Abstract

We report on an airborne demonstration of atmospheric oxygen (O2) optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser transmitter and photon counting detectors. Accurate atmospheric temperature and pressure measurements are needed for NASA’s Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission. Since O2 is uniformly mixed in the atmosphere, its spectrum can be used to estimate the dry mixing ratio of CO2. In its airborne configuration, the IPDA lidar uses an Erbium Doped Fiber amplifier, a frequency doubler and single photon counting detectors to measure O2 absorption at multiple wavelengths near 765 nm. This instrument was deployed in 2013 and 2014 aboard NASA’s DC-8 airborne laboratory as part of two campaigns to measure CO2 mixing ratios over a wide range of topography and weather conditions from altitudes ranging between 3 km and 13 km. In this paper we will review a summary of the results from our flights, discuss the errors that limit the precision and accuracy of the measurement and identify possible areas of improvement.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm

Haris Riris, Michael Rodriguez, Graham R. Allan, William Hasselbrack, Jianping Mao, Mark Stephen, and James Abshire
Appl. Opt. 52(25) 6369-6382 (2013)

Airborne measurements of CO2 column absorption and range using a pulsed direct-detection integrated path differential absorption lidar

James B. Abshire, Haris Riris, Clark J. Weaver, Jianping Mao, Graham R. Allan, William E. Hasselbrack, and Edward V. Browell
Appl. Opt. 52(19) 4446-4461 (2013)

Airborne measurements of atmospheric methane column abundance using a pulsed integrated-path differential absorption lidar

Haris Riris, Kenji Numata, Steve Li, Stewart Wu, Anand Ramanathan, Martha Dawsey, Jianping Mao, Randolph Kawa, and James B. Abshire
Appl. Opt. 51(34) 8296-8305 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Intergovernmental Panel on Climate Change, Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects, (Cambridge Univ. Press, Cambridge, U. K. and New York, 2014).
  2. Board, Space Studies, and National Research Council: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, (National Academic Press, 2007).
  3. K. W. Jucks, S. Neeck, J. B. Abshire, D. F. Baker, E. V. Browell, A. Chatterjee, D. Crisp, S. M. Crowe, S. Denning, D. Hammerling, F. Harrison, J. J. Hyon, S. R. Kawa, B. Lin, B. L. Meadows, R. T. Menzies, A. Michalak, B. Moore, K. E. Murray, L. E. Ott, P. Rayner, O. I. Rodriguez, A. Schuh, Y. Shiga, G. D. Spiers, J. S. Wang, and T. Scott Zaccheo, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Mission, Science Mission Definition Study, (April 2015), http://cce.nasa.gov/ascends_2015/ASCENDS_FinalDraft_4_27_15.pdf .
  4. S. Crowell, P. Rayner, S. Zaccheo, and B. Moore, “Impacts of atmospheric state uncertainty on O2 measurement requirements for the ASCENDS mission,” Atmos. Meas. Tech. 8(7), 2685–2697 (2015).
  5. ESA A-SCOPE Mission Assessment report, http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf .
  6. S. F. Singer, “Measurement of atmospheric surface pressure with a satellite-borne laser,” Appl. Opt. 7(6), 1125–1127 (1968).
    [PubMed]
  7. I. J. Barton and J. C. Scott, “Remote measurement of surface pressure using the oxygen A-band of absorption,” Appl. Opt. 25, 3502–3507 (1986).
    [PubMed]
  8. R. M. Mitchell and D. M. O’Brien, “Error estimate for passive satellite measurements of surface pressure using absorption in the A band of oxygen,” J. Atmos. Sci. 44, 1981–1991 (1987).
  9. C. L. Korb and C. Y. Weng, “Differential absorption lidar technique for measurement of the atmospheric pressure profile,” Appl. Opt. 22(23), 3759–3770 (1983).
    [PubMed]
  10. G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).
  11. J. T. Dobler, J. A. Nagel, V. Temyanko, T. S. Zaccheo, and B. Karpowicz, “Lidar measurements of atmospheric oxygen using a 1.27-micron Raman amplifier,” in CLEO: Applications and Technology (Optical Society of America, 2011), paper JTuE1.
  12. H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, R. Kawa, and J. B. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
    [PubMed]
  13. L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).
  14. J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52(12), 2874–2892 (2013).
    [PubMed]
  15. J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).
  16. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).
  17. H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).
  18. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO 2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
    [PubMed]
  19. A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).
  20. R. T. Menzies, G. D. Spiers, and J. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: Source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).
  21. A. Fix, A. Amediek, C. Büdenbender, G. Ehret, M. Quatrevalet, M. Wirth, J. Löhring, R. Kasemann, J. Klein, H. D. Hoffmann, and V. Klein, “Development and First Results of a new Near-IR Airborne Greenhouse Gas Lidar,” in Advanced Solid State Lasers (Optical Society of America 2015), paper ATh1A–2.
  22. A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
    [PubMed]
  23. U. N. Singh, T. F. Refaat, J. Yu, M. Petros, and R. G. Remus, “Double-pulsed 2-μm lidar validation for atmospheric CO2 measurements,” Proc. SPIE 9645, 961204 (2015).
  24. T. F. Refaat, U. N. Singh, J. Yu, M. Petros, S. Ismail, M. J. Kavaya, and K. J. Davis, “Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
    [PubMed]
  25. A. Amediek, X. Sun, and J. B. Abshire, “Analysis of Range Measurements from a Pulsed Airborne Integrated Path Differential Absorption Lidar,” IEEE Trans. Geosci. Remote Sens. 51(5), 2498–2504 (2013).
  26. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012).
    [PubMed]
  27. J. R. Chen, K. Numata, and S. T. Wu, “Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra,” Opt. Express 22(21), 26055–26075 (2014).
    [PubMed]
  28. A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).
  29. A. Ramanathan, J. Mao, J. B. Abshire, and G. R. Allan, “Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar,” Geophys. Res. Lett. 42(6), 2055–2062 (2015).
  30. J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).
  31. W. E. Sharp, T. S. Zaccheo, E. V. Browell, S. Ismail, J. T. Dobler, and E. J. Llewellyn, “Impact of ambient O2 (a1Δg) on satellite‐based laser remote sensing of O2 columns using absorption lines in the 1.27 µm region,” J. Geophys. Res. 119(12), 7757–7772 (2014).
  32. S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. Applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519 (1995).
  33. D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf. 111(14), 2021–2036 (2010).
  34. D. A. Long and J. T. Hodges, “On spectroscopic models of the O2 A-band and their impact upon atmospheric retrievals,” J. Geophys. Res. 117, D12 (2012).
  35. H. Tran, C. Boulet, and J. M. Hartmann, “Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations,” J. Geophys. Res. 111, D15 (2006).
  36. M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).
  37. X. Sun and J. B. Abshire, “Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation,” Opt. Express 20(19), 21291–21304 (2012).
    [PubMed]
  38. C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).
  39. T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 21(25), 30415–30432 (2013).
    [PubMed]
  40. G. R. Allan, M. A. Stephen, A. Yu, J. B. Abshire, S. T. Wu, J. Chen, and K. Numata, “Optimizing Output Power through Temporal Pulse Shaping,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2017), paper JTu5A–87.
  41. T. F. Refaat, U. N. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54(24), 7240–7251 (2015).
    [PubMed]
  42. P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).
  43. P. O. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).
  44. X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
    [PubMed]
  45. R. F. Keeling, “The atmospheric oxygen cycle: The oxygen isotopes of atmospheric CO2 and O2 and the O2/N2 ratio,” Rev. Geophys. 33(S2), 1253–1262 (1995).
  46. M. Dole, “The relative atomic weight of oxygen in water and air,” J. Am. Chem. Soc. 57, 2731 (1935).
  47. M. Bender, T. Sowers, and L. Labeyrie, “The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core,” Global Biogeochem. Cycles 8(3), 363–376 (1994).
  48. B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).
  49. G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

2017 (3)

2015 (5)

T. F. Refaat, U. N. Singh, J. Yu, M. Petros, S. Ismail, M. J. Kavaya, and K. J. Davis, “Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[PubMed]

T. F. Refaat, U. N. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54(24), 7240–7251 (2015).
[PubMed]

S. Crowell, P. Rayner, S. Zaccheo, and B. Moore, “Impacts of atmospheric state uncertainty on O2 measurement requirements for the ASCENDS mission,” Atmos. Meas. Tech. 8(7), 2685–2697 (2015).

U. N. Singh, T. F. Refaat, J. Yu, M. Petros, and R. G. Remus, “Double-pulsed 2-μm lidar validation for atmospheric CO2 measurements,” Proc. SPIE 9645, 961204 (2015).

A. Ramanathan, J. Mao, J. B. Abshire, and G. R. Allan, “Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar,” Geophys. Res. Lett. 42(6), 2055–2062 (2015).

2014 (3)

W. E. Sharp, T. S. Zaccheo, E. V. Browell, S. Ismail, J. T. Dobler, and E. J. Llewellyn, “Impact of ambient O2 (a1Δg) on satellite‐based laser remote sensing of O2 columns using absorption lines in the 1.27 µm region,” J. Geophys. Res. 119(12), 7757–7772 (2014).

R. T. Menzies, G. D. Spiers, and J. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: Source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra,” Opt. Express 22(21), 26055–26075 (2014).
[PubMed]

2013 (6)

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

A. Amediek, X. Sun, and J. B. Abshire, “Analysis of Range Measurements from a Pulsed Airborne Integrated Path Differential Absorption Lidar,” IEEE Trans. Geosci. Remote Sens. 51(5), 2498–2504 (2013).

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52(12), 2874–2892 (2013).
[PubMed]

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, R. Kawa, and J. B. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[PubMed]

T. F. Refaat, S. Ismail, A. R. Nehrir, J. W. Hair, J. H. Crawford, I. Leifer, and T. Shuman, “Performance evaluation of a 1.6-µm methane DIAL system from ground, aircraft and UAV platforms,” Opt. Express 21(25), 30415–30432 (2013).
[PubMed]

2012 (3)

2011 (5)

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

P. O. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO 2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
[PubMed]

2010 (1)

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf. 111(14), 2021–2036 (2010).

2009 (1)

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

2008 (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).

2006 (1)

H. Tran, C. Boulet, and J. M. Hartmann, “Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations,” J. Geophys. Res. 111, D15 (2006).

2004 (1)

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

1999 (1)

B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).

1995 (2)

R. F. Keeling, “The atmospheric oxygen cycle: The oxygen isotopes of atmospheric CO2 and O2 and the O2/N2 ratio,” Rev. Geophys. 33(S2), 1253–1262 (1995).

S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. Applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519 (1995).

1994 (1)

M. Bender, T. Sowers, and L. Labeyrie, “The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core,” Global Biogeochem. Cycles 8(3), 363–376 (1994).

1993 (1)

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

1987 (2)

R. M. Mitchell and D. M. O’Brien, “Error estimate for passive satellite measurements of surface pressure using absorption in the A band of oxygen,” J. Atmos. Sci. 44, 1981–1991 (1987).

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).

1986 (1)

1983 (1)

1968 (1)

1935 (1)

M. Dole, “The relative atomic weight of oxygen in water and air,” J. Am. Chem. Soc. 57, 2731 (1935).

Abshire, J.

Abshire, J. B.

X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
[PubMed]

A. Ramanathan, J. Mao, J. B. Abshire, and G. R. Allan, “Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar,” Geophys. Res. Lett. 42(6), 2055–2062 (2015).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

A. Amediek, X. Sun, and J. B. Abshire, “Analysis of Range Measurements from a Pulsed Airborne Integrated Path Differential Absorption Lidar,” IEEE Trans. Geosci. Remote Sens. 51(5), 2498–2504 (2013).

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, R. Kawa, and J. B. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[PubMed]

X. Sun and J. B. Abshire, “Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation,” Opt. Express 20(19), 21291–21304 (2012).
[PubMed]

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Allan, G. R.

A. Ramanathan, J. Mao, J. B. Abshire, and G. R. Allan, “Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar,” Geophys. Res. Lett. 42(6), 2055–2062 (2015).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, R. Kawa, and J. B. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[PubMed]

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Amediek, A.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[PubMed]

A. Amediek, X. Sun, and J. B. Abshire, “Analysis of Range Measurements from a Pulsed Airborne Integrated Path Differential Absorption Lidar,” IEEE Trans. Geosci. Remote Sens. 51(5), 2498–2504 (2013).

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).

Bacmeister, J.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Barbe, A.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Barkan, E.

B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).

Barton, I. J.

Beck, J. D.

Bender, M.

M. Bender, T. Sowers, and L. Labeyrie, “The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core,” Global Biogeochem. Cycles 8(3), 363–376 (1994).

Bender, M. L.

B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).

Benner, D.C.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Bernath, P.F.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Birk, M.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Bloom, S.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Boaz, E.

B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).

Boering, K. A.

B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).

Bosilovich, M. G.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Boudon, V.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Boulet, C.

H. Tran, C. Boulet, and J. M. Hartmann, “Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations,” J. Geophys. Res. 111, D15 (2006).

Browell, E. V.

W. E. Sharp, T. S. Zaccheo, E. V. Browell, S. Ismail, J. T. Dobler, and E. J. Llewellyn, “Impact of ambient O2 (a1Δg) on satellite‐based laser remote sensing of O2 columns using absorption lines in the 1.27 µm region,” J. Geophys. Res. 119(12), 7757–7772 (2014).

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52(12), 2874–2892 (2013).
[PubMed]

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO 2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
[PubMed]

Brown, L.R.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Büdenbender, C.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[PubMed]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

Campargue, A.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Champion, J.P.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Chance, K.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Chen, J.

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Chen, J. R.

Choi, Y.

Christensen, L. E.

Ciais, P.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Clough, S. A.

S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. Applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519 (1995).

Crawford, J. H.

Crowell, S.

S. Crowell, P. Rayner, S. Zaccheo, and B. Moore, “Impacts of atmospheric state uncertainty on O2 measurement requirements for the ASCENDS mission,” Atmos. Meas. Tech. 8(7), 2685–2697 (2015).

Cuntz, M.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Davis, K. J.

Dobler, J. T.

W. E. Sharp, T. S. Zaccheo, E. V. Browell, S. Ismail, J. T. Dobler, and E. J. Llewellyn, “Impact of ambient O2 (a1Δg) on satellite‐based laser remote sensing of O2 columns using absorption lines in the 1.27 µm region,” J. Geophys. Res. 119(12), 7757–7772 (2014).

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52(12), 2874–2892 (2013).
[PubMed]

Dole, M.

M. Dole, “The relative atomic weight of oxygen in water and air,” J. Am. Chem. Soc. 57, 2731 (1935).

Dombrowski, M.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).

Ehret, G.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[PubMed]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).

Fix, A.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[PubMed]

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).

Friedlingstein, P.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Gelaro, R.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Gerbig, C.

Gonzalez, B.

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

Gordon, I.E.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Hair, J. W.

Harrison, F. W.

Hartmann, J. M.

H. Tran, C. Boulet, and J. M. Hartmann, “Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations,” J. Geophys. Res. 111, D15 (2006).

Hasselbrack, W.

Hasselbrack, W. E.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Havey, D. K.

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf. 111(14), 2021–2036 (2010).

Heimann, M.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Hodges, J. T.

D. A. Long and J. T. Hodges, “On spectroscopic models of the O2 A-band and their impact upon atmospheric retrievals,” J. Geophys. Res. 117, D12 (2012).

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf. 111(14), 2021–2036 (2010).

Hoffmann, G.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Houweling, S.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).

Iacono, M. J.

S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. Applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519 (1995).

Ismail, S.

Jacob, J.

R. T. Menzies, G. D. Spiers, and J. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: Source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO 2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
[PubMed]

Jouzel, J.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Kaduk, J.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Kagann, R. H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).

Kavaya, M. J.

Kawa, R.

Kawa, S.

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

Kawa, S. R.

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Keeling, R. F.

R. F. Keeling, “The atmospheric oxygen cycle: The oxygen isotopes of atmospheric CO2 and O2 and the O2/N2 ratio,” Rev. Geophys. 33(S2), 1253–1262 (1995).

Kiemle, C.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[PubMed]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).

Kim, G.K.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Kooi, S.

Korb, C. L.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).

C. L. Korb and C. Y. Weng, “Differential absorption lidar technique for measurement of the atmospheric pressure profile,” Appl. Opt. 22(23), 3759–3770 (1983).
[PubMed]

Labeyrie, L.

M. Bender, T. Sowers, and L. Labeyrie, “The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core,” Global Biogeochem. Cycles 8(3), 363–376 (1994).

Leifer, I.

Lin, B.

Liu, E.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Llewellyn, E. J.

W. E. Sharp, T. S. Zaccheo, E. V. Browell, S. Ismail, J. T. Dobler, and E. J. Llewellyn, “Impact of ambient O2 (a1Δg) on satellite‐based laser remote sensing of O2 columns using absorption lines in the 1.27 µm region,” J. Geophys. Res. 119(12), 7757–7772 (2014).

Long, D. A.

D. A. Long and J. T. Hodges, “On spectroscopic models of the O2 A-band and their impact upon atmospheric retrievals,” J. Geophys. Res. 117, D12 (2012).

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf. 111(14), 2021–2036 (2010).

Luz, B.

B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).

Maier-Reimer, E.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Mao, J.

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

A. Ramanathan, J. Mao, J. B. Abshire, and G. R. Allan, “Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar,” Geophys. Res. Lett. 42(6), 2055–2062 (2015).

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, R. Kawa, and J. B. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[PubMed]

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

McGregor, D.

Menzies, R. T.

R. T. Menzies, G. D. Spiers, and J. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: Source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO 2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
[PubMed]

Miller, C. E.

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf. 111(14), 2021–2036 (2010).

Milrod, J.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).

Mitchell, R. M.

R. M. Mitchell and D. M. O’Brien, “Error estimate for passive satellite measurements of surface pressure using absorption in the A band of oxygen,” J. Atmos. Sci. 44, 1981–1991 (1987).

Mitra, P.

Moore, B.

S. Crowell, P. Rayner, S. Zaccheo, and B. Moore, “Impacts of atmospheric state uncertainty on O2 measurement requirements for the ASCENDS mission,” Atmos. Meas. Tech. 8(7), 2685–2697 (2015).

Mücke, R.

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

Nehrir, A. R.

Numata, K.

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra,” Opt. Express 22(21), 26055–26075 (2014).
[PubMed]

J. R. Chen, K. Numata, and S. T. Wu, “Error reduction methods for integrated-path differential-absorption lidar measurements,” Opt. Express 20(14), 15589–15609 (2012).
[PubMed]

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

O’Brien, D. M.

R. M. Mitchell and D. M. O’Brien, “Error estimate for passive satellite measurements of surface pressure using absorption in the A band of oxygen,” J. Atmos. Sci. 44, 1981–1991 (1987).

Okumura, M.

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf. 111(14), 2021–2036 (2010).

Petros, M.

Phillips, M. W.

Quatrevalet, M.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[PubMed]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

Ramanathan, A.

A. Ramanathan, J. Mao, J. B. Abshire, and G. R. Allan, “Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar,” Geophys. Res. Lett. 42(6), 2055–2062 (2015).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Rayner, P.

S. Crowell, P. Rayner, S. Zaccheo, and B. Moore, “Impacts of atmospheric state uncertainty on O2 measurement requirements for the ASCENDS mission,” Atmos. Meas. Tech. 8(7), 2685–2697 (2015).

Refaat, T. F.

Reiff, K.

Remus, R.

Remus, R. G.

U. N. Singh, T. F. Refaat, J. Yu, M. Petros, and R. G. Remus, “Double-pulsed 2-μm lidar validation for atmospheric CO2 measurements,” Proc. SPIE 9645, 961204 (2015).

Rienecker, M. M.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Riris, H.

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, R. Kawa, and J. B. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[PubMed]

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Rodriguez, M.

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, R. Kawa, and J. B. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[PubMed]

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Rothman, L. S.

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Schubert, S. D.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Schwemmer, G. K.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).

Scott, J. C.

Scott, S.

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

Seibt, U.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Sharp, W. E.

W. E. Sharp, T. S. Zaccheo, E. V. Browell, S. Ismail, J. T. Dobler, and E. J. Llewellyn, “Impact of ambient O2 (a1Δg) on satellite‐based laser remote sensing of O2 columns using absorption lines in the 1.27 µm region,” J. Geophys. Res. 119(12), 7757–7772 (2014).

Shuman, T.

Singer, S. F.

Singh, U. N.

Six, K.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Slemr, F.

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

Sowers, T.

M. Bender, T. Sowers, and L. Labeyrie, “The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core,” Global Biogeochem. Cycles 8(3), 363–376 (1994).

Spiers, G. D.

R. T. Menzies, G. D. Spiers, and J. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: Source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO 2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
[PubMed]

Stephen, M.

Suarez, M. J.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Sun, X.

X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25(14), 16589–16602 (2017).
[PubMed]

A. Amediek, X. Sun, and J. B. Abshire, “Analysis of Range Measurements from a Pulsed Airborne Integrated Path Differential Absorption Lidar,” IEEE Trans. Geosci. Remote Sens. 51(5), 2498–2504 (2013).

X. Sun and J. B. Abshire, “Comparison of IPDA lidar receiver sensitivity for coherent detection and for direct detection using sine-wave and pulsed modulation,” Opt. Express 20(19), 21291–21304 (2012).
[PubMed]

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Takacs, L.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Thiemens, M. H.

B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).

Todling, R.

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

Tran, H.

H. Tran, C. Boulet, and J. M. Hartmann, “Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations,” J. Geophys. Res. 111, D15 (2006).

Walden, H.

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).

Weaver, C. J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

Weber, C.

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

Weng, C. Y.

Werle, P. O.

P. O. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

Wirth, M.

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[PubMed]

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).

Wu, S.

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

Wu, S. T.

Yang, G.

Yang, M. Y. M.

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

Yu, J.

Zaccheo, S.

S. Crowell, P. Rayner, S. Zaccheo, and B. Moore, “Impacts of atmospheric state uncertainty on O2 measurement requirements for the ASCENDS mission,” Atmos. Meas. Tech. 8(7), 2685–2697 (2015).

Zaccheo, T. S.

W. E. Sharp, T. S. Zaccheo, E. V. Browell, S. Ismail, J. T. Dobler, and E. J. Llewellyn, “Impact of ambient O2 (a1Δg) on satellite‐based laser remote sensing of O2 columns using absorption lines in the 1.27 µm region,” J. Geophys. Res. 119(12), 7757–7772 (2014).

Appl. Opt. (9)

S. F. Singer, “Measurement of atmospheric surface pressure with a satellite-borne laser,” Appl. Opt. 7(6), 1125–1127 (1968).
[PubMed]

I. J. Barton and J. C. Scott, “Remote measurement of surface pressure using the oxygen A-band of absorption,” Appl. Opt. 25, 3502–3507 (1986).
[PubMed]

C. L. Korb and C. Y. Weng, “Differential absorption lidar technique for measurement of the atmospheric pressure profile,” Appl. Opt. 22(23), 3759–3770 (1983).
[PubMed]

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO 2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt. 50(14), 2098–2111 (2011).
[PubMed]

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52(12), 2874–2892 (2013).
[PubMed]

H. Riris, M. Rodriguez, G. R. Allan, W. Hasselbrack, J. Mao, M. Stephen, J. Abshire, R. Kawa, and J. B. Abshire, “Pulsed airborne lidar measurements of atmospheric optical depth using the Oxygen A-band at 765 nm,” Appl. Opt. 52(25), 6369–6382 (2013).
[PubMed]

T. F. Refaat, U. N. Singh, J. Yu, M. Petros, S. Ismail, M. J. Kavaya, and K. J. Davis, “Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements,” Appl. Opt. 54(6), 1387–1398 (2015).
[PubMed]

T. F. Refaat, U. N. Singh, M. Petros, R. Remus, and J. Yu, “Self-calibration and laser energy monitor validations for a double-pulsed 2-μm CO2 integrated path differential absorption lidar application,” Appl. Opt. 54(24), 7240–7251 (2015).
[PubMed]

A. Amediek, G. Ehret, A. Fix, M. Wirth, C. Büdenbender, M. Quatrevalet, C. Kiemle, and C. Gerbig, “CHARM-F-a new airborne integrated-path differential-absorption lidar for carbon dioxide and methane observations: measurement performance and quantification of strong point source emissions,” Appl. Opt. 56(18), 5182–5197 (2017).
[PubMed]

Appl. Phys. B (3)

P. O. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57(2), 131–139 (1993).

P. O. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B 102(2), 313–329 (2011).

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: a sensitivity analysis,” Appl. Phys. B 90, 593–608 (2008).

Appl. Phys. Lett. (1)

A. Ramanathan, J. Mao, G. R. Allan, H. Riris, C. J. Weaver, W. E. Hasselbrack, E. V. Browell, and J. B. Abshire, “Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar,” Appl. Phys. Lett. 103(21), 214102 (2013).

Atmos. Meas. Tech. (2)

S. Crowell, P. Rayner, S. Zaccheo, and B. Moore, “Impacts of atmospheric state uncertainty on O2 measurement requirements for the ASCENDS mission,” Atmos. Meas. Tech. 8(7), 2685–2697 (2015).

C. Kiemle, M. Quatrevalet, G. Ehret, A. Amediek, A. Fix, and M. Wirth, “Sensitivity studies for a space-based methane lidar mission,” Atmos. Meas. Tech. 4(10), 2195–2211 (2011).

Geophys. Res. Lett. (1)

A. Ramanathan, J. Mao, J. B. Abshire, and G. R. Allan, “Remote sensing measurements of the CO2 mixing ratio in the planetary boundary layer using cloud slicing with airborne lidar,” Geophys. Res. Lett. 42(6), 2055–2062 (2015).

Global Biogeochem. Cycles (2)

M. Bender, T. Sowers, and L. Labeyrie, “The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core,” Global Biogeochem. Cycles 8(3), 363–376 (1994).

G. Hoffmann, M. Cuntz, C. Weber, P. Ciais, P. Friedlingstein, M. Heimann, J. Jouzel, J. Kaduk, E. Maier-Reimer, U. Seibt, and K. Six, “A model of the Earth’s Dole effect,” Global Biogeochem. Cycles 18(1), 1–15 (2004).

IEEE Trans. Geosci. Remote Sens. (1)

A. Amediek, X. Sun, and J. B. Abshire, “Analysis of Range Measurements from a Pulsed Airborne Integrated Path Differential Absorption Lidar,” IEEE Trans. Geosci. Remote Sens. 51(5), 2498–2504 (2013).

J. Am. Chem. Soc. (1)

M. Dole, “The relative atomic weight of oxygen in water and air,” J. Am. Chem. Soc. 57, 2731 (1935).

J. Appl. Remote Sens. (1)

H. Riris, K. Numata, S. Wu, B. Gonzalez, M. Rodriguez, S. Scott, S. Kawa, and J. Mao, “Methane optical density measurements with an integrated path differential absorption lidar from an airborne platform,” J. Appl. Remote Sens. 11(3), 034001 (2017).

J. Atmos. Ocean. Technol. (1)

R. T. Menzies, G. D. Spiers, and J. Jacob, “Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: Source and sink detection and environmental impacts on retrievals,” J. Atmos. Ocean. Technol. 31(2), 404–421 (2014).

J. Atmos. Sci. (1)

R. M. Mitchell and D. M. O’Brien, “Error estimate for passive satellite measurements of surface pressure using absorption in the A band of oxygen,” J. Atmos. Sci. 44, 1981–1991 (1987).

J. Clim. (1)

M. M. Rienecker, M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. Schubert, L. Takacs, G.K. Kim, and S. Bloom, “MERRA: NASA’s modern-era retrospective analysis for research and applications,” J. Clim. 24, 3624–3648 (2011).

J. Geophys. Res. (4)

W. E. Sharp, T. S. Zaccheo, E. V. Browell, S. Ismail, J. T. Dobler, and E. J. Llewellyn, “Impact of ambient O2 (a1Δg) on satellite‐based laser remote sensing of O2 columns using absorption lines in the 1.27 µm region,” J. Geophys. Res. 119(12), 7757–7772 (2014).

S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates. Applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519 (1995).

D. A. Long and J. T. Hodges, “On spectroscopic models of the O2 A-band and their impact upon atmospheric retrievals,” J. Geophys. Res. 117, D12 (2012).

H. Tran, C. Boulet, and J. M. Hartmann, “Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations,” J. Geophys. Res. 111, D15 (2006).

J. Quant. Spectrosc. Radiat. Transf. (1)

D. A. Long, D. K. Havey, M. Okumura, C. E. Miller, and J. T. Hodges, “O2 A-band line parameters to support atmospheric remote sensing,” J. Quant. Spectrosc. Radiat. Transf. 111(14), 2021–2036 (2010).

J. Quantitative Spectroscopy Radiative Trans. (1)

L. S. Rothman, I.E. Gordon, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.P. Champion, and K. Chance, “The HITRAN 2008 molecular spectroscopic database,” J. Quantitative Spectroscopy Radiative Trans. 110(9), 533-572 (2009).

Nature (1)

B. Luz, E. Boaz, E. Barkan, M. L. Bender, M. H. Thiemens, and K. A. Boering, “Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity,” Nature 400(6744), 547–550 (1999).

Opt. Express (5)

Proc. SPIE (2)

U. N. Singh, T. F. Refaat, J. Yu, M. Petros, and R. G. Remus, “Double-pulsed 2-μm lidar validation for atmospheric CO2 measurements,” Proc. SPIE 9645, 961204 (2015).

A. Fix, C. Büdenbender, M. Wirth, M. Quatrevalet, A. Amediek, C. Kiemle, and G. Ehret, “Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 and CH4,” Proc. SPIE 8182, 818206 (2011).

Remote Sens. (1)

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne Measurements of CO2 Column Concentration and Range Using a Pulsed Direct-Detection IPDA Lidar,” Remote Sens. 6(1), 443–469 (2013).

Rev. Geophys. (1)

R. F. Keeling, “The atmospheric oxygen cycle: The oxygen isotopes of atmospheric CO2 and O2 and the O2/N2 ratio,” Rev. Geophys. 33(S2), 1253–1262 (1995).

Rev. Sci. Instrum. (1)

G. K. Schwemmer, M. Dombrowski, C. L. Korb, J. Milrod, H. Walden, and R. H. Kagann, “A lidar system for measuring atmospheric pressure and temperature profiles,” Rev. Sci. Instrum. 58(12), 2226 (1987).

Other (8)

J. T. Dobler, J. A. Nagel, V. Temyanko, T. S. Zaccheo, and B. Karpowicz, “Lidar measurements of atmospheric oxygen using a 1.27-micron Raman amplifier,” in CLEO: Applications and Technology (Optical Society of America, 2011), paper JTuE1.

ESA A-SCOPE Mission Assessment report, http://esamultimedia.esa.int/docs/SP1313-1_ASCOPE.pdf .

Intergovernmental Panel on Climate Change, Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects, (Cambridge Univ. Press, Cambridge, U. K. and New York, 2014).

Board, Space Studies, and National Research Council: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, (National Academic Press, 2007).

K. W. Jucks, S. Neeck, J. B. Abshire, D. F. Baker, E. V. Browell, A. Chatterjee, D. Crisp, S. M. Crowe, S. Denning, D. Hammerling, F. Harrison, J. J. Hyon, S. R. Kawa, B. Lin, B. L. Meadows, R. T. Menzies, A. Michalak, B. Moore, K. E. Murray, L. E. Ott, P. Rayner, O. I. Rodriguez, A. Schuh, Y. Shiga, G. D. Spiers, J. S. Wang, and T. Scott Zaccheo, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Mission, Science Mission Definition Study, (April 2015), http://cce.nasa.gov/ascends_2015/ASCENDS_FinalDraft_4_27_15.pdf .

A. Fix, A. Amediek, C. Büdenbender, G. Ehret, M. Quatrevalet, M. Wirth, J. Löhring, R. Kasemann, J. Klein, H. D. Hoffmann, and V. Klein, “Development and First Results of a new Near-IR Airborne Greenhouse Gas Lidar,” in Advanced Solid State Lasers (Optical Society of America 2015), paper ATh1A–2.

J. Mao, A. Ramanathan, J. B. Abshire, S. R. Kawa, H. Riris, G. R. Allan, M. Rodriguez, W. E. Hasselbrack, X. Sun, K. Numata, J. Chen, Y. Choi, and M. Y. M. Yang, “Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops with a Pulsed Multi-wavelength Airborne Lidar,” Atmos. Meas. Tech. Discuss. (in review).

G. R. Allan, M. A. Stephen, A. Yu, J. B. Abshire, S. T. Wu, J. Chen, and K. Numata, “Optimizing Output Power through Temporal Pulse Shaping,” in CLEO: QELS_Fundamental Science (Optical Society of America, 2017), paper JTu5A–87.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Two-way transmittance of O2 A-band (black trace) and the change in transmittance x1000 for 1 K temperature change (red trace) in the atmospheric boundary layer (lowest 2 km). The minimum temperature sensitivity occurs near 760 nm and near 765 nm. The HITRAN 2008 [13] was used for the transmittance calculations.
Fig. 2
Fig. 2 Two-way transmittance of the P13Q12 and P13P13 transitions of the Oxygen A-band at 764.6296 and 764.7407 nm respectively (black trace) and the change in transmittance x1000 (red trace) for 1 K temperature change in the atmospheric boundary layer (lowest 2 km). The two lines have clear separation from adjacent lines, have no significant interferences from other atmospheric constituents and their temperature sensitivity is smaller than other lines. The weaker, narrower lines are O2 isotope lines. The HITRAN 2008 [13] was used for the transmittance calculations.
Fig. 3
Fig. 3 Transmittance of the Oxygen A-band at 764.7 nm using a 10 km US standard atmosphere and the HITRAN 2008 database (black) along with the wavelengths we used in our 2013 (red) and 2014 (blue) flights. The 2014 wavelengths were evenly spaced but the 2013 were not.
Fig. 4
Fig. 4 Optical depth (OD) using a US standard atmosphere from a 400 km orbit with two different observer elevations (0 m and 17 m). An elevation change of 17 m will result in a change in pressure of ~2 hPa which is the ASCENDS measurement requirement for O2. The two plots (black and red trace) are virtually identical and overlap (left axis). The difference in OD, Δ(OD), is shown on the right hand axis in blue. Our choices for “on” and “off” wavelengths for the differential optical depth (DOD) calculations using Eq. (2) are shown in solid black squares.
Fig. 5
Fig. 5 Simplified functional block diagram of the 2014 IPDA lidar. In 2014, we replaced the single SPCM with eight SPCMs and the multichannel scaler with a PXI based data acquisition system using an FPGA digital counter. The output of the diode laser was externally modulated with a fiber-coupled acousto-optic modulator (AOM) to yield ~200 ns pulses, which are amplified by the EDFA and then doubled to ~764.7 nm. A 500 Hz wavelength sweep was used to scan over the oxygen absorption lines with 20 laser pulses separated by 100 µs.
Fig. 6
Fig. 6 (Left) The O2-CO2 lidar transceiver with associated racks in the DC-8 during the 2014 campaign. The transmit CO2 and O2 beams are combined by a beam combiner and are separated by a small angular offset (500 µrad). The receiver telescope has two fiber-coupled fields of view, separated by 500 µrad. (Right) The anti-reflection coated transmitter and receiver windows mounted on the nadir port of the DC-8.
Fig. 7
Fig. 7 Our wavelength scan is approximately 0.4 nm, which is roughly equal to the width of O2 absorption lines. Although a narrow filter reduces solar background, the wings of the measured lineshape are severely distorted by the filter (red curve). To reduce the distortion the FWHM of the filter in 2014 was increased to 0.8 nm from 0.5 nm (blue curve). Although this design change would allow more solar background illumination by a factor of 1.6 we were willing to accept higher solar background in order to reduce systematic errors that arose from the lineshape distortion due to the narrow band pass filter.
Fig. 8
Fig. 8 Flight track summary of the 2013 and the one 2014 flight that the O2 lidar collected data. The flight paths and locations were selected to optimize science objectives for CO2 fluxes and they typically included multiple segments at increasing altitudes between 3 and 13.5 km over varying topography, land cover, and atmospheric conditions. In addition, for most flights, a spiral descent from ~13.5 km to near the surface (30-70 m) was included in the flight plan in order to sample vertical profiles of meteorological parameters (pressure, temperature, humidity).
Fig. 9
Fig. 9 Our retrieval algorithm identifies and integrates the normalized ground returns and applies the necessary corrections and calibrations. The algorithm then compares the experimental with theoretically calculated transmittance values and adjusts the fit parameters to minimize the rms error.
Fig. 10
Fig. 10 (a) Time series of the model DOD prediction and the lidar DOD for our first flight on 22nd of February 2013, near Blythe AZ. (b) Scatterplot of the same data. A linear fit of the scatterplot had a slope of 0.95 and an offset of 0.02. The R2 value was 0.96. A 10 sec averaging period was used.
Fig. 11
Fig. 11 (a) Time series of the model DOD prediction and the lidar DOD for our flight on 28th of February 2013, Central Valley, CA. (b) Scatterplot of the same data. A linear fit of the scatterplot had a slope of 1.04 and an offset of −0.02. The R2 value was 0.97. A 10 sec averaging period was used.
Fig. 12
Fig. 12 (a) Time series of the model DOD prediction and the lidar DOD for our flight on 3 September 2014, from Iowa to Palmdale. (b) Scatterplot of the same data. For this flight, we analyzed data only during the return leg of the flight (from Iowa to Palmdale). A linear fit of the scatterplot had a slope of 1.00 and an offset of 0.00. The R2 value was 0.97. A 10 sec averaging period was used.
Fig. 13
Fig. 13 Comparison of the normalized correction factor vs. photon count rate between one (red curve) and eight SPCMs (blue curve). The eight SPCMs remain relatively linear up to ~100 MCounts where the single SPCM response is not linear and needs a correction at much lower count rates.
Fig. 14
Fig. 14 Expected transmittance from 400 km for a US standard atmosphere (black trace) and the transmission curves for two narrow etalon filters, 50 and 100 pm (blue and red dash traces respectively), and the resulting O2 transmittance lineshapes using the two etalon filters (blue and red solid line traces respectively). The distortion with the 100 pm etalon filter is minimal, and the minimum transmittance is ~30% and the wavelength scan needed to trace the line is only ~20 pm.
Fig. 15
Fig. 15 Theoretical (red) and experimental lidar (blue dots) transmittance from a 3 km open path ground test at GSFC and the associated transmission curve of our existing 0.8 nm filter. Our filter, which is centered near 764.7 nm, has a 30% transmittance at 764.93 nm where the O16O18 isotope line is centered.

Tables (2)

Tables Icon

Table 1 Parameters of the airborne IPDA Lidar in 2013 and 2014

Tables Icon

Table 2 Flight Summary 2013-2014

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

D O D = ln [ Tr ( λ O N ,   R ) Tr ( λ O F F ,   R ) ] = 2 × R 1 R 2 [ σ ( λ O N ,   p ,   T ,   S ) σ ( λ O F F ,   p ,   T ,   S ) ] N ( z ) d z .
D O D = OD ( λ O N ) 1 2 ( OD ( λ O F F 1 ) + OD ( λ O F F 2 ) )

Metrics