Abstract

Telecom-wavelength compatible photoconductors benefit strongly from the large amount and affordability of telecom lasers and components but there are demanding requirements on material development. We demonstrate continuous-wave (CW) photomixing with a setup that only uses ErAs:In(Al)GaAs devices with a peak dynamic range (DNR) of 78 dB and a bandwidth of ∼3.65 THz at an integration time of 300 ms and only 26 mW laser power on each device. The ErAs:InGaAs receiver further features a factor of two lower noise equivalent power (NEP) than a state-of-the-art photoconductor, despite an antenna mismatch.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-optoelectronic terahertz system using low-temperature-grown InGaAs photomixers

C. Baker, I. S. Gregory, M. J. Evans, W. R. Tribe, E. H. Linfield, and M. Missous
Opt. Express 13(23) 9639-9644 (2005)

Photomixing at 1.55 μm in ion-irradiated In0.53Ga0.47As on InP

N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd, and E. Fertein
Opt. Express 14(5) 1856-1861 (2006)

THz generation using extrinsic photoconductivity at 1550 nm

J. R. Middendorf and E. R. Brown
Opt. Express 20(15) 16504-16509 (2012)

References

  • View by:
  • |
  • |
  • |

  1. U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
    [Crossref]
  2. B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.
  3. J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
    [Crossref]
  4. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
    [Crossref]
  5. S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
    [Crossref]
  6. T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
    [Crossref]
  7. A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
    [Crossref]
  8. E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. and Systems 13, 497–545 (2003).
    [Crossref]
  9. G. Carpintero, L. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Räisänen, Semiconductor THz Technology: devices and systems for room temperature operation (John Wiley & Sons, 2015).
  10. S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
    [Crossref]
  11. H. Ito, F. Nakajima, T. Futura, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, 191–198 (2005).
    [Crossref]
  12. C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).
  13. E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
    [Crossref]
  14. J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron. 18, 907–914 (2003).
    [Crossref]
  15. R. A. Metzger, A. S. Brown, L. G. McCray, and J. A. Henige, “Structural and electrical properties of low temperature grown GaInAs,” J. Vac. Sci. Technol. B 11, 798–801 (1993).
    [Crossref]
  16. D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 µm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
    [Crossref]
  17. J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J. F. Lampin, and P. Mounaix, “Emission characteristics of ion-irradiated In0.53Ga0.47As based photoconductive antennas excited at 1.55 µm,” Opt. Express 15, 8943–8950 (2007).
    [Crossref] [PubMed]
  18. O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
    [Crossref]
  19. B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
    [Crossref]
  20. B. Globisch, D. Stanze, R. J. Dietz, T. Gobel, and M. Schell, “Bandwidth improvement of CW THz receivers by Be doping of low-temperature-grown InGaAs/InAlAs heterostructures,” in “Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on,” (IEEE, 2013), pp. 1–2.
  21. J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
    [Crossref]
  22. I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
    [Crossref]
  23. D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Electronic structure and conduction in a metal-semiconductor digital composite: ErAs:InGaAs,” Appl. Phys. Lett. 78, 1703–1705 (2001).
    [Crossref]
  24. G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
    [Crossref]
  25. D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs,” J. Vac. Sci. Technol. B 19, 1631–1634 (2001).
    [Crossref]
  26. J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antenna Propag. 7, 181–187 (1959).
    [Crossref]
  27. A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrar. Milli Thz Waves 36, 269–277 (2015).
    [Crossref]
  28. M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
    [Crossref]

2017 (2)

E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
[Crossref]

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

2015 (3)

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrar. Milli Thz Waves 36, 269–277 (2015).
[Crossref]

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

2014 (2)

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

2013 (1)

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
[Crossref]

2012 (2)

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
[Crossref]

2011 (2)

S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

2009 (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

2007 (1)

2006 (1)

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

2005 (2)

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 µm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[Crossref]

H. Ito, F. Nakajima, T. Futura, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, 191–198 (2005).
[Crossref]

2003 (3)

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. and Systems 13, 497–545 (2003).
[Crossref]

J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron. 18, 907–914 (2003).
[Crossref]

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

2002 (1)

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

2001 (2)

D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs,” J. Vac. Sci. Technol. B 19, 1631–1634 (2001).
[Crossref]

D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Electronic structure and conduction in a metal-semiconductor digital composite: ErAs:InGaAs,” Appl. Phys. Lett. 78, 1703–1705 (2001).
[Crossref]

1993 (1)

R. A. Metzger, A. S. Brown, L. G. McCray, and J. A. Henige, “Structural and electrical properties of low temperature grown GaInAs,” J. Vac. Sci. Technol. B 11, 798–801 (1993).
[Crossref]

1959 (1)

J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antenna Propag. 7, 181–187 (1959).
[Crossref]

Acedo, P.

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

Alcer, D.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

Baker, C.

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Barth, R.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Bärwolf, F.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Bauerschmidt, S.

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

Beere, H.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

Beere, H. E.

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Blary, K.

Brown, A. S.

R. A. Metzger, A. S. Brown, L. G. McCray, and J. A. Henige, “Structural and electrical properties of low temperature grown GaInAs,” J. Vac. Sci. Technol. B 11, 798–801 (1993).
[Crossref]

Brown, E.

E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
[Crossref]

Brown, E. R.

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 µm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[Crossref]

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. and Systems 13, 497–545 (2003).
[Crossref]

Cannard, P.

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

Cannard, P. J.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

Carpintero, G.

G. Carpintero, L. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Räisänen, Semiconductor THz Technology: devices and systems for room temperature operation (John Wiley & Sons, 2015).

Cesar, J.

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

Chiang, H.-W.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Chimot, N.

Choudhary, P.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Criado, A. R.

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

Crozat, P.

Cunningham, J.

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

Davies, A.

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

de Dios, C.

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

Deninger, A. J.

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrar. Milli Thz Waves 36, 269–277 (2015).
[Crossref]

Dietz, R.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

Dietz, R. J.

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
[Crossref]

B. Globisch, D. Stanze, R. J. Dietz, T. Gobel, and M. Schell, “Bandwidth improvement of CW THz receivers by Be doping of low-temperature-grown InGaAs/InAlAs heterostructures,” in “Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on,” (IEEE, 2013), pp. 1–2.

Döhler, G.

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

Döhler, G. H.

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

Drews, J.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Driscoll, D.

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs,” J. Vac. Sci. Technol. B 19, 1631–1634 (2001).
[Crossref]

Driscoll, D. C.

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 µm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[Crossref]

D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Electronic structure and conduction in a metal-semiconductor digital composite: ErAs:InGaAs,” Appl. Phys. Lett. 78, 1703–1705 (2001).
[Crossref]

Dyson, J. D.

J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antenna Propag. 7, 181–187 (1959).
[Crossref]

Emsia, A.

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

Evans, M.

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Faist, J.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

Fastenau, J. M.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Feldman, A.

E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
[Crossref]

Firth, R.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

Fischer, G.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Fischer, M.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

Förster, W.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

Fox, A.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Fursenko, O.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Futura, T.

H. Ito, F. Nakajima, T. Futura, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, 191–198 (2005).
[Crossref]

Garcia-Munoz, L.

G. Carpintero, L. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Räisänen, Semiconductor THz Technology: devices and systems for room temperature operation (John Wiley & Sons, 2015).

Gierl, C.

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

Globisch, B.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
[Crossref]

B. Globisch, D. Stanze, R. J. Dietz, T. Gobel, and M. Schell, “Bandwidth improvement of CW THz receivers by Be doping of low-temperature-grown InGaAs/InAlAs heterostructures,” in “Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on,” (IEEE, 2013), pp. 1–2.

Gobel, T.

B. Globisch, D. Stanze, R. J. Dietz, T. Gobel, and M. Schell, “Bandwidth improvement of CW THz receivers by Be doping of low-temperature-grown InGaAs/InAlAs heterostructures,” in “Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on,” (IEEE, 2013), pp. 1–2.

Göbel, T.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
[Crossref]

Gossard, A.

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
[Crossref]

Gossard, A. C.

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 µm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[Crossref]

D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Electronic structure and conduction in a metal-semiconductor digital composite: ErAs:InGaAs,” Appl. Phys. Lett. 78, 1703–1705 (2001).
[Crossref]

D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs,” J. Vac. Sci. Technol. B 19, 1631–1634 (2001).
[Crossref]

Grabolla, T.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Gregory, I. S.

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Grzyb, J.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

Hadi, R. Al

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

Haidar, M. T.

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

Hanson, M.

D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs,” J. Vac. Sci. Technol. B 19, 1631–1634 (2001).
[Crossref]

D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Electronic structure and conduction in a metal-semiconductor digital composite: ErAs:InGaAs,” Appl. Phys. Lett. 78, 1703–1705 (2001).
[Crossref]

Hanson, M. P.

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 µm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[Crossref]

Hartnagel, H.

G. Carpintero, L. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Räisänen, Semiconductor THz Technology: devices and systems for room temperature operation (John Wiley & Sons, 2015).

Harvey, T.

E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
[Crossref]

Hatem, O.

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

Heinemann, B.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Henige, J. A.

R. A. Metzger, A. S. Brown, L. G. McCray, and J. A. Henige, “Structural and electrical properties of low temperature grown GaInAs,” J. Vac. Sci. Technol. B 11, 798–801 (1993).
[Crossref]

Herzel, F.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Hudgins, J. L.

J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron. 18, 907–914 (2003).
[Crossref]

Ishibashi, T.

H. Ito, F. Nakajima, T. Futura, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, 191–198 (2005).
[Crossref]

Ito, H.

H. Ito, F. Nakajima, T. Futura, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, 191–198 (2005).
[Crossref]

Jacob, F.

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

Jain, V.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Kadow, C.

D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Electronic structure and conduction in a metal-semiconductor digital composite: ErAs:InGaAs,” Appl. Phys. Lett. 78, 1703–1705 (2001).
[Crossref]

D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs,” J. Vac. Sci. Technol. B 19, 1631–1634 (2001).
[Crossref]

Katzer, J.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Khan, M. A.

J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron. 18, 907–914 (2003).
[Crossref]

Kiesel, P.

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

Kohlhaas, R.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

Korn, J.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Krogen, P.

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

Krüger, A.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Kulse, P.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Küppers, F.

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

Lampin, J. F.

Lenke, T.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Linfield, E.

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

Linfield, E. H.

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Lisker, M.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Liu, A. W. K.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Löffler, T.

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

Loubychev, D.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Lu, H.

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
[Crossref]

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

Lubin, P.

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

Malzer, S.

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

Mangeney, J.

Marschmeyer, S.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Masselink, W.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

McCray, L. G.

R. A. Metzger, A. S. Brown, L. G. McCray, and J. A. Henige, “Structural and electrical properties of low temperature grown GaInAs,” J. Vac. Sci. Technol. B 11, 798–801 (1993).
[Crossref]

Meignien, L.

Metzger, R. A.

R. A. Metzger, A. S. Brown, L. G. McCray, and J. A. Henige, “Structural and electrical properties of low temperature grown GaInAs,” J. Vac. Sci. Technol. B 11, 798–801 (1993).
[Crossref]

Mingardi, A.

E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
[Crossref]

Mirin, R.

E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
[Crossref]

Missous, M.

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Mitchell, W. J.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Mittendorff, M.

S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
[Crossref]

Moodie, D.

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

Moore, R.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

Mounaix, P.

Nakajima, F.

H. Ito, F. Nakajima, T. Futura, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, 191–198 (2005).
[Crossref]

Paul, S.

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

Pfeiffer, U. R.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

Preu, S.

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrar. Milli Thz Waves 36, 269–277 (2015).
[Crossref]

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

G. Carpintero, L. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Räisänen, Semiconductor THz Technology: devices and systems for room temperature operation (John Wiley & Sons, 2015).

Räisänen, A.

G. Carpintero, L. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Räisänen, Semiconductor THz Technology: devices and systems for room temperature operation (John Wiley & Sons, 2015).

Renaud, C. C.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

Ritchie, D.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

Robertson, M.

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

Rode, J. C.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Rodwell, M. J.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Roehle, H.

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
[Crossref]

Rogers, D.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

Roggenbuck, A.

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrar. Milli Thz Waves 36, 269–277 (2015).
[Crossref]

Roskos, H. G.

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

Rücker, H.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Santi, E.

J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron. 18, 907–914 (2003).
[Crossref]

Sarmah, N.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

Scalari, G.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

Scheit, A.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Schell, M.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
[Crossref]

B. Globisch, D. Stanze, R. J. Dietz, T. Gobel, and M. Schell, “Bandwidth improvement of CW THz receivers by Be doping of low-temperature-grown InGaAs/InAlAs heterostructures,” in “Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on,” (IEEE, 2013), pp. 1–2.

Schindler, S.

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrar. Milli Thz Waves 36, 269–277 (2015).
[Crossref]

Schmidt, D.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Schmidt, J.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Schubert, M.A.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Seeds, A. J.

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

Segschneider, G.

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

Semtsiv, M.

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

Simin, G. S.

J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron. 18, 907–914 (2003).
[Crossref]

Snyder, A.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Stanze, D.

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
[Crossref]

B. Globisch, D. Stanze, R. J. Dietz, T. Gobel, and M. Schell, “Bandwidth improvement of CW THz receivers by Be doping of low-temperature-grown InGaAs/InAlAs heterostructures,” in “Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on,” (IEEE, 2013), pp. 1–2.

Suen, J.

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

Tautz, S.

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

Terazzi, R.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

Thibeault, B. J.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Tribe, W.

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

Trusch, A.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Urteaga, M.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Walther, C.

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

Wang, L.

S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

Weber, H.

S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
[Crossref]

Winnerl, S.

S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
[Crossref]

Wipf, C.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Wolansky, D.

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Wood, C.

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

Wu, Y.

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

Zerounian, N.

Zhang, W.-D.

E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
[Crossref]

Zhao, Y.

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

Appl. Phys. Lett. (6)

S. Preu, M. Mittendorff, H. Lu, H. Weber, S. Winnerl, and A. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101, 101105 (2012).
[Crossref]

E. Brown, A. Mingardi, W.-D. Zhang, A. Feldman, T. Harvey, and R. Mirin, “Abrupt dependence of ultrafast extrinsic photoconductivity on er fraction in GaAs:Er,” Appl. Phys. Lett. 111, 031104 (2017).
[Crossref]

D. C. Driscoll, M. P. Hanson, A. C. Gossard, and E. R. Brown, “Ultrafast photoresponse at 1.55 µm in InGaAs with embedded semimetallic ErAs nanoparticles,” Appl. Phys. Lett. 86, 051908 (2005).
[Crossref]

O. Hatem, J. Cunningham, E. Linfield, C. Wood, A. Davies, P. Cannard, M. Robertson, and D. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett. 98, 121107 (2011).
[Crossref]

I. S. Gregory, C. Baker, W. Tribe, M. Evans, H. E. Beere, E. H. Linfield, A. Davies, and M. Missous, “High resistivity annealed low-temperature GaAs with 100 fs lifetimes,” Appl. Phys. Lett. 83, 4199–4201 (2003).
[Crossref]

D. C. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Electronic structure and conduction in a metal-semiconductor digital composite: ErAs:InGaAs,” Appl. Phys. Lett. 78, 1703–1705 (2001).
[Crossref]

Electron. Lett. (1)

A. R. Criado, C. de Dios, G. H. Döhler, S. Preu, S. Malzer, S. Bauerschmidt, H. Lu, A. C. Gossard, and P. Acedo, “Ultra-narrow linewidth CW sub-THz generation using GS based OFCG and n-i-pn-i-p superlattice photomixers,” Electron. Lett. 48, 1425–1426 (2012).
[Crossref]

IEEE J. Solid-State Circuits (1)

U. R. Pfeiffer, Y. Zhao, J. Grzyb, R. Al Hadi, N. Sarmah, W. Förster, H. Rücker, and B. Heinemann, “A 0.53 THz reconfigurable source module with up to 1 mW radiated power for diffuse illumination in terahertz imaging applications,” IEEE J. Solid-State Circuits 49, 2938–2950 (2014).
[Crossref]

IEEE Trans. Electron Devices (1)

J. C. Rode, H.-W. Chiang, P. Choudhary, V. Jain, B. J. Thibeault, W. J. Mitchell, M. J. Rodwell, M. Urteaga, D. Loubychev, A. Snyder, Y. Wu, J. M. Fastenau, and A. W. K. Liu, “Indium phosphide heterobipolar transistor technology beyond 1-THz bandwidth,” IEEE Trans. Electron Devices 62, 2779–2785 (2015).
[Crossref]

IEEE Trans. Power Electron. (1)

J. L. Hudgins, G. S. Simin, E. Santi, and M. A. Khan, “An assessment of wide bandgap semiconductors for power devices,” IEEE Trans. Power Electron. 18, 907–914 (2003).
[Crossref]

Int. J. High Speed Electron. and Systems (1)

E. R. Brown, “THz generation by photomixing in ultrafast photoconductors,” Int. J. High Speed Electron. and Systems 13, 497–545 (2003).
[Crossref]

IRE Trans. Antenna Propag. (1)

J. D. Dyson, “The equiangular spiral antenna,” IRE Trans. Antenna Propag. 7, 181–187 (1959).
[Crossref]

J. Appl. Phys. (3)

J. Suen, P. Krogen, S. Preu, H. Lu, A. Gossard, D. Driscoll, and P. Lubin, “Measurement and modeling of ErAs:In0.53Ga0.47As nanocomposite photoconductivity for THz generation at 1.55 µm pump wavelength,” J. Appl. Phys. 116, 013703 (2014).
[Crossref]

S. Preu, G. H. Döhler, S. Malzer, L. Wang, and A. C. Gossard, “Tunable, continuous-wave terahertz photomixer sources and applications,” J. Appl. Phys. 109, 061301 (2011).
[Crossref]

B. Globisch, R. Dietz, R. Kohlhaas, T. Göbel, M. Schell, D. Alcer, M. Semtsiv, and W. Masselink, “Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor,” J. Appl. Phys. 121, 053102 (2017).
[Crossref]

J. Infrar. Milli Thz Waves (1)

A. J. Deninger, A. Roggenbuck, S. Schindler, and S. Preu, “2.75 THz tuning with a triple-DFB laser system at 1550 nm and InGaAs photomixers,” J. Infrar. Milli Thz Waves 36, 269–277 (2015).
[Crossref]

J. Vac. Sci. Technol. B (2)

D. Driscoll, M. Hanson, C. Kadow, and A. C. Gossard, “Transition to insulating behavior in the metal-semiconductor digital composite ErAs:InGaAs,” J. Vac. Sci. Technol. B 19, 1631–1634 (2001).
[Crossref]

R. A. Metzger, A. S. Brown, L. G. McCray, and J. A. Henige, “Structural and electrical properties of low temperature grown GaInAs,” J. Vac. Sci. Technol. B 11, 798–801 (1993).
[Crossref]

Laser and Photonics Reviews (1)

G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, “THz and sub-THz quantum cascade lasers,” Laser and Photonics Reviews 3, 45–66 (2009).
[Crossref]

Opt. Express (1)

Optics Lett. (2)

T. Göbel, D. Stanze, B. Globisch, R. J. Dietz, H. Roehle, and M. Schell, “Telecom technology based continuous wave terahertz photomixing system with 105 decibel signal-to-noise ratio and 3.5 terahertz bandwidth,” Optics Lett. 38, 4197–4199 (2013).
[Crossref]

M. T. Haidar, S. Preu, S. Paul, C. Gierl, J. Cesar, A. Emsia, and F. Küppers, “Widely tunable telecom MEMS-VCSEL for terahertz photomixing,” Optics Lett. 40, 4428–4431 (2015).
[Crossref]

Phys. Rev. B (1)

G. Segschneider, F. Jacob, T. Löffler, H. G. Roskos, S. Tautz, P. Kiesel, and G. Döhler, “Free-carrier dynamics in low-temperature-grown GaAs at high excitation densities investigated by time-domain terahertz spectroscopy,” Phys. Rev. B 65, 125205 (2002).
[Crossref]

Proc. SPIE (1)

C. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. J. Cannard, R. Moore, and A. J. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE 6194, 6164C (2006).

Semicond. Sci. Technol. (1)

H. Ito, F. Nakajima, T. Futura, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol. 20, 191–198 (2005).
[Crossref]

Other (3)

B. Globisch, D. Stanze, R. J. Dietz, T. Gobel, and M. Schell, “Bandwidth improvement of CW THz receivers by Be doping of low-temperature-grown InGaAs/InAlAs heterostructures,” in “Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on,” (IEEE, 2013), pp. 1–2.

G. Carpintero, L. Garcia-Munoz, H. Hartnagel, S. Preu, and A. Räisänen, Semiconductor THz Technology: devices and systems for room temperature operation (John Wiley & Sons, 2015).

B. Heinemann, H. Rücker, R. Barth, F. Bärwolf, J. Drews, G. Fischer, A. Fox, O. Fursenko, T. Grabolla, F. Herzel, J. Katzer, J. Korn, A. Krüger, P. Kulse, T. Lenke, M. Lisker, S. Marschmeyer, A. Scheit, D. Schmidt, J. Schmidt, M.A. Schubert, A. Trusch, C. Wipf, and D. Wolansky, “SiGe HBT with fx/fmax of 505 GHz/720 GHz,” in “Electron Devices Meeting (IEDM), 2016 IEEE International,” (IEEE, 2016), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 a) 1.5 periods of the material structure of the receivers. b) 1.5 periods of the layer sequence of the photoconductive source. The delta-doping of all samples is in the range of a few 1013/cm2.
Fig. 2
Fig. 2 Dynamic range of a system using only ErAs:In(Al)GaAs photoconductors. The source is biased at ±7.5 V at 12.2 kHz, being a safe bias for long-term operation. The insets show the used spiral antenna and an image of the electrode structure. The photoconductive gap (i.e. the finger spacing) for all devices is wG = 1.9 µm using 2 fingers of length 7.1 µm and width 1.1µm on each electrode, covering a total area of 10× 10 µm2.
Fig. 3
Fig. 3 Noise floor of the receiver and dynamic range of the system at 1 THz, 300 ms integration time, and 5.2 ± 0.2 V source voltage amplitude vs. laser power.
Fig. 4
Fig. 4 Comparison of the system using the commercial receiver (blue) and that with the commercial receiver replaced by the ErAs:InGaAs receiver 2 (black).

Tables (1)

Tables Icon

Table 1 Summary of the key parameters of the fabricated photoconductors.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I N P C = 4 k B T / R i l l .

Metrics