of erbium-doped sodium lead germanate glass,” Appl. Phys. B 106(3), 669–675 (2012).

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619 (1992).

Chen, D.

Chen, N.

R. Guo, N. Chen, B. Wang, and J. Cong, “Monitoring and alignment system for mid-infrared solid-state laser,” Hongwai Yu Jiguang Gongcheng 42(12), 3185–3189 (2013).

Chen, R.

R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, “Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass,” Photon. Res. 4, 214–221 (2016).

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

Cheng, P.

B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).

Choi, Y. G.

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 Glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).

Cong, J.

R. Guo, N. Chen, B. Wang, and J. Cong, “Monitoring and alignment system for mid-infrared solid-state laser,” Hongwai Yu Jiguang Gongcheng 42(12), 3185–3189 (2013).

Dantas, N. O.

E. O. Serqueira, N. O. Dantas, and M. Bell, “Control of spectroscopic fluorescence parameters of Nd3+ ions as a function of concentration in a SiO2–Na2O–Al2O3–B2O3 glass system,” Chem. Phys. Lett. 508(1–3), 125–129 (2011).

Dawai, S.

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

Dexter, D. L.

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).

Eckert, H.

Fan, X.

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

Fang, Y.

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

Feng, X.

Fernández, J.

Fernández Navarro, J. M.

Fernández-Navarro, J. M.

Förster, T.

T. Förster, “Intermolecular energy transference and fluorescence,” Ann. Phys. 2, 55–75 (1948).

García-Revilla, S.

Gong, T.

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

Gruber, J. B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).

Guo, J.

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

Guo, R.

R. Guo, N. Chen, B. Wang, and J. Cong, “Monitoring and alignment system for mid-infrared solid-state laser,” Hongwai Yu Jiguang Gongcheng 42(12), 3185–3189 (2013).

Heo, J.

J. Heo, K. Kim, and K. Yong, “Populations and Emission Properties of the 5I6 and 5I7 Levels in Ho3+ Doped into PbO–Bi2O3 –Ga2O3 Glasses,” J. Am. Ceram. Soc. 91(3), 938–941 (2010).

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31-µm emission properties of Dy3 + -doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 Glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).

Hirao, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Branching ratio of uv and blue upconversions of Tm3+ ions in glasses,” Phys. Rev. B Condens. Matter 53(13), 8358–8362 (1996).
[PubMed]

Hu, H.

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+ /Er3+ -doped phosphate glasses,” Opt. Mater. 17(3), 371–377 (2001).

Hu, L.

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

Y. Ma, X. Li, F. Huang, and L. Hu, “2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass,” Mater. Sci. Eng. B 196, 23–27 (2015).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Synthesis and infrared photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass,” Mater. Lett. 69(69), 72–75 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Broadband 2.84μm luminescence properties and Judd–Ofelt analysis in Dy3+ doped ZrF4–BaF2–LaF3–AlF3–YF3 glass,” J. Lumin. 132(1), 128–131 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. 113(1), 87–95 (2011).

Huang, B.

B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).

Huang, F.

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

Y. Ma, X. Li, F. Huang, and L. Hu, “2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass,” Mater. Sci. Eng. B 196, 23–27 (2015).

Hutchinson, J. A.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).

Ivanova, S.

Jain, R.

X. Zhu and R. Jain, “Watt-Level 100-nm Tunable 3- μm Fiber Laser,” IEEE Photonic. Tech. Lett. 20(2), 156–158 (2008).

Jamalaiah, B. C.

B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).

Jang, K.

B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).

Jayasankar, C. K.

S. N. Rasool, L. Rama Moorthy, and C. K. Jayasankar, “Optical and luminescence properties of Dy3+ ions in phosphate based glasses,” Solid State Sci. 22(8), 82–90 (2013).

Jha, A.

B. Richards, T. Teddyfernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+ -doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[PubMed]

Jin, W.

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

Jing, X.

R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, “Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass,” Photon. Res. 4, 214–221 (2016).

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

Jose, G.

B. Richards, T. Teddyfernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).

Judd, B. R.

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).

Kannan, P.

Kim, H. S.

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31-µm emission properties of Dy3 + -doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

Kim, I. G.

B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).

Kim, K.

J. Heo, K. Kim, and K. Yong, “Populations and Emission Properties of the 5I6 and 5I7 Levels in Ho3+ Doped into PbO–Bi2O3 –Ga2O3 Glasses,” J. Am. Ceram. Soc. 91(3), 938–941 (2010).

Kim, Y. S.

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 Glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).

Kuan, P.

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619 (1992).

Lei, R.

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

Li, B.

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, “Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass,” Photon. Res. 4, 214–221 (2016).

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

Li, H.

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

Li, J.

B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).

Li, W.

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

Li, X.

Y. Ma, X. Li, F. Huang, and L. Hu, “2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass,” Mater. Sci. Eng. B 196, 23–27 (2015).

Liao, M.

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

Lim, H. T.

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 Glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).

Lin, F.

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+ /Er3+ -doped phosphate glasses,” Opt. Mater. 17(3), 371–377 (2001).

Lin, W.

Liu, M.

Liu, Q.

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

Liu, W.

Liu, X.

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

Loh, W. H.

Lousteau, J.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+ -doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[PubMed]

Lu, C.

Z. Yan, C. Lu, Y. Ni, Q. Zhang, and Z. Xu, “Optical Properties of Dy3+ Doped in Boroaluminasilicate Glass,” J. Rare Earths 25(2), 99–103 (2007).

Ma, J.

Ma, Y.

Y. Ma, X. Li, F. Huang, and L. Hu, “2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass,” Mater. Sci. Eng. B 196, 23–27 (2015).

Mccumber, D. E.

D. E. Mccumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).

Navarro, J. M. F.

M. J. D. Castro and J. M. F. Navarro, “Infrared luminescence of erbium-doped sodium lead germanate glass,” Appl. Phys. B 106(3), 669–675 (2012).

Ni, Y.

Z. Yan, C. Lu, Y. Ni, Q. Zhang, and Z. Xu, “Optical Properties of Dy3+ Doped in Boroaluminasilicate Glass,” J. Rare Earths 25(2), 99–103 (2007).

Ofelt, G. S.

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619 (1992).

Pellé, F.

Qi, C.

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+ /Er3+ -doped phosphate glasses,” Opt. Mater. 17(3), 371–377 (2001).

Qi, F.

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

Qian, L.

Qian, Q.

Qiao, T.

Qin, Z.

Rama Moorthy, L.

S. N. Rasool, L. Rama Moorthy, and C. K. Jayasankar, “Optical and luminescence properties of Dy3+ ions in phosphate based glasses,” Solid State Sci. 22(8), 82–90 (2013).

B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).

Rasool, S. N.

S. N. Rasool, L. Rama Moorthy, and C. K. Jayasankar, “Optical and luminescence properties of Dy3+ ions in phosphate based glasses,” Solid State Sci. 22(8), 82–90 (2013).

Richards, B.

B. Richards, T. Teddyfernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+ -doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[PubMed]

Ruan, S.

Sardar, D. K.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).

Segura, M.

Serqueira, E. O.

E. O. Serqueira, N. O. Dantas, and M. Bell, “Control of spectroscopic fluorescence parameters of Nd3+ ions as a function of concentration in a SiO2–Na2O–Al2O3–B2O3 glass system,” Chem. Phys. Lett. 508(1–3), 125–129 (2011).

Shi, H.

Shi, J.

Shin, Y. B.

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31-µm emission properties of Dy3 + -doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 Glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).

Singh, G.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619 (1992).

Soga, N.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Branching ratio of uv and blue upconversions of Tm3+ ions in glasses,” Phys. Rev. B Condens. Matter 53(13), 8358–8362 (1996).
[PubMed]

Suhasini, T.

B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).

Sun, M.

Tamai, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Branching ratio of uv and blue upconversions of Tm3+ ions in glasses,” Phys. Rev. B Condens. Matter 53(13), 8358–8362 (1996).
[PubMed]

Tan, F.

Tanabe, S.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Branching ratio of uv and blue upconversions of Tm3+ ions in glasses,” Phys. Rev. B Condens. Matter 53(13), 8358–8362 (1996).
[PubMed]

Tanabe, T.

Tang, G.

Teddyfernandez, T.

B. Richards, T. Teddyfernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).

Tian, C.

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

Tian, Y.

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, “Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass,” Photon. Res. 4, 214–221 (2016).

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Broadband 2.84μm luminescence properties and Judd–Ofelt analysis in Dy3+ doped ZrF4–BaF2–LaF3–AlF3–YF3 glass,” J. Lumin. 132(1), 128–131 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Synthesis and infrared photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass,” Mater. Lett. 69(69), 72–75 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. 113(1), 87–95 (2011).

Tiwari, M.

Trussell, C. W.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).

Tsang, Y.

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+ -doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, “Tm3+/Ho3+ codoped tellurite fiber laser,” Opt. Lett. 33(11), 1282–1284 (2008).
[PubMed]

Vyas, S.

Wang, B.

R. Guo, N. Chen, B. Wang, and J. Cong, “Monitoring and alignment system for mid-infrared solid-state laser,” Hongwai Yu Jiguang Gongcheng 42(12), 3185–3189 (2013).

Wang, C.

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

Wang, J.

Wang, P.

Wei, T.

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

White, N. M.

Xie, G.

Xu, R.

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Broadband 2.84μm luminescence properties and Judd–Ofelt analysis in Dy3+ doped ZrF4–BaF2–LaF3–AlF3–YF3 glass,” J. Lumin. 132(1), 128–131 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Synthesis and infrared photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass,” Mater. Lett. 69(69), 72–75 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. 113(1), 87–95 (2011).

Xu, S.

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, “Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass,” Photon. Res. 4, 214–221 (2016).

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

Xu, Z.

Z. Yan, C. Lu, Y. Ni, Q. Zhang, and Z. Xu, “Optical Properties of Dy3+ Doped in Boroaluminasilicate Glass,” J. Rare Earths 25(2), 99–103 (2007).

Yan, P.

Yan, Z.

Z. Yan, C. Lu, Y. Ni, Q. Zhang, and Z. Xu, “Optical Properties of Dy3+ Doped in Boroaluminasilicate Glass,” J. Rare Earths 25(2), 99–103 (2007).

Yang, D.

Yang, G.

B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).

Yang, Z.

Yong, K.

J. Heo, K. Kim, and K. Yong, “Populations and Emission Properties of the 5I6 and 5I7 Levels in Ho3+ Doped into PbO–Bi2O3 –Ga2O3 Glasses,” J. Am. Ceram. Soc. 91(3), 938–941 (2010).

Yoo, D. S.

B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).

Yu, C.

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

Yuan, P.

Zandi, B.

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).

Zhang, J.

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

R. Chen, Y. Tian, B. Li, X. Jing, J. Zhang, S. Xu, H. Eckert, and X. Zhang, “Thermal and luminescent properties of 2 μm emission in thulium-sensitized holmium-doped silicate-germanate glass,” Photon. Res. 4, 214–221 (2016).

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Broadband 2.84μm luminescence properties and Judd–Ofelt analysis in Dy3+ doped ZrF4–BaF2–LaF3–AlF3–YF3 glass,” J. Lumin. 132(1), 128–131 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Synthesis and infrared photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass,” Mater. Lett. 69(69), 72–75 (2012).

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. 113(1), 87–95 (2011).

Zhang, L.

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+ /Er3+ -doped phosphate glasses,” Opt. Mater. 17(3), 371–377 (2001).

Zhang, Q.

Z. Yan, C. Lu, Y. Ni, Q. Zhang, and Z. Xu, “Optical Properties of Dy3+ Doped in Boroaluminasilicate Glass,” J. Rare Earths 25(2), 99–103 (2007).

Zhang, X.

Zhao, G.

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

Zhao, J.

Zheng, Z.

Zhou, L.

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

Zhou, Y.

B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).

Zhou, Z.

B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).

Zhu, T.

Zhu, X.

X. Zhu and R. Jain, “Watt-Level 100-nm Tunable 3- μm Fiber Laser,” IEEE Photonic. Tech. Lett. 20(2), 156–158 (2008).

Ann. Phys. (1)

T. Förster, “Intermolecular energy transference and fluorescence,” Ann. Phys. 2, 55–75 (1948).

Appl. Phys. B (1)

M. J. D. Castro and J. M. F. Navarro, “Infrared luminescence of erbium-doped sodium lead germanate glass,” Appl. Phys. B 106(3), 669–675 (2012).

Chem. Phys. Lett. (1)

E. O. Serqueira, N. O. Dantas, and M. Bell, “Control of spectroscopic fluorescence parameters of Nd3+ ions as a function of concentration in a SiO2–Na2O–Al2O3–B2O3 glass system,” Chem. Phys. Lett. 508(1–3), 125–129 (2011).

Chin. Opt. Lett. (3)

EChin. Opt. Lett. (1)

P. Kuan, X. Fan, W. Li, X. Liu, C. Yu, L. Zhang, and L. Hu, “High-efficiency ∼2 μm laser in a single-mode Tm-doped lead germanate composite fiber,” EChin. Opt. Lett. 14, 081601 (2016).

Hongwai Yu Jiguang Gongcheng (1)

R. Guo, N. Chen, B. Wang, and J. Cong, “Monitoring and alignment system for mid-infrared solid-state laser,” Hongwai Yu Jiguang Gongcheng 42(12), 3185–3189 (2013).

IEEE J. Quantum Electron. (1)

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28(11), 2619 (1992).

IEEE Photonic. Tech. Lett. (1)

X. Zhu and R. Jain, “Watt-Level 100-nm Tunable 3- μm Fiber Laser,” IEEE Photonic. Tech. Lett. 20(2), 156–158 (2008).

Infrared Phys. Technol. (1)

C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, and S. Xu, “Mid-infrared photo-luminescence and energy transfer around 2.8 μm from Dy3+ /Tm3+ co-doped tellurite glass,” Infrared Phys. Technol. 85, 128–132 (2017).

J. Alloys Compd. (2)

T. Wei, Y. Tian, C. Tian, X. Jing, M. Cai, J. Zhang, L. Zhang, and S. Xu, “Comprehensive evaluation of the structural, absorption, energy transfer, luminescent properties and near-infrared applications of the neodymium doped germanate glass,” J. Alloys Compd. 618, 95–101 (2015).

B. Huang, Y. Zhou, P. Cheng, Z. Zhou, J. Li, and G. Yang, “The 1.85μm spectroscopic properties of Er3+ /Tm3+ co-doped tellurite glasses containing silver nanoparticles,” J. Alloys Compd. 686, 785–792 (2016).

J. Am. Ceram. Soc. (2)

Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm Emission Properties and Energy Transfer between Ho3+ and Tm3+ in PbO-Bi2O3-Ga2O3 Glasses,” J. Am. Ceram. Soc. 83(4), 787–791 (2000).

J. Heo, K. Kim, and K. Yong, “Populations and Emission Properties of the 5I6 and 5I7 Levels in Ho3+ Doped into PbO–Bi2O3 –Ga2O3 Glasses,” J. Am. Ceram. Soc. 91(3), 938–941 (2010).

J. Appl. Phys. (1)

D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, and C. W. Trussell, “Judd–Ofelt analysis of the Er3+(4f11) absorption intensities in phosphate glass: Er3+,Yb3+,” J. Appl. Phys. 93(4), 2041–2046 (2003).

J. Chem. Phys. (2)

G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” J. Chem. Phys. 37(3), 511–520 (1962).

D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21(5), 836–850 (1953).

J. Lumin. (3)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Broadband 2.84μm luminescence properties and Judd–Ofelt analysis in Dy3+ doped ZrF4–BaF2–LaF3–AlF3–YF3 glass,” J. Lumin. 132(1), 128–131 (2012).

B. C. Jamalaiah, T. Suhasini, L. Rama Moorthy, I. G. Kim, D. S. Yoo, and K. Jang, “Structural and luminescence properties of Nd3+-doped PbO–B2O3–TiO2–AlF3 glass for 1.07μm laser applications,” J. Lumin. 132(5), 1144–1149 (2012).

F. Qi, F. Huang, L. Zhou, Y. Tian, R. Lei, J. Zhang, L. Zhang, and S. Xu, “Low-hydroxy Dy3+ /Nd3+ co-doped fluoride glass for broadband 2.9 μm luminescence properties,” J. Lumin. 190, 392–396 (2017).

J. Mater. Res. (1)

Y. B. Shin, J. Heo, and H. S. Kim, “Enhancement of the 1.31-µm emission properties of Dy3 + -doped Ge-Ga-S glasses with the addition of alkali halides,” J. Mater. Res. 16(5), 1318–1324 (2001).

J. Mater. Sci. Mater. Electron. (1)

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, “~2 μm Tm3+/Yb3+ -doped tellurite fibre laser,” J. Mater. Sci. Mater. Electron. 20(1), 317–320 (2009).

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

T. Wei, Y. Tian, C. Tian, M. Cai, X. Jing, B. Li, R. Chen, J. Zhang, and S. Xu, “Quantitative Analysis of Energy Transfer and Origin of Quenching in Er3+/Ho3+ Codoped Germanosilicate Glasses,” J. Phys. Chem. A 119(26), 6823–6830 (2015).
[PubMed]

J. Quant. Spectrosc. (1)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 nm and 980 nm excitation,” J. Quant. Spectrosc. 113(1), 87–95 (2011).

J. Rare Earths (1)

Z. Yan, C. Lu, Y. Ni, Q. Zhang, and Z. Xu, “Optical Properties of Dy3+ Doped in Boroaluminasilicate Glass,” J. Rare Earths 25(2), 99–103 (2007).

Laser Phys. Lett. (1)

B. Richards, T. Teddyfernandez, G. Jose, D. Binks, and A. Jha, “Mid-IR (3-4 μm) fluorescence and ASE studies in Dy3+ doped tellurite and germanate glasses and a fs laser inscribed waveguide,” Laser Phys. Lett. 10, 085802 (2013).

Mater. Lett. (1)

Y. Tian, R. Xu, L. Hu, and J. Zhang, “Synthesis and infrared photoluminescence around 2.9μm from Dy3+/Tm3+ codoped fluorophosphate glass,” Mater. Lett. 69(69), 72–75 (2012).

Mater. Res. Bull. (1)

G. Zhao, W. Jin, Y. Fang, T. Gong, J. Guo, S. Dawai, M. Liao, and L. Hu, “Broadband mid-infrared emission around 2.9 μm in Dy3+ doped bismuth germanate glass,” Mater. Res. Bull. 84, 378–381 (2016).

Mater. Sci. Eng. B (1)

Y. Ma, X. Li, F. Huang, and L. Hu, “2.9 μm emission properties and energy transfer mechanism in Dy3+/Tm3+-codoped tellurite glass,” Mater. Sci. Eng. B 196, 23–27 (2015).

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. (1)

L. Zhang, H. Hu, C. Qi, and F. Lin, “Spectroscopic properties and energy transfer in Yb3+ /Er3+ -doped phosphate glasses,” Opt. Mater. 17(3), 371–377 (2001).

Opt. Mater. Express (1)

Photon. Res. (2)

Phys. Rev. (2)

B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Phys. Rev. 127(3), 750–761 (1962).

D. E. Mccumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).

Phys. Rev. B Condens. Matter (1)

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, “Branching ratio of uv and blue upconversions of Tm3+ ions in glasses,” Phys. Rev. B Condens. Matter 53(13), 8358–8362 (1996).
[PubMed]

Solid State Sci. (1)

S. N. Rasool, L. Rama Moorthy, and C. K. Jayasankar, “Optical and luminescence properties of Dy3+ ions in phosphate based glasses,” Solid State Sci. 22(8), 82–90 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Absorption spectra of Dy3+/Er3+ doped tellurite glasses.
Fig. 2
Fig. 2 Near-infrared fluorescence spectra in Dy3+/Er3+ doped tellurite glasses pumped by (a) 808 nm LD and (b) 980 nm LD.
Fig. 3
Fig. 3 Mid-infrared fluorescence spectra in Dy3+/Er3+ doped tellurite glasses pumped by (a) 808 nm LD and (b) 980 nm LD.
Fig. 4
Fig. 4 Energy level diagram and energy transfer mechanism among Dy3+ and Er3+ when pumped by 808 nm LD.
Fig. 5
Fig. 5 Energy level diagram and energy transfer mechanism among Dy3+ and Er3+ when pumped by 980 nm LD.
Fig. 6
Fig. 6 (a) Maximum fluorescence intensity of 0.5Dy2O3-xEr2O3 (x = 0, 0.5, 1, 1.5 and 2) co-doped tellurite samples when pumped by 808 and 980 nm LD. (b) Stimulated emission cross-sections of the 2500-3100 nm broadband emissions from Dy3+/Er3+ co-doped tellurite glasses excited by 808 and 980 nm, respectively. (c) Calculated emission (solid line) and absorption (dashed line) cross-sections corresponding to 1.55, 2.7 and 2.8 μm emissions pumped by 808 nm LD. (d) Calculated emission (solid line) and absorption (dashed line) cross-sections corresponding to 1.55 and 2.7 μm emissions pumped by 980 nm LD.
Fig. 7
Fig. 7 Emission cross-sections assisted by m (m = 0, 1, 2, 3) phonons for the Er3+:4I13/24I15/2 transition and absorption cross-sections for the Dy3+:6H15/26H13/2 transition.
Fig. 8
Fig. 8 (a) The decay curve at 1.55 μm in Er3+ singly and Dy3+/Er3+ co-doped tellurite glasses pumped by 808 nm LD. (b) the decay curve at 1.55 μm in Er3+ singly and Dy3+/Er3+ co-doped tellurite glasses pumped by 980 nm LD. (c) Measured lifetimes of the 4I13/2 level as a function of the Er3+ concentration. (d) Quenching rates (1/τ-1/τr) of Er3+:4I13/24I15/2 transition as a function of the product of Dy3+ and Er3+ concentration (NDy × NEr).
Fig. 9
Fig. 9 Gain coefficient with the population inversion values P ranging from 0 to 1 in interval of 0.1 for (a) Er3+:4I11/24I13/2 and (b) Dy3+:6H13/26H15/2 transitions when pumped by 808 nm.

Tables (2)

Tables Icon

Table 1 The J-O intensity parameters of the Dy3+/Er3+ doped tellurite glass.

Tables Icon

Table 2 The energy transfer micro-parameters between Dy3+/Er3+ when pumped by 808 nm LD.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S[ aJ;b J ' ]= t=2,4,6 Ω t aJ U ( t ) b J ' 2
band k( λ ) dλ= 8 π 3 e 2 λ m ρ N 3hcn( 2J+1 ) ×[ ( n 2 +2 ) 2 9 ]SJJ'
Er 3+ : 4 I 15/2 4 I 9/2 ( GSA1 ) Dy 3+ : 6 H 15/2 6 F 5/2 ( GSA2 ) Er 3+ : 4 I 9/2 Dy 3+ : 6 F 5/2 ( ET1 ) Er 3+ : 4 I 11/2 Dy 3+ : 6 H 5/2 ( ET2 ) Er 3+ : 4 I 15/2 + 4 I 9/2 4 I 13/2 + 4 I 13/2 ( CR ) Er 3+ : 4 I 11/2 4 I 13/2 ( 2.7 μm ) Er 3+ : 4 I 13/2 6 H 11/2 ( ET3 ) Er 3+ : 4 I 13/2 4 I 15/2 ( 1.55 μm ) Dy 3+ : 6 H 13/2 6 H 15/2 ( 2.8 μm )
Er 3+ : 4 I 15/2 4 I 11/2 ( GSA ) Er 3+ : 4 I 11/2 Dy 3+ : 6 H 5/2 ( ET1 ) Er 3+ : 4 I 11/2 4 I 13/2 ( 2.7 μm ) Er 3+ : 4 I 13/2 Dy 3+ : 6 H 11/2 ( ET2 ) Er 3+ : 4 I 13/2 4 I 15/2 ( 1.55 μm ) Dy 3+ : 6 H 13/2 6 H 15/2 ( 2.8 μm )
σ em ( λ )= λ 4 A rad 8πc n 2 × λI( λ ) λI( λ )dλ
Δ λ eff = I( λ )dλ I max
σ abs ( λ )= σ em ( λ ) Kexp( E 0 hc λ kT ) = σ em ( λ )× Z up Z low exp[ hc kT ( 1 λ p 1 λ ) ]
σ em Stokes = σ em S 0 m e S 0 m! [ 1 e hv/ k B T 1 +1 ] m
η=1 τ Er/Dy τ Er
1 τ 1 τ r =K N A N D
G( λ )= N up × σ em ( λ ) N low × σ abs ( λ )
G( λ )=N[ P σ em ( λ )( 1P ) σ abs ( λ ) ]

Metrics