Abstract

A novel method to stabilize the correlated color temperature in pcW-LEDs from their initial turn-on state to thermal equilibrium is proposed and demonstrated. Under the normal operation condition, it can stabilize the CCT of a pcW-LED by the positive matching of the blue LED peak wavelength to the phosphor excitation spectrum. When the operating temperature unavoidably becomes higher in the LED die quickly after the initial turn-on, the phosphor conversion efficiency degrades and the LED blue light performs red shift. With the positive matching, the red shift actually helps enhance the excitation efficiency of the phosphor to compensate the thermal quenching and efficiency degradation. Therefore, the ratio of the blue light to the yellow light can keep almost constant, as well as the CCTs. In the experiments, the CCT variation could be as small as from 7 K to 83 K in different cases. Finally, we introduce a new factor, the so-called guide number, which is used to count the total change of the enhancement in equivalent excitation efficiency and the relative reduction of the phosphor light emission. The guide number essentially helps in designing the matching blue LED die and phosphor pair for good CCT stabilization.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved CCT uniformity of white LED using remote phosphor with patterned sapphire substrate

Kuan-Chieh Huang, Teng-Hsien Lai, and Cheng-Yen Chen
Appl. Opt. 52(30) 7376-7381 (2013)

High uniformity in angular correlated-color-temperature distribution of white LEDs from 2800K to 6500K

Ching-Cherng Sun, Ching-Yi Chen, Cheng-Chien Chen, Chih-Yu Chiu, Yi-Ning Peng, Yu-Huan Wang, Tsung-Hsun Yang, Te-Yuan Chung, and Cheng-Yang Chung
Opt. Express 20(6) 6622-6630 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Shimizu, “Development of White LED light source,” Rare Earths 40 (Rare Earth Society of Japan, 2002), pp. 150–151.
  2. A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, 2002).
  3. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).
  4. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
    [PubMed]
  5. C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).
  6. C. Martinsons and G. Zissis, “Solid state lighting annex: potential health issues of solid state lighting,” Final Report, SSL Annex Task 1, Energy Efficient End-Use Equipment (4E) (IEA, 2014).
  7. N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Status Solidi A 202, 60–62 (2005).
  8. T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).
  9. B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23(26), 33861–33869 (2015).
    [PubMed]
  10. C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122, 1133–1141 (1975).
  11. J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift,” Phys. Status Solidi., A Appl. Mater. Sci. 202, 1869–1873 (2005).
  12. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339–345 (2002).
  13. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 955–961 (1998).
    [PubMed]
  14. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
    [PubMed]
  15. Y. Zhao, C. Y. Huang, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue and green InGaN light-emitting diode,” in CLEO/QELS 2012 (OSA, Baltimore, MD, USA, 2012), p. JTh4J.2.
  16. M. E. Levinshteĭn, S. L. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, 2001).
  17. DOE SSL technology fact sheet, “Optical Safety of LEDs,” PNNL-SA-96340 (June 2013).
  18. K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc. 89, 3413–3416 (2006).
  19. H. S. Jang and D. Y. Jeon, “Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes,” Appl. Phys. Lett. 90, 041906 (2007).
  20. J. Chen, J. Liu, and H. Yao, “Preparation and application of strong near-infrared emission phosphor Sr3SiO5:Ce3+, Al3+, Nd3+,” J. Am. Ceram. Soc. 98, 1836–1841 (2015).
  21. R. J. Xie and H. T. Hintzen, “Optical properties of (oxy) nitride materials: a review,” J. Am. Ceram. Soc. 96, 665–687 (2013).

2015 (3)

T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).

B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23(26), 33861–33869 (2015).
[PubMed]

J. Chen, J. Liu, and H. Yao, “Preparation and application of strong near-infrared emission phosphor Sr3SiO5:Ce3+, Al3+, Nd3+,” J. Am. Ceram. Soc. 98, 1836–1841 (2015).

2014 (1)

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

2013 (1)

R. J. Xie and H. T. Hintzen, “Optical properties of (oxy) nitride materials: a review,” J. Am. Ceram. Soc. 96, 665–687 (2013).

2007 (1)

H. S. Jang and D. Y. Jeon, “Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes,” Appl. Phys. Lett. 90, 041906 (2007).

2006 (1)

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc. 89, 3413–3416 (2006).

2005 (3)

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Status Solidi A 202, 60–62 (2005).

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[PubMed]

J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift,” Phys. Status Solidi., A Appl. Mater. Sci. 202, 1869–1873 (2005).

2002 (2)

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339–345 (2002).

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

2000 (1)

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

1998 (1)

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 955–961 (1998).
[PubMed]

1975 (1)

C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122, 1133–1141 (1975).

Bhat, J. C.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

Brandt, O.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Chang, Y. Y.

T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Chen, C. C.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Chen, J.

J. Chen, J. Liu, and H. Yao, “Preparation and application of strong near-infrared emission phosphor Sr3SiO5:Ce3+, Al3+, Nd3+,” J. Am. Ceram. Soc. 98, 1836–1841 (2015).

Chen, S. Y.

B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23(26), 33861–33869 (2015).
[PubMed]

T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).

Chen, Y. C.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Chiou, S. C.

T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).

B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23(26), 33861–33869 (2015).
[PubMed]

Cho, J.

J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift,” Phys. Status Solidi., A Appl. Mater. Sci. 202, 1869–1873 (2005).

Choi, K. J.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc. 89, 3413–3416 (2006).

Chung, T. Y.

B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23(26), 33861–33869 (2015).
[PubMed]

T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Collins, D.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

Fletcher, R. M.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

Freyssinier-Nova, J. P.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Status Solidi A 202, 60–62 (2005).

Glorieux, B.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Grahn, H. T.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Gu, Y.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Status Solidi A 202, 60–62 (2005).

Hintzen, H. T.

R. J. Xie and H. T. Hintzen, “Optical properties of (oxy) nitride materials: a review,” J. Am. Ceram. Soc. 96, 665–687 (2013).

Holcomb, M. O.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

Hsieh, Y. H.

Jang, H. S.

H. S. Jang and D. Y. Jeon, “Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes,” Appl. Phys. Lett. 90, 041906 (2007).

Jeon, D. Y.

H. S. Jang and D. Y. Jeon, “Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes,” Appl. Phys. Lett. 90, 041906 (2007).

Kim, C. H.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc. 89, 3413–3416 (2006).

Kim, J. K.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[PubMed]

Kim, J. M.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc. 89, 3413–3416 (2006).

Kim, K. N.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc. 89, 3413–3416 (2006).

Krames, M. R.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339–345 (2002).

Lai, K. Y.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Lee, T. X.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Li, D. R.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Liu, C. Y.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Liu, J.

J. Chen, J. Liu, and H. Yao, “Preparation and application of strong near-infrared emission phosphor Sr3SiO5:Ce3+, Al3+, Nd3+,” J. Am. Ceram. Soc. 98, 1836–1841 (2015).

Lu, C. Y.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Ludowise, M. J.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

Martin, P. S.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

Menniger, J.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Mueller, G. O.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339–345 (2002).

Mueller-Mach, R.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339–345 (2002).

Nakamura, S.

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 955–961 (1998).
[PubMed]

Narendran, N.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Status Solidi A 202, 60–62 (2005).

Park, J. K.

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc. 89, 3413–3416 (2006).

Park, Y.

J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift,” Phys. Status Solidi., A Appl. Mater. Sci. 202, 1869–1873 (2005).

Ploog, K. H.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Ramsteiner, M.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Reiche, M.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Rudaz, S. L.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

Schubert, E. F.

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[PubMed]

Shih, B. J.

Sone, C.

J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift,” Phys. Status Solidi., A Appl. Mater. Sci. 202, 1869–1873 (2005).

Steigerwald, D. A.

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

Sun, C. C.

B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23(26), 33861–33869 (2015).
[PubMed]

T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Thurmond, C. D.

C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122, 1133–1141 (1975).

Ting, Z. Y.

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Trampert, A.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Trottier, T.

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339–345 (2002).

Waltereit, P.

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Xie, R. J.

R. J. Xie and H. T. Hintzen, “Optical properties of (oxy) nitride materials: a review,” J. Am. Ceram. Soc. 96, 665–687 (2013).

Yang, T. H.

T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).

B. J. Shih, S. C. Chiou, Y. H. Hsieh, C. C. Sun, T. H. Yang, S. Y. Chen, and T. Y. Chung, “Study of temperature distributions in pc-WLEDs with different phosphor packages,” Opt. Express 23(26), 33861–33869 (2015).
[PubMed]

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Yao, H.

J. Chen, J. Liu, and H. Yao, “Preparation and application of strong near-infrared emission phosphor Sr3SiO5:Ce3+, Al3+, Nd3+,” J. Am. Ceram. Soc. 98, 1836–1841 (2015).

Yoon, E.

J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift,” Phys. Status Solidi., A Appl. Mater. Sci. 202, 1869–1873 (2005).

Zhu, Y.

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Status Solidi A 202, 60–62 (2005).

Appl. Phys. Lett. (1)

H. S. Jang and D. Y. Jeon, “Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes,” Appl. Phys. Lett. 90, 041906 (2007).

IEEE J. Sel. Top. Quantum Electron. (2)

D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310–320 (2002).

R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quantum Electron. 8, 339–345 (2002).

IEEE Photonics J. (1)

T. Y. Chung, S. C. Chiou, Y. Y. Chang, C. C. Sun, T. H. Yang, and S. Y. Chen, “Study of temperature distribution within pcW-LEDs using the remote-dome phosphor package,” IEEE Photonics J. 7, 1–11 (2015).

J. Am. Ceram. Soc. (3)

K. N. Kim, J. M. Kim, K. J. Choi, J. K. Park, and C. H. Kim, “Synthesis, characterization, and luminescent properties of CaS:Eu phosphor,” J. Am. Ceram. Soc. 89, 3413–3416 (2006).

J. Chen, J. Liu, and H. Yao, “Preparation and application of strong near-infrared emission phosphor Sr3SiO5:Ce3+, Al3+, Nd3+,” J. Am. Ceram. Soc. 98, 1836–1841 (2015).

R. J. Xie and H. T. Hintzen, “Optical properties of (oxy) nitride materials: a review,” J. Am. Ceram. Soc. 96, 665–687 (2013).

J. Electrochem. Soc. (1)

C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem. Soc. 122, 1133–1141 (1975).

J. Solid State Lighting (1)

C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, and C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy,” J. Solid State Lighting 1, 19 (2014).

Nature (1)

P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature 406(6798), 865–868 (2000).
[PubMed]

Opt. Express (1)

Phy. Status Solidi A (1)

N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phy. Status Solidi A 202, 60–62 (2005).

Phys. Status Solidi., A Appl. Mater. Sci. (1)

J. Cho, C. Sone, Y. Park, and E. Yoon, “Measuring the junction temperature of III-nitride light emitting diodes using electro-luminescence shift,” Phys. Status Solidi., A Appl. Mater. Sci. 202, 1869–1873 (2005).

Science (2)

E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308(5726), 1274–1278 (2005).
[PubMed]

S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281(5379), 955–961 (1998).
[PubMed]

Other (6)

Y. Zhao, C. Y. Huang, S. Tanaka, C. C. Pan, K. Fujito, D. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Blue and green InGaN light-emitting diode,” in CLEO/QELS 2012 (OSA, Baltimore, MD, USA, 2012), p. JTh4J.2.

M. E. Levinshteĭn, S. L. Rumyantsev, and M. Shur, Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, 2001).

DOE SSL technology fact sheet, “Optical Safety of LEDs,” PNNL-SA-96340 (June 2013).

Y. Shimizu, “Development of White LED light source,” Rare Earths 40 (Rare Earth Society of Japan, 2002), pp. 150–151.

A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid-state Lighting (John Wiley & Sons, 2002).

C. Martinsons and G. Zissis, “Solid state lighting annex: potential health issues of solid state lighting,” Final Report, SSL Annex Task 1, Energy Efficient End-Use Equipment (4E) (IEA, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Red shift spectrum of the blue die vs. the excitation spectrum of the phosphor. The pumping wavelength is located at the spectrum of (a) positive slope, and (b) negative slope. (c) The pumping spectra of the blue dies in the following experiment.
Fig. 2
Fig. 2 The chromaticity drifting curves and the CCT drifts of all the 13 experimental cases. Some cases are of CCT around 4600K (neutral white), and the others are of CCT around 6500K (cool white). The initial and final temperature are 30° and 120°, respectively. 6.8% and 10% indicate the weight concentration of the phosphors applied to the samples.
Fig. 3
Fig. 3 CCT drift according to temperature increase. (a) The initial CCT is 4700K and phosphor concentration is 10%; (b) the initial CCT is 6300K and the phosphor concentration is 6.8%. Δxy is the distance in the color coordinate from the point at 30°C to 120°C.
Fig. 4
Fig. 4 Measurement of yellow light intensity of the phosphor plates from 30°C to 120°C.
Fig. 5
Fig. 5 CCT monitoring from 30°C to 120°C on the board for the first group. The figure shows that the CCT moves lower when the temperature rises.
Fig. 6
Fig. 6 CCT monitoring from 30°C to 120°C on the board for the second group The figure shows that the CCT moves higher when the temperature rises.
Fig. 7
Fig. 7 CCT monitoring from 30°C to 120°C on the board for the third group. A turning point emerges in the figure for each pcW-LED.
Fig. 8
Fig. 8 CCT drift from 30°C to 120°C vs. the guide number. The yellow (blue) circles/triangles are for phosphor concentration of 10% (6.8%). The triangles are for the cases with observation of turning points during CCT drift.
Fig. 9
Fig. 9 The variation of both the luminous flux (green thing line) and CCTs (purple thin line) during the aging test, which is corresponding to their spectra as comparing to the excitation spectrum of the phosphor. The blue circles, green squares, and the red crosses indicate the initial, the equilibrium, and the L70 states, respectively.

Tables (3)

Tables Icon

Table 1 The parameters and guide numbers corresponding to Fig. 5. Calculation of the guide number as the board temperature raising from 30°C to 120°C for the second group.

Tables Icon

Table 2 The parameters and guide numbers corresponding to Fig. 6. Calculation of the guide number as the backside board temperature raising from 30°C to 120°C for the first group.

Tables Icon

Table 3 The parameters and guide numbers corresponding to Fig. 7. Calculation of the guide number as the backside board temperature raising from 30°C to 120°C for the first group.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η ex = S B ( λ )× S ex ( λ )dλ ,

Metrics