Abstract

We report for the first time the fabrication procedure of monolithic interferometers for one (1-D) and two-dimensional (2-D) spatial heterodyne spectrometer (SHS) with ultraviolet curing adhesive and commercial optical elements. The interferometer alignment was achieved by a feasible alignment adjustment scheme under the conditions of monitoring the interferogram and corresponding 2-D Fourier transform for known light source. A fabricated monolithic interferometer was calibrated and tested using both artificial and natural light sources. Its performance was steadily near the design predictions. The current work provides technical know-how for turning a design into an actual monolithic SHS interferometer.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Two-dimensional spatial heterodyne spectrometer for atmospheric nitrogen dioxide observations

Xiaying Wu, Ying Tan, Yang Yi, Yunpeng Zhang, and Fan Yi
Opt. Express 27(15) 20942-20957 (2019)

Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations

John M. Harlander, Christoph R. Englert, David D. Babcock, and Frederick L. Roesler
Opt. Express 18(25) 26430-26440 (2010)

Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1

John M. Harlander, Fred L. Roesler, Christoph R. Englert, Joel G. Cardon, Robert R. Conway, Charles M. Brown, and Jeff Wimperis
Appl. Opt. 42(15) 2829-2834 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. dissertation (University of Wisconsin, 1991).
  2. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, “Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1,” Appl. Opt. 42(15), 2829–2834 (2003).
    [PubMed]
  3. C. R. Englert, J. M. Harlander, C. M. Brown, and K. D. Marr, “Spatial heterodyne spectroscopy at the Naval Research Laboratory,” Appl. Opt. 54(31), F158–F163 (2015).
    [PubMed]
  4. C. R. Englert, M. H. Stevens, D. E. Siskind, J. M. Harlander, and F. L. Roesler, “Spatial Heterodyne Imager for Mesospheric Radicals on STPSat-1,” J. Geophys. Res. 115, D20306 (2010).
  5. J. M. Harlander, C. R. Englert, D. D. Babcock, and F. L. Roesler, “Design and laboratory tests of a Doppler asymmetric spatial heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations,” Opt. Express 18(25), 26430–26440 (2010).
    [PubMed]
  6. B. Solheim, S. Brown, C. Sioris, and G. Shepherd, “SWIFT-DASH: Spatial Heterodyne Spectroscopy Approach to Stratospheric Wind and Ozone Measurement,” Atmos.-ocean 53, 50–57 (2015).
  7. J. A. Langille, B. Solheim, A. Bourassa, D. Degenstein, S. Brown, and G. G. Shepherd, “Measurement of water vapor using an imaging field-widened spatial heterodyne spectrometer,” Appl. Opt. 56(15), 4297–4308 (2017).
    [PubMed]
  8. J. M. Harlander, C. R. Englert, C. Brown, K. Marr, and I. Miller, “Design and Laboratory Tests of the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) Satellite,” in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM4A.3.
  9. J. M. Harlander, F. L. Roesler, J. G. Cardon, C. R. Englert, and R. R. Conway, “SHIMMER: a spatial heterodyne spectrometer for remote sensing of earth’s middle atmosphere,” Appl. Opt. 41(7), 1343–1352 (2002).
    [PubMed]
  10. J. B. Corliss, W. M. Harris, E. J. Mierkiewicz, and F. L. Roesler, “Development and field tests of a narrowband all-reflective spatial heterodyne spectrometer,” Appl. Opt. 54(30), 8835–8843 (2015).
    [PubMed]
  11. E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751–766 (2004).
  12. G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).
  13. I. B. Gornushkin, B. W. Smith, U. Panne, and N. Omenetto, “Laser-Induced Breakdown Spectroscopy Combined with Spatial Heterodyne Spectroscopy,” Appl. Spectrosc. 68(9), 1076–1084 (2014).
    [PubMed]
  14. C. Wu, F. Yi, “Local ice formation via liquid water growth in slowly ascending humid aerosol/liquidwater layers observed with ground-based lidars and radiosondes,” J. Geophys. Res.122, 2016JD025765 (2017).
  15. A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

2017 (1)

2015 (4)

J. B. Corliss, W. M. Harris, E. J. Mierkiewicz, and F. L. Roesler, “Development and field tests of a narrowband all-reflective spatial heterodyne spectrometer,” Appl. Opt. 54(30), 8835–8843 (2015).
[PubMed]

C. R. Englert, J. M. Harlander, C. M. Brown, and K. D. Marr, “Spatial heterodyne spectroscopy at the Naval Research Laboratory,” Appl. Opt. 54(31), F158–F163 (2015).
[PubMed]

B. Solheim, S. Brown, C. Sioris, and G. Shepherd, “SWIFT-DASH: Spatial Heterodyne Spectroscopy Approach to Stratospheric Wind and Ozone Measurement,” Atmos.-ocean 53, 50–57 (2015).

G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).

2014 (2)

I. B. Gornushkin, B. W. Smith, U. Panne, and N. Omenetto, “Laser-Induced Breakdown Spectroscopy Combined with Spatial Heterodyne Spectroscopy,” Appl. Spectrosc. 68(9), 1076–1084 (2014).
[PubMed]

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

2010 (2)

C. R. Englert, M. H. Stevens, D. E. Siskind, J. M. Harlander, and F. L. Roesler, “Spatial Heterodyne Imager for Mesospheric Radicals on STPSat-1,” J. Geophys. Res. 115, D20306 (2010).

J. M. Harlander, C. R. Englert, D. D. Babcock, and F. L. Roesler, “Design and laboratory tests of a Doppler asymmetric spatial heterodyne (DASH) interferometer for upper atmospheric wind and temperature observations,” Opt. Express 18(25), 26430–26440 (2010).
[PubMed]

2004 (1)

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751–766 (2004).

2003 (1)

2002 (1)

Babcock, D. D.

Berk, A.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

Bourassa, A.

Brown, C. M.

Brown, S.

J. A. Langille, B. Solheim, A. Bourassa, D. Degenstein, S. Brown, and G. G. Shepherd, “Measurement of water vapor using an imaging field-widened spatial heterodyne spectrometer,” Appl. Opt. 56(15), 4297–4308 (2017).
[PubMed]

B. Solheim, S. Brown, C. Sioris, and G. Shepherd, “SWIFT-DASH: Spatial Heterodyne Spectroscopy Approach to Stratospheric Wind and Ozone Measurement,” Atmos.-ocean 53, 50–57 (2015).

Cardon, J. G.

Conforti, P.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

Conway, R. R.

Corliss, J. B.

Degenstein, D.

Englert, C. R.

Fang, X. J.

G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).

Gornushkin, I. B.

Harlander, J. M.

Harris, W. M.

Hawes, F.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

Hu, G. X.

G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).

Jaehnig, K. P.

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751–766 (2004).

Kennett, R.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

Langille, J. A.

Li, Z. W.

G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).

Marr, K. D.

Mierkiewicz, E. J.

J. B. Corliss, W. M. Harris, E. J. Mierkiewicz, and F. L. Roesler, “Development and field tests of a narrowband all-reflective spatial heterodyne spectrometer,” Appl. Opt. 54(30), 8835–8843 (2015).
[PubMed]

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751–766 (2004).

Omenetto, N.

Panne, U.

Perkins, T.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

Reynolds, R. J.

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751–766 (2004).

Roesler, F. L.

Shen, J.

G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).

Shepherd, G.

B. Solheim, S. Brown, C. Sioris, and G. Shepherd, “SWIFT-DASH: Spatial Heterodyne Spectroscopy Approach to Stratospheric Wind and Ozone Measurement,” Atmos.-ocean 53, 50–57 (2015).

Shepherd, G. G.

Shi, H. L.

G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).

Sioris, C.

B. Solheim, S. Brown, C. Sioris, and G. Shepherd, “SWIFT-DASH: Spatial Heterodyne Spectroscopy Approach to Stratospheric Wind and Ozone Measurement,” Atmos.-ocean 53, 50–57 (2015).

Siskind, D. E.

C. R. Englert, M. H. Stevens, D. E. Siskind, J. M. Harlander, and F. L. Roesler, “Spatial Heterodyne Imager for Mesospheric Radicals on STPSat-1,” J. Geophys. Res. 115, D20306 (2010).

Smith, B. W.

Solheim, B.

J. A. Langille, B. Solheim, A. Bourassa, D. Degenstein, S. Brown, and G. G. Shepherd, “Measurement of water vapor using an imaging field-widened spatial heterodyne spectrometer,” Appl. Opt. 56(15), 4297–4308 (2017).
[PubMed]

B. Solheim, S. Brown, C. Sioris, and G. Shepherd, “SWIFT-DASH: Spatial Heterodyne Spectroscopy Approach to Stratospheric Wind and Ozone Measurement,” Atmos.-ocean 53, 50–57 (2015).

Stevens, M. H.

C. R. Englert, M. H. Stevens, D. E. Siskind, J. M. Harlander, and F. L. Roesler, “Spatial Heterodyne Imager for Mesospheric Radicals on STPSat-1,” J. Geophys. Res. 115, D20306 (2010).

van den Bosch, J.

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

Wimperis, J.

Xiong, W.

G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).

Appl. Opt. (5)

Appl. Spectrosc. (1)

Atmos.-ocean (1)

B. Solheim, S. Brown, C. Sioris, and G. Shepherd, “SWIFT-DASH: Spatial Heterodyne Spectroscopy Approach to Stratospheric Wind and Ozone Measurement,” Atmos.-ocean 53, 50–57 (2015).

J. Geophys. Res. (1)

C. R. Englert, M. H. Stevens, D. E. Siskind, J. M. Harlander, and F. L. Roesler, “Spatial Heterodyne Imager for Mesospheric Radicals on STPSat-1,” J. Geophys. Res. 115, D20306 (2010).

Opt. Eng. (1)

G. X. Hu, W. Xiong, H. L. Shi, Z. W. Li, J. Shen, and X. J. Fang, “Raman spectroscopic detection using a two-dimensional spatial heterodyne spectrometer,” Opt. Eng. 54(11), 114101 (2015).

Opt. Express (1)

Proc. SPIE (2)

A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. van den Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative transfer code,” Proc. SPIE 9088, 90880H (2014).

E. J. Mierkiewicz, F. L. Roesler, J. M. Harlander, R. J. Reynolds, and K. P. Jaehnig, “First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies,” Proc. SPIE 5492, 751–766 (2004).

Other (3)

C. Wu, F. Yi, “Local ice formation via liquid water growth in slowly ascending humid aerosol/liquidwater layers observed with ground-based lidars and radiosondes,” J. Geophys. Res.122, 2016JD025765 (2017).

J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Ph.D. dissertation (University of Wisconsin, 1991).

J. M. Harlander, C. R. Englert, C. Brown, K. Marr, and I. Miller, “Design and Laboratory Tests of the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) on the Ionospheric Connection Explorer (ICON) Satellite,” in Fourier Transform Spectroscopy and Hyperspectral Imaging and Sounding of the Environment, OSA Technical Digest (online) (Optical Society of America, 2015), paper FM4A.3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Schematic diagram of the SHS breadboard for fabricating a monolithic interferometer. All the interferometer components apart from one grating (grating 1) had been cemented together in place to form an interferometer subassembly. The final interferometric alignment in the monolith fabrication could be achieved by cementing the grating 1 to the outer spacer (spacer 1) of the interferometer subassembly under the conditions of monitoring the interferograms and corresponding 2-D Fourier transforms. The alignment adjustment prior to cementing was made by rotating the grating 1 slightly with respect to its normal (via the gripper).
Fig. 2
Fig. 2 Photograph of the actual SHS breadboard for fabricating a monolithic interferometer with a layout corresponding to Fig. 1. All the interferometer components apart from one grating (grating 1) had been cemented together in place to form an interferometer subassembly (marked with red line). The interferometer subassembly was installed on a mount, while the grating 1 was clamped onto the outer spacer (spacer 1) of the interferometer subassembly by a gripper that could make the grating 1 rotate slightly with respect to its normal. The final interferometric alignment could be achieved by cementing the grating 1 to the spacer 1 under the conditions of monitoring the interferograms and corresponding 2-D Fourier transforms.
Fig. 3
Fig. 3 The interferograms (top row, a1-d1) and corresponding 2-D Fourier transforms (i.e., power spectra, bottom row, a2-d2) obtained using the 938-962nm bandpass-filtered neon lamp when the grating 1 was rotationally adjusted to four different positions (see text and Fig. 1). Note that the interferograms are 2 × 2 binned to highlight the neon lamp spectral feature.
Fig. 4
Fig. 4 (a) The fringe pattern from the bandpass-filtered white-light lamp under the initial alignment of the 1-D interferometer. Note that the modulation is visible along the zero-path-difference line (band) which results from a slight y tilt of one of the gratings. (b) The fringe pattern at the final alignment. Note that there is a near-uniform modulation along the zero-path-difference line (the line is uniformly dark).
Fig. 5
Fig. 5 (a) 941-nm line interferogram (the 1-D SHS) obtained using a tunable single-frequency diode laser and an integrating sphere with an open output port. (b) An intensity slice through the interferogram. Note that the fringe visibility near the image center is ∼0.73.
Fig. 6
Fig. 6 The interferogram and associated 2-D power spectrum obtained using a 930-950nm bandpass-filtered neon lamp when the final alignment for the 2-D monolithic SHS interferometer was achieved. Eight lines are visible in each of the true and ghost spectra that corresponds to eight emission lines of neon lamp in the spectral range of the bandpass filter. The interferogram is 1 × 2 binned to reduce the number of reads in the non-dispersive direction.
Fig. 7
Fig. 7 (a) 941-nm line interferogram (the 2-D SHS) obtained using a tunable single-frequency diode laser and an integrating sphere with an open output port. (b) An intensity slice through the interferogram. Note that the fringe visibility near the image center is ∼0.41.
Fig. 8
Fig. 8 Optical layout of the integrated 2-D SHS system containing the fabricated monolithic interferometer.
Fig. 9
Fig. 9 Schematic of the optical setup for the wavelength calibration and efficiency characterization of the fabricated 2-D monolithic SHS interferometer. A tunable single-frequency diode laser was used as calibration source. It has a tunable range of 915-985 nm and linewidth of ∼100 kHz. A calibrated super-precision wavemeter (WS-7, HighFinesse) was utilized for absolute wavelength measurement.
Fig. 10
Fig. 10 (a) An example (936.5-nm line) of the monochromatic interferograms obtained using the tunable single-frequency diode laser. (b) Power spectrum of the 2-D Fourier transformed laser line interferogram associated with Fig. 10(a).
Fig. 11
Fig. 11 The peak positions of the scanned laser line spectra (in the 2-D spectral space) viewed by the 2-D SHS containing the current monolithic interferometer. The position points (ο) are from the positive y-frequency (fy) spectrum. The straight line is a linear least square fit to the points. Note that all the position points fall on the straight line, and the spectrum should be retrieved by taking the intensity values along the straight line.
Fig. 12
Fig. 12 A linear least square fit to the calibration data. The calibration source is a tunable single-frequency diode laser. The x-frequency of the data points is abscissas (fx) of the spectral peak positions associated with the laser line spectra, while the wavenumber (wavelength) value of the data points stands for absolute wavenumber (wavelength) of the laser lines.
Fig. 13
Fig. 13 The overall efficiency profile of the 2-D SHS obtained by combining the spectral peak intensity values taken along the fitted straight line (see Fig. 11) with corresponding power values measured by the power meter. The individual peaks (colored) represent the instrumental line shape functions at spectral line positions that the laser is tuned to. They all have a full-width at half-maximum (FWHM) of ∼0.27 cm−1.
Fig. 14
Fig. 14 The equatorial telescope connecting with the 2-D SHS system by a fiber installed at our atmospheric observation site on the campus of Wuhan University in Wuhan (30.5°N, 114.4°E), China. The equatorial telescope can keep tracking the solar disk. Direct solar-irradiance spectra around 940-nm water vapor absorption band were measured with the SHS system under clear-sky conditions.
Fig. 15
Fig. 15 Ground-based observed solar spectrum around 940-nm water vapor absorption band by the current 2-D SHS at 1707 LT on 29 April 2017 (red) and associated simulated result using MODTRAN (blue). The observed spectrum represents an example of low water-vapour content (1.01 g cm−2). Note that the spectral features of the SHS solar spectrum and simulated one match very well in the spectral range of 10540-10740 cm−1 (931.10-948.77 nm).
Fig. 16
Fig. 16 Ground-based observed solar spectrum around 940-nm water vapor absorption band by the current 2-D SHS at 1444 LT on 21 July 2017 (red) and simulated result using MODTRAN (blue). The observed spectrum represents an example of high water-vapour content (6.09 g cm−2). Note that the spectral features of the SHS solar spectrum and simulated one match very well in the spectral range of 10540-10740 cm−1 (931.10-948.77 nm).

Tables (1)

Tables Icon

Table 1 Design Parameters of the 1-D and 2-D Monolithic SHS Interferometer

Metrics