Abstract

In order to enhance the channel capacity and spectrum efficiency, the technology of space division multiplexing (SDM) has become research hotspot in optical communications. In this paper, a new encoding/decoding concept is proposed by the states of vector modes (polarized direction, rotational direction of phase and topological charge) for vortex beam propagating. To support encoded vector modes propagating in fiber, an OAM fiber with air-core structure is designed for encoding/decoding. Meanwhile, a new mode recognition method of judging states of the received vector modes is presented by the technology of digital image processing and digital signal processing (DSP). To verify the feasibility of encoding/decoding, an experimental platform to verify that encoded 16-QAM signal (0010_1100_1110_1010) is established. The vector modes of OAM beams can be propagated in OAM fiber with the length of 80 cm, and the received signal can be decoded to 16-QAM by image processing successfully. In addition, we also evaluate and analyze the influence factor (OAM fiber length and bit rate) on the transmitting performance in terms of BER, crosstalk and constellation figures.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interconnecting data based on vortex beams by adjusting the ellipticity of a ring-core fiber

Xiaohui Wang, Yingxiong Song, Qianwu Zhang, Fufei Pang, Yingchun Li, and Bingyao Cao
Appl. Opt. 57(26) 7492-7500 (2018)

Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber

Long Zhu, Jun Liu, Qi Mo, Cheng Du, and Jian Wang
Opt. Express 24(15) 16934-16944 (2016)

Excitation and separation of vortex modes in twisted air-core fiber

Jingfu Ye, Yan Li, Yanhua Han, Duo Deng, Zhongyi Guo, Jianmin Gao, Qiaoqun Sun, Yi Liu, and Shiliang Qu
Opt. Express 24(8) 8310-8316 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
    [PubMed]
  2. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [PubMed]
  3. I. B. Djordjevic, “Heterogeneous Transparent Optical Networking Based on Coded OAM Modulation,” IEEE Photonics J. 3(3), 531–537 (2011).
  4. I. B. Djordjevic, L. Tao, X. Lei, and W. Ting, “On the Multidimensional Signal Constellation Design for Few-Mode-Fiber-Based High-Speed Optical Transmission,” IEEE Photonics J. 4(5), 1325–1332 (2012).
  5. J. Du and J. Wang, “High-dimensional structured light coding/decoding for free-space optical communications free of obstructions,” Opt. Lett. 40(21), 4827–4830 (2015).
    [PubMed]
  6. B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).
  7. Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S. U. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM Modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
    [PubMed]
  8. S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
    [PubMed]
  9. S. Li and J. Wang, “Performance evaluation of analog signal transmission in an orbital angular momentum multiplexing system,” Opt. Lett. 40(5), 760–763 (2015).
    [PubMed]
  10. C. Lin, I. B. Djordjevic, and M. Cvijetic, “Quantum Few-Mode Fiber Communications Based on the Orbital Angular Momentum,” IEEE Photonics Technol. Lett. 25(1), 3–6 (2013).
  11. J. Liu, S. Li, J. Du, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system,” Opt. Lett. 41(9), 1969–1972 (2016).
    [PubMed]
  12. J. Liu and J. Wang, “Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications,” Opt. Express 24(4), 4258–4269 (2016).
    [PubMed]
  13. J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
    [PubMed]
  14. A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
    [PubMed]
  15. A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
    [PubMed]
  16. A. J. Willner, Y. Ren, G. Xie, Z. Zhao, Y. Cao, L. Li, N. Ahmed, Z. Wang, Y. Yan, P. Liao, C. Liu, M. Mirhosseini, R. W. Boyd, M. Tur, and A. E. Willner, “Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes,” Opt. Lett. 40(24), 5810–5813 (2015).
    [PubMed]
  17. X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).
  18. H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).
  19. J. Zhou, J. Zong, and D. Liu, “The Higher Order Statistics of OAM Modal Amplitudes Under Atmosphere Turbulence,” IEEE Photonics Technol. Lett. 28(23), 2653–2656 (2016).

2016 (8)

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).

J. Zhou, J. Zong, and D. Liu, “The Higher Order Statistics of OAM Modal Amplitudes Under Atmosphere Turbulence,” IEEE Photonics Technol. Lett. 28(23), 2653–2656 (2016).

J. Liu and J. Wang, “Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications,” Opt. Express 24(4), 4258–4269 (2016).
[PubMed]

J. Liu, S. Li, J. Du, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system,” Opt. Lett. 41(9), 1969–1972 (2016).
[PubMed]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[PubMed]

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
[PubMed]

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[PubMed]

2015 (7)

S. Li and J. Wang, “Performance evaluation of analog signal transmission in an orbital angular momentum multiplexing system,” Opt. Lett. 40(5), 760–763 (2015).
[PubMed]

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[PubMed]

J. Du and J. Wang, “High-dimensional structured light coding/decoding for free-space optical communications free of obstructions,” Opt. Lett. 40(21), 4827–4830 (2015).
[PubMed]

Q. Kang, P. Gregg, Y. Jung, E. L. Lim, S. U. Alam, S. Ramachandran, and D. J. Richardson, “Amplification of 12 OAM Modes in an air-core erbium doped fiber,” Opt. Express 23(22), 28341–28348 (2015).
[PubMed]

A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
[PubMed]

A. J. Willner, Y. Ren, G. Xie, Z. Zhao, Y. Cao, L. Li, N. Ahmed, Z. Wang, Y. Yan, P. Liao, C. Liu, M. Mirhosseini, R. W. Boyd, M. Tur, and A. E. Willner, “Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes,” Opt. Lett. 40(24), 5810–5813 (2015).
[PubMed]

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

2014 (1)

2013 (1)

C. Lin, I. B. Djordjevic, and M. Cvijetic, “Quantum Few-Mode Fiber Communications Based on the Orbital Angular Momentum,” IEEE Photonics Technol. Lett. 25(1), 3–6 (2013).

2012 (1)

I. B. Djordjevic, L. Tao, X. Lei, and W. Ting, “On the Multidimensional Signal Constellation Design for Few-Mode-Fiber-Based High-Speed Optical Transmission,” IEEE Photonics J. 4(5), 1325–1332 (2012).

2011 (1)

I. B. Djordjevic, “Heterogeneous Transparent Optical Networking Based on Coded OAM Modulation,” IEEE Photonics J. 3(3), 531–537 (2011).

Ahmed, N.

Alam, S. U.

Boyd, R. W.

Brunet, C.

Cai, X.

Cao, Y.

Chen, S.

Cvijetic, M.

C. Lin, I. B. Djordjevic, and M. Cvijetic, “Quantum Few-Mode Fiber Communications Based on the Orbital Angular Momentum,” IEEE Photonics Technol. Lett. 25(1), 3–6 (2013).

Djordjevic, I. B.

C. Lin, I. B. Djordjevic, and M. Cvijetic, “Quantum Few-Mode Fiber Communications Based on the Orbital Angular Momentum,” IEEE Photonics Technol. Lett. 25(1), 3–6 (2013).

I. B. Djordjevic, L. Tao, X. Lei, and W. Ting, “On the Multidimensional Signal Constellation Design for Few-Mode-Fiber-Based High-Speed Optical Transmission,” IEEE Photonics J. 4(5), 1325–1332 (2012).

I. B. Djordjevic, “Heterogeneous Transparent Optical Networking Based on Coded OAM Modulation,” IEEE Photonics J. 3(3), 531–537 (2011).

Du, C.

Du, J.

Fontaine, N. K.

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

Gregg, P.

Guan, B.

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

Hu, X.

Jung, Y.

Kang, Q.

Klitis, C.

LaRochelle, S.

Lei, X.

I. B. Djordjevic, L. Tao, X. Lei, and W. Ting, “On the Multidimensional Signal Constellation Design for Few-Mode-Fiber-Based High-Speed Optical Transmission,” IEEE Photonics J. 4(5), 1325–1332 (2012).

Li, L.

Li, S.

Li, W.

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

Li, Y.

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

Liao, P.

Lim, E. L.

Lin, C.

C. Lin, I. B. Djordjevic, and M. Cvijetic, “Quantum Few-Mode Fiber Communications Based on the Orbital Angular Momentum,” IEEE Photonics Technol. Lett. 25(1), 3–6 (2013).

Liu, C.

Liu, D.

J. Zhou, J. Zong, and D. Liu, “The Higher Order Statistics of OAM Modal Amplitudes Under Atmosphere Turbulence,” IEEE Photonics Technol. Lett. 28(23), 2653–2656 (2016).

Liu, J.

Liu, Z.

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

Messaddeq, Y.

Mirhosseini, M.

Mo, Q.

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

J. Liu, S. Li, J. Du, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system,” Opt. Lett. 41(9), 1969–1972 (2016).
[PubMed]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[PubMed]

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
[PubMed]

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[PubMed]

A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
[PubMed]

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[PubMed]

Proietti, R.

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

Qin, C.

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

Ramachandran, S.

Ren, Y.

Richardson, D. J.

Rusch, L. A.

Scott, R. P.

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

Sorel, M.

Su, T.

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

Tang, X.

H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).

Tao, L.

I. B. Djordjevic, L. Tao, X. Lei, and W. Ting, “On the Multidimensional Signal Constellation Design for Few-Mode-Fiber-Based High-Speed Optical Transmission,” IEEE Photonics J. 4(5), 1325–1332 (2012).

Tian, Y.

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

Ting, W.

I. B. Djordjevic, L. Tao, X. Lei, and W. Ting, “On the Multidimensional Signal Constellation Design for Few-Mode-Fiber-Based High-Speed Optical Transmission,” IEEE Photonics J. 4(5), 1325–1332 (2012).

Tur, M.

Vaity, P.

Wang, A.

Wang, J.

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
[PubMed]

J. Liu, L. Zhu, A. Wang, S. Li, S. Chen, C. Du, Q. Mo, and J. Wang, “All-fiber pre- and post-data exchange in km-scale fiber-based twisted lights multiplexing,” Opt. Lett. 41(16), 3896–3899 (2016).
[PubMed]

J. Liu and J. Wang, “Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications,” Opt. Express 24(4), 4258–4269 (2016).
[PubMed]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[PubMed]

J. Liu, S. Li, J. Du, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Performance evaluation of analog signal transmission in an integrated optical vortex emitter to 3.6-km few-mode fiber system,” Opt. Lett. 41(9), 1969–1972 (2016).
[PubMed]

J. Du and J. Wang, “High-dimensional structured light coding/decoding for free-space optical communications free of obstructions,” Opt. Lett. 40(21), 4827–4830 (2015).
[PubMed]

S. Li and J. Wang, “Performance evaluation of analog signal transmission in an orbital angular momentum multiplexing system,” Opt. Lett. 40(5), 760–763 (2015).
[PubMed]

S. Li, Q. Mo, X. Hu, C. Du, and J. Wang, “Controllable all-fiber orbital angular momentum mode converter,” Opt. Lett. 40(18), 4376–4379 (2015).
[PubMed]

A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
[PubMed]

Wang, Z.

Willner, A. E.

Willner, A. J.

Wu, J.

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

Xi, L.

H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).

Xie, G.

Yan, Y.

Yoo, S. J. B.

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

Yu, S.

Zeng, X.

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

Zhang, H.

H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).

Zhang, W.

H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).

Zhang, X.

H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).

H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).

Zhao, Z.

Zhou, J.

J. Zhou, J. Zong, and D. Liu, “The Higher Order Statistics of OAM Modal Amplitudes Under Atmosphere Turbulence,” IEEE Photonics Technol. Lett. 28(23), 2653–2656 (2016).

Zhu, L.

Zong, J.

J. Zhou, J. Zong, and D. Liu, “The Higher Order Statistics of OAM Modal Amplitudes Under Atmosphere Turbulence,” IEEE Photonics Technol. Lett. 28(23), 2653–2656 (2016).

IEEE Photonics J. (3)

I. B. Djordjevic, “Heterogeneous Transparent Optical Networking Based on Coded OAM Modulation,” IEEE Photonics J. 3(3), 531–537 (2011).

I. B. Djordjevic, L. Tao, X. Lei, and W. Ting, “On the Multidimensional Signal Constellation Design for Few-Mode-Fiber-Based High-Speed Optical Transmission,” IEEE Photonics J. 4(5), 1325–1332 (2012).

X. Zeng, Y. Li, Q. Mo, W. Li, Y. Tian, Z. Liu, and J. Wu, “Experimental Investigation of LP11 Mode to OAM Conversion in Few Mode-Polarization Maintaining Fiber and the Usage for All Fiber OAM Generator,” IEEE Photonics J. 8(4), 1–7 (2016).

IEEE Photonics Technol. Lett. (4)

H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, and X. Zhang, “A New Type Circular Photonic Crystal Fiber for Orbital Angular Momentum Mode Transmission,” IEEE Photonics Technol. Lett. 28(13), 1426–1429 (2016).

J. Zhou, J. Zong, and D. Liu, “The Higher Order Statistics of OAM Modal Amplitudes Under Atmosphere Turbulence,” IEEE Photonics Technol. Lett. 28(23), 2653–2656 (2016).

C. Lin, I. B. Djordjevic, and M. Cvijetic, “Quantum Few-Mode Fiber Communications Based on the Orbital Angular Momentum,” IEEE Photonics Technol. Lett. 25(1), 3–6 (2013).

B. Guan, C. Qin, R. P. Scott, N. K. Fontaine, T. Su, R. Proietti, and S. J. B. Yoo, “Polarization Diversified Integrated Circuits for Orbital Angular Momentum Multiplexing,” IEEE Photonics Technol. Lett. 27(10), 1056–1059 (2015).

Opt. Express (6)

Opt. Lett. (6)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The rotational direction of polarization and phase based on different vector modes. (a) HE mode for left-hand circular polarization and counterclockwise phase, (b) EH mode for left-hand circular polarization and clockwise phase, (c) HE mode for right-hand circular polarization and clockwise phase, (d) EH mode for right-hand circular polarization and counterclockwise phase.
Fig. 2
Fig. 2 The concept of encoding and decoding for hexadecimal data by the direction of polarization, rotational direction of phase and topological number based on the vector states of OAM mode.
Fig. 3
Fig. 3 The profiles of refractive indices and physical structure of OAM fiber, (a) the profile of physical structure, (b) the profile of refractive indices.
Fig. 4
Fig. 4 The effective indices and group index of vector modes for the design of OAM fiber, (a) effective indices of vector modes, (b) group index of the vector modes.
Fig. 5
Fig. 5 The experimental scheme for encoding/decoding with the vector modes by OAM fiber. PC: polarization controller, EDFA: erbium-doped fiber amplifier, BPF: bandpass filter, OC: optical coupler, Col: collimator, Pol: polarization, HWP: half-wave plate, SLM: spatial light modulator, PBS: polarizing beam splitter, BS: beam splitter, BE: beam expander, SMF: single mode fiber.
Fig. 6
Fig. 6 The interference image and analyzed the image of received OAM beams by camera and offline processing. (a3)-(d3): the received images by camera 1#; (a4)-(d4): the received images by camera 2#; (a1)-(d1): the intensity distribution in the form of pulse by L1 and L2 for (a3)-(d3), (a2)-(d2): the intensity distribution in the form of pulse by circle C for (a3)-(d3); (a5)-(d5): the intensity distribution in the form of pulse by circle C for (a4)-(d4); (a6)-(d6): the intensity distribution in the form of pulse by L1 and L2 for (a4)-(d4).
Fig. 7
Fig. 7 The measured performance of BER and constellation for encoding/decoding against SNR for the different length of OAM fiber. (a) BER, (b) F_L = 0.8 m, (b) F_L = 1.0 m, (c) F_L = 1.2 m, (d) F_L = 1.4 m.
Fig. 8
Fig. 8 The measured performance of BER and constellation for encoding/decoding against SNR for the different length of OAM fiber. (a) BER, (b) b_r = 80 bps, (b) b_r = 120 bps, (c) b_r = 160 bps, (d) F_L = 200 bps.
Fig. 9
Fig. 9 The measured OAM intensity against received OAM mode for the different length of OAM fiber.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

O A M ± l , m ± = H E l + 1 , m e v e n ± j H E l + 1 , m o d d
O A M ± l , m = E H l 1 , m e v e n ± j E H l 1 , m o d d

Metrics