Abstract

Ideally, taking advantage of synergistic effects, coinage-metallic nanocomposites combining obvious inner hollow structures and exterior unique dendritic shell architectures have a promising potential to provide unprecedented opportunity for ultrasensitive surface-enhanced Raman scattering spectroscopy (SERS) application. Herein, we report a convenient and robust synthesis of hollow Ag@Au nano-urchins with both obvious inner voids and exterior multi-antennas by employing galvanic replacement reaction between Au3+ ions and Ag nanospheres and then concomitant reduction of Au3+ ions onto precursors. The stable Ag nanospheres play an important role in the seed-mediated growth process, which were fabricated by pulsed laser ablation of Ag target in liquid. Superior to traditional chemical synthesis, the distinctive advantage is that ultra-rapid laser sintering/quenching of Ag nanoseeds enable the Ag outside surfaces to become more stable than those of core regions. The fascinating hollow Ag@Au nano-urchins obtained by adding 6 mL, 0.5 mM HAuCl4 exhibit excellent chemical stability in ionic or oxidative condition. More importantly, the obtained products provide enhanced SERS activity by using 4-Aminothiophenol (4-ATP) as the probe molecules. The obvious inner hollow structure and exterior immense antennas as well as pronounced inter-metallic synergies are integrated to provide ultrasensitive SERS signals with an enhancement factor (EF) up to ~1012. Interestingly, the SERS signals are also clearly distinguishable even the concentration of 4-ATP was decreased to ~10−13 M. The pronounced features are better than many previous works, especially those of smooth-shaped nanocomposites, monometallic nanodendrites or single-phase hollow structures. The superiorities of the hollow Ag@Au nano-urchins will make them become a prominent SERS-based substrate for ultra-trace detection of biomolecules in pathological cell diagnostics, environmental surveillance, and food safety supervision.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
    [PubMed]
  2. J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
    [PubMed]
  3. X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C: Phytochem. Rev. 21, 54–80 (2014).
  4. Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
    [PubMed]
  5. H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
    [PubMed]
  6. L. Xu, S. Li, H. Zhang, D. Wang, and M. Chen, “Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy,” Opt. Express 25(7), 7408–7417 (2017).
    [PubMed]
  7. K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
    [PubMed]
  8. S. Y. Fu, Y. K. Hsu, M. H. Chen, C. J. Chuang, Y. C. Chen, and Y. G. Lin, “Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates,” Opt. Express 22(12), 14617–14624 (2014).
    [PubMed]
  9. L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2, 4534–4542 (2014).
  10. Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
    [PubMed]
  11. Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
    [PubMed]
  12. L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
    [PubMed]
  13. Y. Yang, Q. Zhang, Z. W. Fu, and D. Qin, “Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability,” ACS Appl. Mater. Interfaces 6(5), 3750–3757 (2014).
    [PubMed]
  14. J. M. Li, Y. Yang, and D. Qin, “Hollow nanocubes made of Ag-Au alloys for SERS detection with sensitivity of 10− 8 M for melamine,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 9934–9940 (2014).
  15. H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).
  16. H. X. Wu, P. Wang, H. L. He, and Y. D. Jin, “Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties,” Nano Res. 5, 135–144 (2012).
  17. V. Vongsavat, B. M. Vittur, W. W. Bryan, J. H. Kim, and T. R. Lee, “Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared,” ACS Appl. Mater. Interfaces 3(9), 3616–3624 (2011).
    [PubMed]
  18. Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
    [PubMed]
  19. Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
    [PubMed]
  20. M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
    [PubMed]
  21. Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
    [PubMed]
  22. C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
    [PubMed]
  23. Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
    [PubMed]
  24. X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, “25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties,” Adv. Mater. 25(44), 6313–6333 (2013).
    [PubMed]
  25. K. K. Liu, S. Tadepalli, L. M. Tian, and S. Singamaneni, “Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles,” Chem. Mater. 27, 5261–5270 (2015).
  26. D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117(5), 3990–4103 (2017).
    [PubMed]
  27. M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Advances 6, 9549–9553 (2016).
  28. Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC Advances 6, 12286–12289 (2016).
  29. H. Zhang, M. Chen, D. Wang, L. Xu, and X. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).
  30. D. Wang, H. Zhang, L. Li, M. Chen, and X. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).
  31. S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
    [PubMed]
  32. S. Li and M. Chen, “Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation,” Chin. Phys. B 25, 046103 (2016).

2017 (4)

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[PubMed]

L. Xu, S. Li, H. Zhang, D. Wang, and M. Chen, “Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy,” Opt. Express 25(7), 7408–7417 (2017).
[PubMed]

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[PubMed]

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[PubMed]

2016 (8)

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Advances 6, 9549–9553 (2016).

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC Advances 6, 12286–12289 (2016).

H. Zhang, M. Chen, D. Wang, L. Xu, and X. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).

D. Wang, H. Zhang, L. Li, M. Chen, and X. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).

S. Li and M. Chen, “Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation,” Chin. Phys. B 25, 046103 (2016).

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

2015 (4)

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

K. K. Liu, S. Tadepalli, L. M. Tian, and S. Singamaneni, “Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles,” Chem. Mater. 27, 5261–5270 (2015).

2014 (10)

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[PubMed]

S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
[PubMed]

Y. Yang, Q. Zhang, Z. W. Fu, and D. Qin, “Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability,” ACS Appl. Mater. Interfaces 6(5), 3750–3757 (2014).
[PubMed]

J. M. Li, Y. Yang, and D. Qin, “Hollow nanocubes made of Ag-Au alloys for SERS detection with sensitivity of 10− 8 M for melamine,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 9934–9940 (2014).

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C: Phytochem. Rev. 21, 54–80 (2014).

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[PubMed]

S. Y. Fu, Y. K. Hsu, M. H. Chen, C. J. Chuang, Y. C. Chen, and Y. G. Lin, “Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates,” Opt. Express 22(12), 14617–14624 (2014).
[PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2, 4534–4542 (2014).

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

2013 (1)

X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, “25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties,” Adv. Mater. 25(44), 6313–6333 (2013).
[PubMed]

2012 (3)

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

H. X. Wu, P. Wang, H. L. He, and Y. D. Jin, “Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties,” Nano Res. 5, 135–144 (2012).

2011 (1)

V. Vongsavat, B. M. Vittur, W. W. Bryan, J. H. Kim, and T. R. Lee, “Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared,” ACS Appl. Mater. Interfaces 3(9), 3616–3624 (2011).
[PubMed]

2010 (1)

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

Bai, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

Barcikowski, S.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[PubMed]

Bryan, W. W.

V. Vongsavat, B. M. Vittur, W. W. Bryan, J. H. Kim, and T. R. Lee, “Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared,” ACS Appl. Mater. Interfaces 3(9), 3616–3624 (2011).
[PubMed]

Cabello, G.

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C: Phytochem. Rev. 21, 54–80 (2014).

Cao, C.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

Chen, M.

L. Xu, S. Li, H. Zhang, D. Wang, and M. Chen, “Laser-induced photochemical synthesis of branched Ag@Au bimetallic nanodendrites as a prominent substrate for surface-enhanced Raman scattering spectroscopy,” Opt. Express 25(7), 7408–7417 (2017).
[PubMed]

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Advances 6, 9549–9553 (2016).

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC Advances 6, 12286–12289 (2016).

H. Zhang, M. Chen, D. Wang, L. Xu, and X. Liu, “Laser induced fabrication of mono-dispersed Ag2S@Ag nano-particles and their superior adsorption performance for dye removal,” Opt. Mater. Express 6(8), 2573–2583 (2016).

D. Wang, H. Zhang, L. Li, M. Chen, and X. Liu, “Laser-ablation-induced synthesis of porous ZnS/Zn nano-cages and their visible-light-driven photocatalytic reduction of aqueous Cr(VI),” Opt. Mater. Express 6(4), 1306–1312 (2016).

S. Li and M. Chen, “Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation,” Chin. Phys. B 25, 046103 (2016).

S. Li, M. Chen, and X. Liu, “Zinc oxide porous nano-cages fabricated by laser ablation of Zn in ammonium hydroxide,” Opt. Express 22(15), 18707–18714 (2014).
[PubMed]

Chen, M. H.

Chen, X. J.

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C: Phytochem. Rev. 21, 54–80 (2014).

Chen, Y. C.

Chen, Z. Y.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Cheng, L.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2, 4534–4542 (2014).

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Chi, M.

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[PubMed]

Cho, E. C.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

Choi, Y.

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Chuang, C. J.

Cui, Y.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[PubMed]

Fan, Q.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

Fang, J.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2, 4534–4542 (2014).

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Fang, Z.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Fu, S. Y.

Fu, Z. W.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[PubMed]

Y. Yang, Q. Zhang, Z. W. Fu, and D. Qin, “Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability,” ACS Appl. Mater. Interfaces 6(5), 3750–3757 (2014).
[PubMed]

Gao, C.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[PubMed]

Gao, C. B.

H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).

Gökce, B.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[PubMed]

Hackler, R. A.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[PubMed]

Han, L.

H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).

He, H. L.

H. X. Wu, P. Wang, H. L. He, and Y. D. Jin, “Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties,” Nano Res. 5, 135–144 (2012).

He, R.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Hong, S.

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Hsu, Y. K.

Hu, Y.

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[PubMed]

Jin, Y. D.

H. X. Wu, P. Wang, H. L. He, and Y. D. Jin, “Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties,” Nano Res. 5, 135–144 (2012).

Jing, C.

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Kim, J. H.

V. Vongsavat, B. M. Vittur, W. W. Bryan, J. H. Kim, and T. R. Lee, “Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared,” ACS Appl. Mater. Interfaces 3(9), 3616–3624 (2011).
[PubMed]

Kim, S. K.

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Kuang, H.

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

Lee, T. R.

V. Vongsavat, B. M. Vittur, W. W. Bryan, J. H. Kim, and T. R. Lee, “Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared,” ACS Appl. Mater. Interfaces 3(9), 3616–3624 (2011).
[PubMed]

Li, H.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Li, J. M.

J. M. Li, Y. Yang, and D. Qin, “Hollow nanocubes made of Ag-Au alloys for SERS detection with sensitivity of 10− 8 M for melamine,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 9934–9940 (2014).

Li, L.

Li, S.

Li, W.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

Li, Z.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

Li, Z. Y.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Lin, Y. G.

Liu, H. P.

H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).

Liu, J.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[PubMed]

Liu, K.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

Liu, K. K.

K. K. Liu, S. Tadepalli, L. M. Tian, and S. Singamaneni, “Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles,” Chem. Mater. 27, 5261–5270 (2015).

Liu, L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Liu, T. Z.

H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).

Liu, X.

Liu, X. D.

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Advances 6, 9549–9553 (2016).

Liu, Z.

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

Long, Y.

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Lv, M. Y.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Ma, C.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2, 4534–4542 (2014).

Ma, W.

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

Ma, Y.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

McAnally, M. O.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[PubMed]

Meng, M.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Park, S.

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Peng, B.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

Qin, D.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[PubMed]

J. M. Li, Y. Yang, and D. Qin, “Hollow nanocubes made of Ag-Au alloys for SERS detection with sensitivity of 10− 8 M for melamine,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 9934–9940 (2014).

Y. Yang, Q. Zhang, Z. W. Fu, and D. Qin, “Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability,” ACS Appl. Mater. Interfaces 6(5), 3750–3757 (2014).
[PubMed]

Ruditskiy, A.

X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, “25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties,” Adv. Mater. 25(44), 6313–6333 (2013).
[PubMed]

Schatz, G. C.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[PubMed]

Shi, C. A.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Shi, X.

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Singamaneni, S.

K. K. Liu, S. Tadepalli, L. M. Tian, and S. Singamaneni, “Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles,” Chem. Mater. 27, 5261–5270 (2015).

Stair, P. C.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[PubMed]

Su, D.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

Su, H.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Sun, X.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

Tadepalli, S.

K. K. Liu, S. Tadepalli, L. M. Tian, and S. Singamaneni, “Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles,” Chem. Mater. 27, 5261–5270 (2015).

Tian, L. M.

K. K. Liu, S. Tadepalli, L. M. Tian, and S. Singamaneni, “Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles,” Chem. Mater. 27, 5261–5270 (2015).

Tian, Z. Q.

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C: Phytochem. Rev. 21, 54–80 (2014).

Van Duyne, R. P.

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[PubMed]

Vittur, B. M.

V. Vongsavat, B. M. Vittur, W. W. Bryan, J. H. Kim, and T. R. Lee, “Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared,” ACS Appl. Mater. Interfaces 3(9), 3616–3624 (2011).
[PubMed]

Vongsavat, V.

V. Vongsavat, B. M. Vittur, W. W. Bryan, J. H. Kim, and T. R. Lee, “Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared,” ACS Appl. Mater. Interfaces 3(9), 3616–3624 (2011).
[PubMed]

Wang, D.

Wang, D. M.

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC Advances 6, 12286–12289 (2016).

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Advances 6, 9549–9553 (2016).

Wang, L.

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

Wang, M.

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[PubMed]

Wang, M. L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Wang, P.

H. X. Wu, P. Wang, H. L. He, and Y. D. Jin, “Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties,” Nano Res. 5, 135–144 (2012).

Wang, Y.

X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, “25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties,” Adv. Mater. 25(44), 6313–6333 (2013).
[PubMed]

Wang, Z.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[PubMed]

Wang, Z. W.

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC Advances 6, 12286–12289 (2016).

Wang, Z. Y.

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC Advances 6, 12286–12289 (2016).

Winget, S. A.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

Wu, D. Y.

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C: Phytochem. Rev. 21, 54–80 (2014).

Wu, H. X.

H. X. Wu, P. Wang, H. L. He, and Y. D. Jin, “Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties,” Nano Res. 5, 135–144 (2012).

Wu, L.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[PubMed]

Wu, X.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

Wu, Y.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

Wu, Z. L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Xia, X.

X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, “25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties,” Adv. Mater. 25(44), 6313–6333 (2013).
[PubMed]

Xia, Y.

X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, “25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties,” Adv. Mater. 25(44), 6313–6333 (2013).
[PubMed]

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

Xie, Z.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

Xie, Z. X.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

Xiong, Q.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

Xu, C.

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

Xu, H. J.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Xu, L.

Yan, W.

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

Yang, G.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2, 4534–4542 (2014).

Yang, Y.

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[PubMed]

Y. Yang, Q. Zhang, Z. W. Fu, and D. Qin, “Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability,” ACS Appl. Mater. Interfaces 6(5), 3750–3757 (2014).
[PubMed]

J. M. Li, Y. Yang, and D. Qin, “Hollow nanocubes made of Ag-Au alloys for SERS detection with sensitivity of 10− 8 M for melamine,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 9934–9940 (2014).

Yang, Z.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Yin, H. J.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Yin, Y.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[PubMed]

Yin, Y. D.

H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).

You, H.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2, 4534–4542 (2014).

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

Yu, T.

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

Zeng, J.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

Zhang, C.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

Zhang, D.

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[PubMed]

Zhang, H.

Zhang, J.

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

Zhang, L.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Zhang, Q.

Y. Yang, Q. Zhang, Z. W. Fu, and D. Qin, “Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability,” ACS Appl. Mater. Interfaces 6(5), 3750–3757 (2014).
[PubMed]

Zhang, R.

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

Zhang, X.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Zhao, Y.

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

Zhao, Y. M.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Zheng, H.

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

Zhu, D.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[PubMed]

Zong, S.

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[PubMed]

ACS Appl. Mater. Interfaces (2)

Y. Yang, Q. Zhang, Z. W. Fu, and D. Qin, “Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability,” ACS Appl. Mater. Interfaces 6(5), 3750–3757 (2014).
[PubMed]

V. Vongsavat, B. M. Vittur, W. W. Bryan, J. H. Kim, and T. R. Lee, “Ultrasmall hollow gold-silver nanoshells with extinctions strongly red-shifted to the near-infrared,” ACS Appl. Mater. Interfaces 3(9), 3616–3624 (2011).
[PubMed]

ACS Nano (2)

Y. Ma, W. Li, E. C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, and Y. Xia, “Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties,” ACS Nano 4(11), 6725–6734 (2010).
[PubMed]

J. Zhang, S. A. Winget, Y. Wu, D. Su, X. Sun, Z. X. Xie, and D. Qin, “Ag@Au concave cuboctahedra: A unique probe for monitoring Au-catalyzed reduction and oxidation reactions by surface-enhanced Raman spectroscopy,” ACS Nano 10(2), 2607–2616 (2016).
[PubMed]

Adv. Funct. Mater. (1)

H. P. Liu, T. Z. Liu, L. Zhang, L. Han, C. B. Gao, and Y. D. Yin, “Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity,” Adv. Funct. Mater. 25, 5435–5443 (2015).

Adv. Mater. (3)

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[PubMed]

L. Xu, W. Yan, W. Ma, H. Kuang, X. Wu, L. Liu, Y. Zhao, L. Wang, and C. Xu, “SERS encoded silver pyramids for attomolar detection of multiplexed disease biomarkers,” Adv. Mater. 27(10), 1706–1711 (2015).
[PubMed]

X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, “25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties,” Adv. Mater. 25(44), 6313–6333 (2013).
[PubMed]

Chem. Mater. (1)

K. K. Liu, S. Tadepalli, L. M. Tian, and S. Singamaneni, “Size-dependent surface enhanced Raman scattering activity of plasmonic nanorattles,” Chem. Mater. 27, 5261–5270 (2015).

Chem. Rev. (2)

D. Zhang, B. Gökce, and S. Barcikowski, “Laser synthesis and processing of colloids: fundamentals and applications,” Chem. Rev. 117(5), 3990–4103 (2017).
[PubMed]

Z. Wang, S. Zong, L. Wu, D. Zhu, and Y. Cui, “SERS-activated platforms for immunoassay: probes, encoding methods, and applications,” Chem. Rev. 117(12), 7910–7963 (2017).
[PubMed]

Chin. Phys. B (1)

S. Li and M. Chen, “Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation,” Chin. Phys. B 25, 046103 (2016).

J. Am. Chem. Soc. (3)

C. Gao, Y. Hu, M. Wang, M. Chi, and Y. Yin, “Fully alloyed Ag/Au nanospheres: combining the plasmonic property of Ag with the stability of Au,” J. Am. Chem. Soc. 136(20), 7474–7479 (2014).
[PubMed]

Y. Yang, J. Liu, Z. W. Fu, and D. Qin, “Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity,” J. Am. Chem. Soc. 136(23), 8153–8156 (2014).
[PubMed]

R. A. Hackler, M. O. McAnally, G. C. Schatz, P. C. Stair, and R. P. Van Duyne, “Identification of dimeric methylalumina surface species during atomic layer deposition using operando surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 139(6), 2456–2463 (2017).
[PubMed]

J. Mater. Chem. A Mater. Energy Sustain. (1)

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2, 4534–4542 (2014).

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

J. M. Li, Y. Yang, and D. Qin, “Hollow nanocubes made of Ag-Au alloys for SERS detection with sensitivity of 10− 8 M for melamine,” J. Mater. Chem. C Mater. Opt. Electron. Devices 2, 9934–9940 (2014).

J. Photochem. Photobio. C: Phytochem. Rev. (1)

X. J. Chen, G. Cabello, D. Y. Wu, and Z. Q. Tian, “Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures,” J. Photochem. Photobio. C: Phytochem. Rev. 21, 54–80 (2014).

Langmuir (2)

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Y. Choi, S. Hong, L. Liu, S. K. Kim, and S. Park, “Galvanically replaced hollow Au-Ag nanospheres: study of their surface plasmon resonance,” Langmuir 28(16), 6670–6676 (2012).
[PubMed]

Nano Lett. (2)

M. Meng, Z. Fang, C. Zhang, H. Su, R. He, R. Zhang, H. Li, Z. Y. Li, X. Wu, C. Ma, and J. Zeng, “Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties,” Nano Lett. 16(5), 3036–3041 (2016).
[PubMed]

K. Liu, Y. Bai, L. Zhang, Z. Yang, Q. Fan, H. Zheng, Y. Yin, and C. Gao, “Porous Au-Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675–3681 (2016).
[PubMed]

Nano Res. (1)

H. X. Wu, P. Wang, H. L. He, and Y. D. Jin, “Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties,” Nano Res. 5, 135–144 (2012).

Nanoscale (1)

Z. Liu, L. Cheng, L. Zhang, C. Jing, X. Shi, Z. Yang, Y. Long, and J. Fang, “Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins,” Nanoscale 6(5), 2567–2572 (2014).
[PubMed]

Opt. Express (3)

Opt. Mater. Express (2)

RSC Advances (2)

M. Chen, D. M. Wang, and X. D. Liu, “Direct synthesis of size-tailored bimetallic Ag/Au nano-spheres and nano-chains with controllable compositions by laser ablation of silver plate in HAuCl4 solution,” RSC Advances 6, 9549–9553 (2016).

Z. W. Wang, Z. Y. Wang, D. M. Wang, and M. Chen, “Ultra-small Sn2S3 porous nano-particles: an excellent photo-catalyst in the reduction of aqueous Cr (VI) under visible light irradiation,” RSC Advances 6, 12286–12289 (2016).

Sci. Rep. (1)

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5, 14502 (2015).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The typical TEM images of (a) Ag nanoseeds and (b) hollow Ag@Au nano-urchins. (c-d) The enlarged TEM images of hollow Ag@Au nano-urchins. (e) The corresponding mapping images of an individual hollow Ag@Au nano-urchin.
Fig. 2
Fig. 2 (a) The TEM images of original Ag nanospheres, and (b-f) the TEM images of hollow Ag@Au nano-urchins obtained with different volumes of HAuCl4 solution (1~5 mL, 0.5 mM).
Fig. 3
Fig. 3 (a) XRD patterns of Ag nanospheres and hollow Ag@Au nano-urchins. The XPS spectra of Ag nanospheres and hollow Ag@Au nano-urchins: (b) Survey structure, (c) Au4f, and (d) Ag3d.
Fig. 4
Fig. 4 (a) The typical color change of the products by adding different amount of HAuCl4 solution (0, 1, 3, 5, 6 mL, 0.5 mM) in the reaction. (b) The UV-visible absorption spectra of products with an increase of HAuCl4 solution (0-6 mL, 0.5 mM). All spectra are normalized against the intensity of their strongest peaks.
Fig. 5
Fig. 5 (a-b) The UV-visible absorption spectra of original Ag nanospheres and hollow Ag@Au nano-urchins in 10 mL, 0.5 M NaCl solution, respectively. (c-d) The UV-visible absorption spectra of original Ag nanospheres and hollow Ag@Au nano-urchins in 20% H2O2 solution, respectively. The dosage in each solution is 0.5 mg.
Fig. 6
Fig. 6 (a) The SERS spectra of 4-ATP (1M) on silicon wafer and 4-ATP on diverse Ag@Au nanomaterials-based substrates. Bottom-up spectral lines are originated from a series of Ag@Au nanoparticles obtained by adding different volumes of HAuCl4 solution (0, 2, 4, 6, 8 and 10 mL). (b) The variation of SERS (1590 cm−1) intensity originated from different Ag@Au nanoparticles as a function of the volumes of HAuCl4. (c) The highest and lowest SERS spectra of 10−12 and 10−8 M 4-ATP molecules on two typical Ag@Au nanostructures obtained by adding 6 mL and 10 mL HAuCl4 solution. The insets show the corresponding TEM images, respectively. (d) SERS spectra of 4-ATP at much lower concentrations (10−12~10−13 M) adsorbed on the substrate of hollow Ag@Au nano-urchins.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF=(ISERS/NSERS)/(IBULK/NBULK)

Metrics