Abstract

Digital holographic microscopy (DHM) is one of the most effective methods in imaging the weakly-scattering objects, such as small colloidal particles and most biological cells. Compared to phase contrast and differential interference contrast microscopy, DHM cannot only visualize but quantify these phase objects. In this work, a spiral phase modulated FINCH microscope was implemented. The core of the system is an in-line incoherent interferometer composed of a spatial light modulator (SLM) and a charge-coupled device. In order to enhance image contrast, the SLM was space-division multiplexed by a helical lens and a conventional lens. To study the properties of this vortex imaging system, the precise mathematical model of the Point Spread Function (PSF), which describes the intensity distribution in digital image of the system’s response to a point source, is determined for the first time from the view of wave optics. The experimental 2D PSF agrees well with that of simulated one. When the system is used for biological microscopic imaging the enhancement of edge contrast and the enlargement of field of view are obtained without loss of resolution.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Point spread function and two-point resolution in Fresnel incoherent correlation holography

Petr Bouchal, Josef Kapitán, Radim Chmelík, and Zdeněk Bouchal
Opt. Express 19(16) 15603-15620 (2011)

Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy

Gary Brooker, Nisan Siegel, Victor Wang, and Joseph Rosen
Opt. Express 19(6) 5047-5062 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [PubMed]
  2. F. Dubois, C. Schockaert, N. Callens, and C. Yourassowsky, “Focus plane detection criteria in digital holography microscopy by amplitude analysis,” Opt. Express 14(13), 5895–5908 (2006).
    [PubMed]
  3. N. Muhammad and D. G. Kim, “Resolution enhancement for digital off-axis hologram reconstruction,” Lecture Notes in Electrical Engineering 229, 431–443 (2013).
  4. N. Muhammad and D. G. Kim, “A Simple Approach for Large Size Digital Off-Axis Hologram Reconstruction,” Lecture Notes in Engineering & Computer Science 2198(1), 1183–1188 (2012).
  5. B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
    [PubMed]
  6. M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).
  7. T. Matsuo, H. Kinoshita, T. Fujii, and A. Moto, “Real-time 3D shape measurement of micro droplet using digital holographic microscopy,” in 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Academic, 2012), pp. 52–54.
  8. Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12(11), 737 (2010).
  9. J. Rosen, G. Brooker, G. Indebetouw, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holog. Speckle. 12(2), 124–140 (2009).
  10. J. Hong and M. K. Kim, “Overview of techniques applicable to self-interference incoherent digital holography,” J Eur Opt Soc Rapid Publ 8, 13077 (2013).
    [PubMed]
  11. M. T. Long, W. Y. Hong, W. Fan, and W. D. Yong, “Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography,” Opt. Commun. 355, 109–113 (2015).
  12. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [PubMed]
  13. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
    [PubMed]
  14. B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope,” Opt. Express 19(6), 4924–4936 (2011).
    [PubMed]
  15. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
  16. P. Bouchal and Z. Bouchal, “Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams,” J. Europ. Opt. Soc. Rap. Public 8(1), 92–103 (2013).
  17. G. Brooker, N. Siegel, V. Wang, and J. Rosen, “Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy,” Opt. Express 19(6), 5047–5062 (2011).
    [PubMed]
  18. B. Mughal, N. Muhammad, M. Sharif, T. Saba, and A. Rehman, “Extraction of breast border and removal of pectoral muscle in wavelet domain,” Biomed. Res. 28(11), 5041–5043 (2017).
  19. N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, and S. R. Naqvi, “Reversible integer wavelet transform for blind image hiding method,” PLoS One 12(5), e0176979 (2017).
    [PubMed]
  20. Z. Mahmood, N. Muhammad, N. Bibi, and T. Ali, “A review on state-of-the-art face recognition approaches,” Fractals-complex Geometry Patterns Scaling in Nature & Society 25(1), 1750025 (2017).
  21. C. S. Guo, Y. Zhang, Y. J. Han, J. P. Ding, and H. T. Wang, “Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering,” Opt. Commun. 259(2), 449–454 (2006).
  22. G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
    [PubMed]
  23. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).
  24. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. Verstegen, J. G. Kloosterboer, and G. W. Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
    [PubMed]
  25. J. A. Davis, D. E. McNamara, D. M. Cottrell, and J. Campos, “Image processing with the radial Hilbert transform: theory and experiments,” Opt. Lett. 25(2), 99–101 (2000).
    [PubMed]
  26. G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26(8), 1788–1797 (2009).
    [PubMed]
  27. N. Bokor and Y. Iketaki, “Laguerre-Gaussian radial Hilbert transform for edge-enhancement Fourier transform X-ray microscopy,” Opt. Express 17(7), 5533–5539 (2009).
    [PubMed]
  28. G. Situ, M. Warber, G. Pedrini, and W. Osten, “Phase contrast enhancement in microscopy using spiral phase filtering,” Opt. Commun. 283(7), 1273–1277 (2010).
  29. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
    [PubMed]
  30. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230(Pt 1), 134–142 (2008).
    [PubMed]
  31. G. Foo, D. M. Palacios, and G. A. Swartzlander., “Optical vortex coronagraph,” Opt. Lett. 30(24), 3308–3310 (2005).
    [PubMed]
  32. D. Mawet, E. Serabyn, J. K. Wallace, and L. Pueyo, “Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph,” Opt. Lett. 36(8), 1506–1508 (2011).
    [PubMed]
  33. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
    [PubMed]
  34. P. T. Samsheerali, K. Khare, and J. Joseph, “Quantitative phase imaging with single shot digital holography,” Opt. Commun. 319(10), 85–89 (2014).
  35. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
    [PubMed]
  36. C. S. Guo, X. Cheng, X. Y. Ren, J. P. Ding, and H. T. Wang, “Optical vortex phase-shifting digital holography,” Opt. Express 12(21), 5166–5171 (2004).
    [PubMed]
  37. P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37(14), 2949–2951 (2012).
    [PubMed]

2017 (3)

B. Mughal, N. Muhammad, M. Sharif, T. Saba, and A. Rehman, “Extraction of breast border and removal of pectoral muscle in wavelet domain,” Biomed. Res. 28(11), 5041–5043 (2017).

N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, and S. R. Naqvi, “Reversible integer wavelet transform for blind image hiding method,” PLoS One 12(5), e0176979 (2017).
[PubMed]

Z. Mahmood, N. Muhammad, N. Bibi, and T. Ali, “A review on state-of-the-art face recognition approaches,” Fractals-complex Geometry Patterns Scaling in Nature & Society 25(1), 1750025 (2017).

2015 (1)

M. T. Long, W. Y. Hong, W. Fan, and W. D. Yong, “Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography,” Opt. Commun. 355, 109–113 (2015).

2014 (1)

P. T. Samsheerali, K. Khare, and J. Joseph, “Quantitative phase imaging with single shot digital holography,” Opt. Commun. 319(10), 85–89 (2014).

2013 (4)

J. Hong and M. K. Kim, “Overview of techniques applicable to self-interference incoherent digital holography,” J Eur Opt Soc Rapid Publ 8, 13077 (2013).
[PubMed]

M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).

N. Muhammad and D. G. Kim, “Resolution enhancement for digital off-axis hologram reconstruction,” Lecture Notes in Electrical Engineering 229, 431–443 (2013).

P. Bouchal and Z. Bouchal, “Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams,” J. Europ. Opt. Soc. Rap. Public 8(1), 92–103 (2013).

2012 (2)

N. Muhammad and D. G. Kim, “A Simple Approach for Large Size Digital Off-Axis Hologram Reconstruction,” Lecture Notes in Engineering & Computer Science 2198(1), 1183–1188 (2012).

P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37(14), 2949–2951 (2012).
[PubMed]

2011 (4)

2010 (3)

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12(11), 737 (2010).

G. Situ, M. Warber, G. Pedrini, and W. Osten, “Phase contrast enhancement in microscopy using spiral phase filtering,” Opt. Commun. 283(7), 1273–1277 (2010).

2009 (3)

2008 (2)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230(Pt 1), 134–142 (2008).
[PubMed]

2007 (1)

2006 (3)

2005 (5)

2004 (2)

2000 (1)

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).

Akram, T.

N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, and S. R. Naqvi, “Reversible integer wavelet transform for blind image hiding method,” PLoS One 12(5), e0176979 (2017).
[PubMed]

Ali, T.

Z. Mahmood, N. Muhammad, N. Bibi, and T. Ali, “A review on state-of-the-art face recognition approaches,” Fractals-complex Geometry Patterns Scaling in Nature & Society 25(1), 1750025 (2017).

Bauwens, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230(Pt 1), 134–142 (2008).
[PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[PubMed]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[PubMed]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
[PubMed]

Bibi, N.

Z. Mahmood, N. Muhammad, N. Bibi, and T. Ali, “A review on state-of-the-art face recognition approaches,” Fractals-complex Geometry Patterns Scaling in Nature & Society 25(1), 1750025 (2017).

N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, and S. R. Naqvi, “Reversible integer wavelet transform for blind image hiding method,” PLoS One 12(5), e0176979 (2017).
[PubMed]

Bokor, N.

Bouchal, P.

P. Bouchal and Z. Bouchal, “Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams,” J. Europ. Opt. Soc. Rap. Public 8(1), 92–103 (2013).

P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37(14), 2949–2951 (2012).
[PubMed]

Bouchal, Z.

P. Bouchal and Z. Bouchal, “Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams,” J. Europ. Opt. Soc. Rap. Public 8(1), 92–103 (2013).

P. Bouchal and Z. Bouchal, “Selective edge enhancement in three-dimensional vortex imaging with incoherent light,” Opt. Lett. 37(14), 2949–2951 (2012).
[PubMed]

Brito, I. V.

M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).

Brooker, G.

Callens, N.

Campos, J.

Cheng, C. J.

Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12(11), 737 (2010).

Cheng, X.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).

Colomb, T.

Cottrell, D. M.

Cuche, E.

Davis, J. A.

Depeursinge, C.

Ding, J. P.

C. S. Guo, Y. Zhang, Y. J. Han, J. P. Ding, and H. T. Wang, “Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering,” Opt. Commun. 259(2), 449–454 (2006).

C. S. Guo, X. Cheng, X. Y. Ren, J. P. Ding, and H. T. Wang, “Optical vortex phase-shifting digital holography,” Opt. Express 12(21), 5166–5171 (2004).
[PubMed]

Dubois, F.

Eliel, E. R.

Emery, Y.

Fan, W.

M. T. Long, W. Y. Hong, W. Fan, and W. D. Yong, “Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography,” Opt. Commun. 355, 109–113 (2015).

Foo, G.

Fujii, T.

T. Matsuo, H. Kinoshita, T. Fujii, and A. Moto, “Real-time 3D shape measurement of micro droplet using digital holographic microscopy,” in 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Academic, 2012), pp. 52–54.

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230(Pt 1), 134–142 (2008).
[PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[PubMed]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[PubMed]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
[PubMed]

Gesualdi, M. R. R.

M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).

Guo, C. S.

C. S. Guo, Y. Zhang, Y. J. Han, J. P. Ding, and H. T. Wang, “Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering,” Opt. Commun. 259(2), 449–454 (2006).

C. S. Guo, X. Cheng, X. Y. Ren, J. P. Ding, and H. T. Wang, “Optical vortex phase-shifting digital holography,” Opt. Express 12(21), 5166–5171 (2004).
[PubMed]

Han, Y. J.

C. S. Guo, Y. Zhang, Y. J. Han, J. P. Ding, and H. T. Wang, “Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering,” Opt. Commun. 259(2), 449–454 (2006).

Hong, J.

J. Hong and M. K. Kim, “Overview of techniques applicable to self-interference incoherent digital holography,” J Eur Opt Soc Rapid Publ 8, 13077 (2013).
[PubMed]

Hong, W. Y.

M. T. Long, W. Y. Hong, W. Fan, and W. D. Yong, “Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography,” Opt. Commun. 355, 109–113 (2015).

Hooft, G. W.

Iketaki, Y.

Indebetouw, G.

J. Rosen, G. Brooker, G. Indebetouw, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holog. Speckle. 12(2), 124–140 (2009).

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230(Pt 1), 134–142 (2008).
[PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[PubMed]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[PubMed]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
[PubMed]

Joseph, J.

P. T. Samsheerali, K. Khare, and J. Joseph, “Quantitative phase imaging with single shot digital holography,” Opt. Commun. 319(10), 85–89 (2014).

Karch, H.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

Katz, B.

Kemper, B.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

Ketelhut, S.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

Khare, K.

P. T. Samsheerali, K. Khare, and J. Joseph, “Quantitative phase imaging with single shot digital holography,” Opt. Commun. 319(10), 85–89 (2014).

Kim, D. G.

N. Muhammad and D. G. Kim, “Resolution enhancement for digital off-axis hologram reconstruction,” Lecture Notes in Electrical Engineering 229, 431–443 (2013).

N. Muhammad and D. G. Kim, “A Simple Approach for Large Size Digital Off-Axis Hologram Reconstruction,” Lecture Notes in Engineering & Computer Science 2198(1), 1183–1188 (2012).

Kim, M. K.

J. Hong and M. K. Kim, “Overview of techniques applicable to self-interference incoherent digital holography,” J Eur Opt Soc Rapid Publ 8, 13077 (2013).
[PubMed]

Kinoshita, H.

T. Matsuo, H. Kinoshita, T. Fujii, and A. Moto, “Real-time 3D shape measurement of micro droplet using digital holographic microscopy,” in 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Academic, 2012), pp. 52–54.

Kloosterboer, J. G.

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).

Langehanenberg, P.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

Lin, Y. C.

Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12(11), 737 (2010).

Long, M. T.

M. T. Long, W. Y. Hong, W. Fan, and W. D. Yong, “Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography,” Opt. Commun. 355, 109–113 (2015).

Magistretti, P. J.

Mahmood, Z.

N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, and S. R. Naqvi, “Reversible integer wavelet transform for blind image hiding method,” PLoS One 12(5), e0176979 (2017).
[PubMed]

Z. Mahmood, N. Muhammad, N. Bibi, and T. Ali, “A review on state-of-the-art face recognition approaches,” Fractals-complex Geometry Patterns Scaling in Nature & Society 25(1), 1750025 (2017).

Marquet, P.

Matsuo, T.

T. Matsuo, H. Kinoshita, T. Fujii, and A. Moto, “Real-time 3D shape measurement of micro droplet using digital holographic microscopy,” in 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Academic, 2012), pp. 52–54.

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230(Pt 1), 134–142 (2008).
[PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[PubMed]

Mawet, D.

McNamara, D. E.

Moto, A.

T. Matsuo, H. Kinoshita, T. Fujii, and A. Moto, “Real-time 3D shape measurement of micro droplet using digital holographic microscopy,” in 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Academic, 2012), pp. 52–54.

Mughal, B.

B. Mughal, N. Muhammad, M. Sharif, T. Saba, and A. Rehman, “Extraction of breast border and removal of pectoral muscle in wavelet domain,” Biomed. Res. 28(11), 5041–5043 (2017).

Muhammad, N.

B. Mughal, N. Muhammad, M. Sharif, T. Saba, and A. Rehman, “Extraction of breast border and removal of pectoral muscle in wavelet domain,” Biomed. Res. 28(11), 5041–5043 (2017).

N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, and S. R. Naqvi, “Reversible integer wavelet transform for blind image hiding method,” PLoS One 12(5), e0176979 (2017).
[PubMed]

Z. Mahmood, N. Muhammad, N. Bibi, and T. Ali, “A review on state-of-the-art face recognition approaches,” Fractals-complex Geometry Patterns Scaling in Nature & Society 25(1), 1750025 (2017).

N. Muhammad and D. G. Kim, “Resolution enhancement for digital off-axis hologram reconstruction,” Lecture Notes in Electrical Engineering 229, 431–443 (2013).

N. Muhammad and D. G. Kim, “A Simple Approach for Large Size Digital Off-Axis Hologram Reconstruction,” Lecture Notes in Engineering & Computer Science 2198(1), 1183–1188 (2012).

Muramatsu, M.

M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).

Müthing, J.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

Naqvi, S. R.

N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, and S. R. Naqvi, “Reversible integer wavelet transform for blind image hiding method,” PLoS One 12(5), e0176979 (2017).
[PubMed]

Oemrawsingh, S. S. R.

Osten, W.

G. Situ, M. Warber, G. Pedrini, and W. Osten, “Phase contrast enhancement in microscopy using spiral phase filtering,” Opt. Commun. 283(7), 1273–1277 (2010).

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26(8), 1788–1797 (2009).
[PubMed]

Palacios, D. M.

Palacios, F. F.

M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).

Pedrini, G.

G. Situ, M. Warber, G. Pedrini, and W. Osten, “Phase contrast enhancement in microscopy using spiral phase filtering,” Opt. Commun. 283(7), 1273–1277 (2010).

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26(8), 1788–1797 (2009).
[PubMed]

Pueyo, L.

Rappaz, B.

Rehman, A.

B. Mughal, N. Muhammad, M. Sharif, T. Saba, and A. Rehman, “Extraction of breast border and removal of pectoral muscle in wavelet domain,” Biomed. Res. 28(11), 5041–5043 (2017).

Ren, X. Y.

Ricardo, J.

M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230(Pt 1), 134–142 (2008).
[PubMed]

S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
[PubMed]

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[PubMed]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral phase contrast imaging in microscopy,” Opt. Express 13(3), 689–694 (2005).
[PubMed]

Rosen, J.

Saba, T.

B. Mughal, N. Muhammad, M. Sharif, T. Saba, and A. Rehman, “Extraction of breast border and removal of pectoral muscle in wavelet domain,” Biomed. Res. 28(11), 5041–5043 (2017).

Samsheerali, P. T.

P. T. Samsheerali, K. Khare, and J. Joseph, “Quantitative phase imaging with single shot digital holography,” Opt. Commun. 319(10), 85–89 (2014).

Schockaert, C.

Serabyn, E.

Shaked, N. T.

J. Rosen, G. Brooker, G. Indebetouw, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holog. Speckle. 12(2), 124–140 (2009).

Sharif, M.

B. Mughal, N. Muhammad, M. Sharif, T. Saba, and A. Rehman, “Extraction of breast border and removal of pectoral muscle in wavelet domain,” Biomed. Res. 28(11), 5041–5043 (2017).

Siegel, N.

Situ, G.

G. Situ, M. Warber, G. Pedrini, and W. Osten, “Phase contrast enhancement in microscopy using spiral phase filtering,” Opt. Commun. 283(7), 1273–1277 (2010).

G. Situ, G. Pedrini, and W. Osten, “Spiral phase filtering and orientation-selective edge detection/enhancement,” J. Opt. Soc. Am. A 26(8), 1788–1797 (2009).
[PubMed]

Swartzlander, G. A.

Valin, J.

M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).

van Houwelingen, J. A. W.

Verstegen, E. J.

Vollmer, A.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

von Bally, G.

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

Wallace, J. K.

Wang, H. T.

C. S. Guo, Y. Zhang, Y. J. Han, J. P. Ding, and H. T. Wang, “Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering,” Opt. Commun. 259(2), 449–454 (2006).

C. S. Guo, X. Cheng, X. Y. Ren, J. P. Ding, and H. T. Wang, “Optical vortex phase-shifting digital holography,” Opt. Express 12(21), 5166–5171 (2004).
[PubMed]

Wang, V.

Warber, M.

G. Situ, M. Warber, G. Pedrini, and W. Osten, “Phase contrast enhancement in microscopy using spiral phase filtering,” Opt. Commun. 283(7), 1273–1277 (2010).

Woerdman, J. P.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. Verstegen, J. G. Kloosterboer, and G. W. Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004).
[PubMed]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).

Yong, W. D.

M. T. Long, W. Y. Hong, W. Fan, and W. D. Yong, “Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography,” Opt. Commun. 355, 109–113 (2015).

Yourassowsky, C.

Zhang, Y.

C. S. Guo, Y. Zhang, Y. J. Han, J. P. Ding, and H. T. Wang, “Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering,” Opt. Commun. 259(2), 449–454 (2006).

Appl. Opt. (1)

Biomed. Res. (1)

B. Mughal, N. Muhammad, M. Sharif, T. Saba, and A. Rehman, “Extraction of breast border and removal of pectoral muscle in wavelet domain,” Biomed. Res. 28(11), 5041–5043 (2017).

Fractals-complex Geometry Patterns Scaling in Nature & Society (1)

Z. Mahmood, N. Muhammad, N. Bibi, and T. Ali, “A review on state-of-the-art face recognition approaches,” Fractals-complex Geometry Patterns Scaling in Nature & Society 25(1), 1750025 (2017).

J Eur Opt Soc Rapid Publ (1)

J. Hong and M. K. Kim, “Overview of techniques applicable to self-interference incoherent digital holography,” J Eur Opt Soc Rapid Publ 8, 13077 (2013).
[PubMed]

J. Biomed. Opt. (1)

B. Kemper, A. Bauwens, A. Vollmer, S. Ketelhut, P. Langehanenberg, J. Müthing, H. Karch, and G. von Bally, “Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy,” J. Biomed. Opt. 15(3), 036009 (2010).
[PubMed]

J. Europ. Opt. Soc. Rap. Public (1)

P. Bouchal and Z. Bouchal, “Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams,” J. Europ. Opt. Soc. Rap. Public 8(1), 92–103 (2013).

J. Holog. Speckle. (1)

J. Rosen, G. Brooker, G. Indebetouw, and N. T. Shaked, “A review of incoherent digital Fresnel holography,” J. Holog. Speckle. 12(2), 124–140 (2009).

J. Microsc. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Upgrading a microscope with a spiral phase plate,” J. Microsc. 230(Pt 1), 134–142 (2008).
[PubMed]

J. Microw. Optoelectron. Electromagn. Appl. (1)

M. R. R. Gesualdi, I. V. Brito, J. Ricardo, F. F. Palacios, M. Muramatsu, and J. Valin, “Photorefractive digital holographic microscopy: an application in the microdevices surfaces,” J. Microw. Optoelectron. Electromagn. Appl. 12(2), 594–601 (2013).

J. Opt. (1)

Y. C. Lin and C. J. Cheng, “Determining the refractive index profile of micro-optical elements using transflective digital holographic microscopy,” J. Opt. 12(11), 737 (2010).

J. Opt. Soc. Am. A (1)

Lecture Notes in Electrical Engineering (1)

N. Muhammad and D. G. Kim, “Resolution enhancement for digital off-axis hologram reconstruction,” Lecture Notes in Electrical Engineering 229, 431–443 (2013).

Lecture Notes in Engineering & Computer Science (1)

N. Muhammad and D. G. Kim, “A Simple Approach for Large Size Digital Off-Axis Hologram Reconstruction,” Lecture Notes in Engineering & Computer Science 2198(1), 1183–1188 (2012).

Nat. Photonics (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).

Opt. Commun. (5)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112(5), 321–327 (1994).

C. S. Guo, Y. Zhang, Y. J. Han, J. P. Ding, and H. T. Wang, “Generation of optical vortices with arbitrary shape and array via helical phase spatial filtering,” Opt. Commun. 259(2), 449–454 (2006).

G. Situ, M. Warber, G. Pedrini, and W. Osten, “Phase contrast enhancement in microscopy using spiral phase filtering,” Opt. Commun. 283(7), 1273–1277 (2010).

P. T. Samsheerali, K. Khare, and J. Joseph, “Quantitative phase imaging with single shot digital holography,” Opt. Commun. 319(10), 85–89 (2014).

M. T. Long, W. Y. Hong, W. Fan, and W. D. Yong, “Four-dimensional tracking of spatially incoherent illuminated samples using self-interference digital holography,” Opt. Commun. 355, 109–113 (2015).

Opt. Express (8)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94(23), 233902 (2005).
[PubMed]

PLoS One (1)

N. Muhammad, N. Bibi, Z. Mahmood, T. Akram, and S. R. Naqvi, “Reversible integer wavelet transform for blind image hiding method,” PLoS One 12(5), e0176979 (2017).
[PubMed]

Other (1)

T. Matsuo, H. Kinoshita, T. Fujii, and A. Moto, “Real-time 3D shape measurement of micro droplet using digital holographic microscopy,” in 16th International Conference on Miniaturized Systems for Chemistry and Life Sciences (Academic, 2012), pp. 52–54.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the incoherent digital holographic microscopy system.
Fig. 2
Fig. 2 Experimental setup. L-Lens, P-Polarizer, BF-Bandpass filter.
Fig. 3
Fig. 3 Point source holograms and point spread functions of the small circular aperture: (a)-(c) simulated holograms from Eq. (9) with phase shift of 0°, 120° and 240°, (e)-(g) recorded holograms with phase shift of 0°, 120° and 240°, (d) and (h) point spread functions from simulated and recorded data, respectively.
Fig. 4
Fig. 4 Experimental results of S and V pattern: (a) and (c) reconstructed images of S and V pattern; (b) and (d) part magnified images of the yellow box area in (a) and (c); (e)normalized intensity Profiles of the identical area from (a) and (c) depicted by the red and blue line.
Fig. 5
Fig. 5 Experimental results: (a) and (c) stained cell’s reconstructed images of S and V pattern; (c) and (d) unstained lymphocytes’ reconstructed images of S and V pattern.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R(x,y)=Bexp[ iπ λ f d1 ( x 2 + y 2 )+i α j ]+ B ( x 2 + y 2 ) m 2 exp[ iπ λ f d2 ( x 2 + y 2 )+imϕ ].
A ( x 2 + y 2 + z s 2 ) 1 2 exp[ik ( x 2 + y 2 + z s 2 ) 1 2 ].
exp[ ( x 2 + y 2 ) σ 1 2 ]exp[ iπ λ z s ( x 2 + y 2 )].
exp[ ( x 2 + y 2 ) σ 2 2 ]exp[ iπ λf ( x 2 + y 2 )].
Bexp[ ( x 2 + y 2 ) σ 2 2 ]exp[ iπ( x 2 + y 2 ) λ f 1 +i α j ]+ B ( x 2 + y 2 ) m 2 exp[ iπ( x 2 + y 2 ) λ f 2 +imϕ].
2π B | β | (m+1) [ ki z h ( x 2 + y 2 ) 1 2 ] m exp[ ( x 2 + y 2 ) σ 4 2 ]exp[ iπ( x 2 + y 2 ) λ f 2h +imθ+i(m+1)δ] +Bexp[ ( x 2 + y 2 ) σ 3 2 ]exp[ iπ( x 2 + y 2 ) λ f 1h +i α j ].
I p (x,y,m)= C 1 (x,y,m)+ C 2 (x,y,m)exp[ iπ λ z r ( x 2 + y 2 )+i α j i(m+1)δimθ]+c.c. .
1 z r = 1 f 1h 1 f 2h .
I p (x,y,m)= D 1 (x,y,m)+ D 2 (x,y,m)×exp{ iπ λ z r [ (x M T x s ) 2 + (y M T y s ) 2 ]+i α j i(m+1)δimθ}+c.c. .
M T = z h f e z s ( f e +d) .
I F ( x,y )= I 1 ( x,y )[ exp( ±i α 3 )exp( ±i α 2 ) ] + I 2 ( x,y )[ exp( ±i α 1 )exp( ±i α 3 ) ] + I 3 ( x,y )[ exp( ±i α 2 )exp( ±i α 1 ) ] .
I psf (x,y,m)= I F (x,y,m)exp[ iπ λ z r ( x 2 + y 2 )].
S(x,y,z,m)=g(x,y,z) I psf (x,y,m).

Metrics