Abstract

Based on the heavily Er3+/Yb3+ co-doped phosphate glass fiber (EYPF) with a larger emission cross-section, an efficient linearly-polarized single-frequency distributed Bragg reflector fiber laser at 1603 nm is demonstrated. By balancing the cavity length against the longitudinal mode spacing, a stable single-longitudinal-mode laser with more than 20 mW is generated from a 16-mm-long EYPF. The measured relative intensity noise of the fiber laser is less than –140 dB/Hz at frequencies of over 5 MHz. The signal-to-noise ratio is greater than 62 dB and the linewidth is less than 1.9 kHz, while the obtained polarization extinction ratio is higher than 25 dB. The L-band operating combined with the narrow linewidth and low noise characteristic makes this laser an ideal candidate for high-resolution molecular spectroscopy and coherent lidar applications.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
15 W high OSNR kHz-linewidth linearly-polarized all-fiber single-frequency MOPA at 1.6 μm

Changsheng Yang, Xianchao Guan, Qilai Zhao, Wei Lin, Can Li, Jiulin Gan, Qi Qian, Zhouming Feng, Zhongmin Yang, and Shanhui Xu
Opt. Express 26(10) 12863-12869 (2018)

1120 nm kHz-linewidth single-polarization single-frequency Yb-doped phosphate fiber laser

Changsheng Yang, Qilai Zhao, Zhouming Feng, Mingying Peng, Zhongmin Yang, and Shanhui Xu
Opt. Express 24(26) 29794-29799 (2016)

High-efficiency sub-watt in-band-pumped single-frequency DBR Tm3+-doped germanate fiber laser at 1950 nm

Xianchao Guan, Changsheng Yang, Tian Qiao, Wei Lin, Qilai Zhao, Guowu Tang, Guoquan Qian, Qi Qian, Zhongmin Yang, and Shanhui Xu
Opt. Express 26(6) 6817-6825 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
    [PubMed]
  2. N. W. H. Chang, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Stable single-frequency Er:YAG laser at 1.6 μm,” IEEE J Quantum. Electron. 46(7), 1039–1042 (2010).
  3. Y. Deng, B. Q. Yao, Y. L. Ju, X. M. Duan, T. Y. Dai, and Y. Z. Wang, “A diode-pumped 1617 nm single longitudinal mode Er:YAG laser with intra-cavity etalons,” Chin. Phys. Lett. 31(7), 074202 (2014).
  4. E. Fujita, Y. Mashiko, S. Asaya, M. Musha, and M. Tokurakawa, “High power narrow-linewidth linearly-polarized 1610 nm Er:Yb all-fiber MOPA,” Opt. Express 24(23), 26255–26260 (2016).
    [PubMed]
  5. M. A. Khamis and K. Ennser, “Theoretical model of a Thulium-doped fiber amplifier pumped at 1570 nm and 793 nm in the presence of cross relaxation,” J. Lightwave Technol. 34(24), 5675–5681 (2016).
  6. X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
    [PubMed]
  7. S. J. Fu, W. Shi, Y. Feng, L. Zhang, Z. M. Yang, S. H. Xu, X. S. Zhu, R. A. Norwood, and N. Peyghambarian, “Review of recent progress on single-frequency fiber laser [invited],” J. Opt. Soc. Am. B 34(3), A49–A62 (2017).
    [PubMed]
  8. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm,” Opt. Lett. 31(6), 754–756 (2006).
    [PubMed]
  9. L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).
  10. A. Meissner, P. Kucireka, J. Lib, S. Yangb, M. Hoefera, and D. Hoffmanna, “Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 μm,” Proc. SPIE 8599, 85990H (2013).
  11. L. Wang, Q. Ye, M. Gao, C. Gao, and S. Wang, “Stable high-power Er:YAG ceramic single-frequency laser at 1645 nm,” Opt. Express 24(13), 14966–14973 (2016).
    [PubMed]
  12. Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
    [PubMed]
  13. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).
  14. S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
    [PubMed]
  15. X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).
  16. C. Yang, X. Guan, Q. Zhao, B. Wu, Z. Feng, J. Gan, H. Cheng, M. Peng, Z. Yang, and S. Xu, “High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser,” Opt. Express 25(12), 13324–13331 (2017).
    [PubMed]
  17. S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
    [PubMed]
  18. C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
    [PubMed]
  19. P. Hofmann, C. Voigtländer, S. Nolte, N. Peyghambarian, and A. Schülzgen, “550-mW output power from a narrow linewidth all-phosphate fiber laser,” J. Lightwave Technol. 31(5), 756–760 (2013).
  20. M. Sejka, P. Varming, J. Hubner, and M. Kristensen, “Distributed feedback Er3+-doped fibre laser,” Electron. Lett. 31(17), 1445–1446 (1995).
  21. J. J. Pan and Y. Shi, “166-mW single-frequency output power interactive fiber lasers with low noise,” IEEE Photonics Technol. Lett. 11(1), 36–38 (1999).
  22. Z. G. Lu and C. P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photonics Technol. Lett. 17(1), 22–24 (2005).
  23. A. Polynkin, P. Polynkin, M. Mansuripur, and N. Peyghambarian, “Single-frequency fiber ring laser with 1W output power at 1.5 µm,” Opt. Express 13(8), 3179–3184 (2005).
    [PubMed]
  24. M. Kar’asek, “The design of L-band EDFA for multiwavelength applications,” J. Opt. A, Pure Appl. Opt. 3, 96–102 (2001).
  25. B. Zhu, M. Law, J. Rooney, S. Shenk, M. F. Yan, and D. J. DiGiovanni, “High-power broadband Yb-free clad-pumped EDFA for L-band DWDM applications,” Opt. Lett. 39(1), 72–75 (2014).
    [PubMed]
  26. T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).
  27. S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).
  28. C. Yang, S. Xu, C. Li, S. Mo, Z. Feng, Z. Yang, and Z. Jiang, “Ultra compact kilohertz-linewidth high-power single-frequency laser based on Er3+/Yb3+-codoped phosphate fiber amplifier,” Appl. Phys. Express 6(2), 022703 (2013).
  29. F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
    [PubMed]
  30. G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).
  31. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).
  32. G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).
  33. Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
    [PubMed]
  34. C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
    [PubMed]
  35. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [PubMed]
  36. S. Fu, W. Shi, J. Lin, Q. Fang, Q. Sheng, H. Zhang, J. Wen, and J. Yao, “Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber,” Opt. Lett. 40(22), 5283–5286 (2015).
    [PubMed]
  37. C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).
  38. Q. Wang and N. K. Dutta, “Er-Yb doped double clad fiber amplifier,” Proc. SPIE 5246, 208–215 (2003).
  39. E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).

2017 (2)

2016 (6)

2015 (3)

2014 (4)

2013 (6)

2012 (1)

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).

2010 (3)

2009 (1)

S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).

2006 (2)

2005 (2)

Z. G. Lu and C. P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photonics Technol. Lett. 17(1), 22–24 (2005).

A. Polynkin, P. Polynkin, M. Mansuripur, and N. Peyghambarian, “Single-frequency fiber ring laser with 1W output power at 1.5 µm,” Opt. Express 13(8), 3179–3184 (2005).
[PubMed]

2004 (2)

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).

2003 (1)

Q. Wang and N. K. Dutta, “Er-Yb doped double clad fiber amplifier,” Proc. SPIE 5246, 208–215 (2003).

2001 (2)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).

M. Kar’asek, “The design of L-band EDFA for multiwavelength applications,” J. Opt. A, Pure Appl. Opt. 3, 96–102 (2001).

1999 (1)

J. J. Pan and Y. Shi, “166-mW single-frequency output power interactive fiber lasers with low noise,” IEEE Photonics Technol. Lett. 11(1), 36–38 (1999).

1995 (1)

M. Sejka, P. Varming, J. Hubner, and M. Kristensen, “Distributed feedback Er3+-doped fibre laser,” Electron. Lett. 31(17), 1445–1446 (1995).

1994 (1)

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).

Andrés, M. V.

Asaya, S.

Bai, X.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

Barmenkov, Y. O.

Barnard, C.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).

Chang, N. W. H.

N. W. H. Chang, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Stable single-frequency Er:YAG laser at 1.6 μm,” IEEE J Quantum. Electron. 46(7), 1039–1042 (2010).

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
[PubMed]

Chen, D.

Cheng, H.

Cheng, J.

Chrostowski, J.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).

Clarkson, W. A.

Cruz, J. L.

Dai, T. Y.

Y. Deng, B. Q. Yao, Y. L. Ju, X. M. Duan, T. Y. Dai, and Y. Z. Wang, “A diode-pumped 1617 nm single longitudinal mode Er:YAG laser with intra-cavity etalons,” Chin. Phys. Lett. 31(7), 074202 (2014).

Deng, H.

Deng, Y.

Y. Deng, B. Q. Yao, Y. L. Ju, X. M. Duan, T. Y. Dai, and Y. Z. Wang, “A diode-pumped 1617 nm single longitudinal mode Er:YAG laser with intra-cavity etalons,” Chin. Phys. Lett. 31(7), 074202 (2014).

DiGiovanni, D. J.

Duan, X. M.

Y. Deng, B. Q. Yao, Y. L. Ju, X. M. Duan, T. Y. Dai, and Y. Z. Wang, “A diode-pumped 1617 nm single longitudinal mode Er:YAG laser with intra-cavity etalons,” Chin. Phys. Lett. 31(7), 074202 (2014).

Dutta, N. K.

Q. Wang and N. K. Dutta, “Er-Yb doped double clad fiber amplifier,” Proc. SPIE 5246, 208–215 (2003).

Ennser, K.

Fang, Q.

Fang, Z.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

Feng, Y.

Feng, Z.

C. Yang, X. Guan, Q. Zhao, B. Wu, Z. Feng, J. Gan, H. Cheng, M. Peng, Z. Yang, and S. Xu, “High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser,” Opt. Express 25(12), 13324–13331 (2017).
[PubMed]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[PubMed]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[PubMed]

C. Yang, S. Xu, C. Li, S. Mo, Z. Feng, Z. Yang, and Z. Jiang, “Ultra compact kilohertz-linewidth high-power single-frequency laser based on Er3+/Yb3+-codoped phosphate fiber amplifier,” Appl. Phys. Express 6(2), 022703 (2013).

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[PubMed]

S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).

Feng, Z. M.

Fu, S.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

S. Fu, W. Shi, J. Lin, Q. Fang, Q. Sheng, H. Zhang, J. Wen, and J. Yao, “Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber,” Opt. Lett. 40(22), 5283–5286 (2015).
[PubMed]

Fu, S. J.

Fujita, E.

Gan, J.

Gao, C.

Gao, C. Q.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).

Gao, M.

Gao, M. W.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).

Geng, J.

Grover, C. P.

Z. G. Lu and C. P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photonics Technol. Lett. 17(1), 22–24 (2005).

Guan, X.

Hoefera, M.

A. Meissner, P. Kucireka, J. Lib, S. Yangb, M. Hoefera, and D. Hoffmanna, “Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 μm,” Proc. SPIE 8599, 85990H (2013).

Hoffmanna, D.

A. Meissner, P. Kucireka, J. Lib, S. Yangb, M. Hoefera, and D. Hoffmanna, “Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 μm,” Proc. SPIE 8599, 85990H (2013).

Hofmann, P.

Hosken, D. J.

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
[PubMed]

N. W. H. Chang, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Stable single-frequency Er:YAG laser at 1.6 μm,” IEEE J Quantum. Electron. 46(7), 1039–1042 (2010).

Hu, L.

Hu, Y.

Huang, F.

Huang, X.

Hubner, J.

M. Sejka, P. Varming, J. Hubner, and M. Kristensen, “Distributed feedback Er3+-doped fibre laser,” Electron. Lett. 31(17), 1445–1446 (1995).

Jiang, S.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, “Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003),” J. Lightwave Technol. 22(1), 57–62 (2004).

Jiang, Z.

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[PubMed]

C. Yang, S. Xu, C. Li, S. Mo, Z. Feng, Z. Yang, and Z. Jiang, “Ultra compact kilohertz-linewidth high-power single-frequency laser based on Er3+/Yb3+-codoped phosphate fiber amplifier,” Appl. Phys. Express 6(2), 022703 (2013).

S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).

Jiang, Z. H.

Ju, Y. L.

Y. Deng, B. Q. Yao, Y. L. Ju, X. M. Duan, T. Y. Dai, and Y. Z. Wang, “A diode-pumped 1617 nm single longitudinal mode Er:YAG laser with intra-cavity etalons,” Chin. Phys. Lett. 31(7), 074202 (2014).

Kaneda, Y.

Kar’asek, M.

M. Kar’asek, “The design of L-band EDFA for multiwavelength applications,” J. Opt. A, Pure Appl. Opt. 3, 96–102 (2001).

Kavehrad, M.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).

Khamis, M. A.

Kristensen, M.

M. Sejka, P. Varming, J. Hubner, and M. Kristensen, “Distributed feedback Er3+-doped fibre laser,” Electron. Lett. 31(17), 1445–1446 (1995).

Kucireka, P.

A. Meissner, P. Kucireka, J. Lib, S. Yangb, M. Hoefera, and D. Hoffmanna, “Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 μm,” Proc. SPIE 8599, 85990H (2013).

Law, M.

Li, C.

Li, L.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

Lib, J.

A. Meissner, P. Kucireka, J. Lib, S. Yangb, M. Hoefera, and D. Hoffmanna, “Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 μm,” Proc. SPIE 8599, 85990H (2013).

Lin, J.

Lin, W.

Liu, T.

Liu, W.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).

Liu, X.

Lu, Z. G.

Z. G. Lu and C. P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photonics Technol. Lett. 17(1), 22–24 (2005).

Luo, T.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

Mafi, A.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

Mansuripur, M.

Mashiko, Y.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).

Meissner, A.

A. Meissner, P. Kucireka, J. Lib, S. Yangb, M. Hoefera, and D. Hoffmanna, “Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 μm,” Proc. SPIE 8599, 85990H (2013).

Mo, S.

Moloney, J. V.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

Munch, J.

N. W. H. Chang, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Stable single-frequency Er:YAG laser at 1.6 μm,” IEEE J Quantum. Electron. 46(7), 1039–1042 (2010).

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
[PubMed]

Musha, M.

Myslinski, P.

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).

Nolte, S.

Norwood, R. A.

Ottaway, D. J.

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
[PubMed]

N. W. H. Chang, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Stable single-frequency Er:YAG laser at 1.6 μm,” IEEE J Quantum. Electron. 46(7), 1039–1042 (2010).

Pan, J. J.

J. J. Pan and Y. Shi, “166-mW single-frequency output power interactive fiber lasers with low noise,” IEEE Photonics Technol. Lett. 11(1), 36–38 (1999).

Peng, M.

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Qian, G.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

Qian, Q.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).

Qiao, T.

Qiu, T.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

Rønnekleiv, E.

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).

Rooney, J.

Sahu, J. K.

Schülzgen, A.

P. Hofmann, C. Voigtländer, S. Nolte, N. Peyghambarian, and A. Schülzgen, “550-mW output power from a narrow linewidth all-phosphate fiber laser,” J. Lightwave Technol. 31(5), 756–760 (2013).

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

Sejka, M.

M. Sejka, P. Varming, J. Hubner, and M. Kristensen, “Distributed feedback Er3+-doped fibre laser,” Electron. Lett. 31(17), 1445–1446 (1995).

Shan, X.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

Shen, D. Y.

Sheng, Q.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

S. Fu, W. Shi, J. Lin, Q. Fang, Q. Sheng, H. Zhang, J. Wen, and J. Yao, “Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber,” Opt. Lett. 40(22), 5283–5286 (2015).
[PubMed]

Shenk, S.

Shi, W.

Shi, Y.

J. J. Pan and Y. Shi, “166-mW single-frequency output power interactive fiber lasers with low noise,” IEEE Photonics Technol. Lett. 11(1), 36–38 (1999).

Shi, Z.

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

Si, L.

Simakov, N.

Spiegelberg, C.

Sun, M.

Tang, G.

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

Temyanko, V. L.

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

Tokurakawa, M.

Torres-Peiró, S.

Varming, P.

M. Sejka, P. Varming, J. Hubner, and M. Kristensen, “Distributed feedback Er3+-doped fibre laser,” Electron. Lett. 31(17), 1445–1446 (1995).

Veitch, P. J.

N. W. H. Chang, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Stable single-frequency Er:YAG laser at 1.6 μm,” IEEE J Quantum. Electron. 46(7), 1039–1042 (2010).

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
[PubMed]

Voigtländer, C.

Wang, L.

Wang, Q.

Q. Wang and N. K. Dutta, “Er-Yb doped double clad fiber amplifier,” Proc. SPIE 5246, 208–215 (2003).

Wang, R.

Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
[PubMed]

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).

Wang, S.

Wang, X.

Wang, Y. Z.

Y. Deng, B. Q. Yao, Y. L. Ju, X. M. Duan, T. Y. Dai, and Y. Z. Wang, “A diode-pumped 1617 nm single longitudinal mode Er:YAG laser with intra-cavity etalons,” Chin. Phys. Lett. 31(7), 074202 (2014).

Wen, J.

Wu, B.

Xiao, H.

Xiao, Y.

Xu, S.

C. Yang, X. Guan, Q. Zhao, B. Wu, Z. Feng, J. Gan, H. Cheng, M. Peng, Z. Yang, and S. Xu, “High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser,” Opt. Express 25(12), 13324–13331 (2017).
[PubMed]

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[PubMed]

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[PubMed]

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[PubMed]

C. Yang, S. Xu, C. Li, S. Mo, Z. Feng, Z. Yang, and Z. Jiang, “Ultra compact kilohertz-linewidth high-power single-frequency laser based on Er3+/Yb3+-codoped phosphate fiber amplifier,” Appl. Phys. Express 6(2), 022703 (2013).

S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).

Xu, S. H.

Xu, W.

S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).

Yan, M. F.

Yang, C.

Yang, Z.

C. Yang, X. Guan, Q. Zhao, B. Wu, Z. Feng, J. Gan, H. Cheng, M. Peng, Z. Yang, and S. Xu, “High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser,” Opt. Express 25(12), 13324–13331 (2017).
[PubMed]

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 μm laser applications,” Opt. Mater. Express 6(6), 2147–2157 (2016).

Q. Zhao, S. Xu, K. Zhou, C. Yang, C. Li, Z. Feng, M. Peng, H. Deng, and Z. Yang, “Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser,” Opt. Lett. 41(7), 1333–1335 (2016).
[PubMed]

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

C. Li, S. Xu, X. Huang, Y. Xiao, Z. Feng, C. Yang, K. Zhou, W. Lin, J. Gan, and Z. Yang, “All-optical frequency and intensity noise suppression of single-frequency fiber laser,” Opt. Lett. 40(9), 1964–1967 (2015).
[PubMed]

S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[PubMed]

C. Yang, S. Xu, C. Li, S. Mo, Z. Feng, Z. Yang, and Z. Jiang, “Ultra compact kilohertz-linewidth high-power single-frequency laser based on Er3+/Yb3+-codoped phosphate fiber amplifier,” Appl. Phys. Express 6(2), 022703 (2013).

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[PubMed]

S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).

Yang, Z. M.

Yangb, S.

A. Meissner, P. Kucireka, J. Lib, S. Yangb, M. Hoefera, and D. Hoffmanna, “Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 μm,” Proc. SPIE 8599, 85990H (2013).

Yao, B. Q.

Y. Deng, B. Q. Yao, Y. L. Ju, X. M. Duan, T. Y. Dai, and Y. Z. Wang, “A diode-pumped 1617 nm single longitudinal mode Er:YAG laser with intra-cavity etalons,” Chin. Phys. Lett. 31(7), 074202 (2014).

Yao, J.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

S. Fu, W. Shi, J. Lin, Q. Fang, Q. Sheng, H. Zhang, J. Wen, and J. Yao, “Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber,” Opt. Lett. 40(22), 5283–5286 (2015).
[PubMed]

Ye, Q.

Zalvidea, D.

Zhang, H.

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

S. Fu, W. Shi, J. Lin, Q. Fang, Q. Sheng, H. Zhang, J. Wen, and J. Yao, “Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber,” Opt. Lett. 40(22), 5283–5286 (2015).
[PubMed]

Zhang, L.

Zhang, Q.

S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).

Zhang, Q. Y.

Zhang, W.

Zhang, W. N.

Zhao, Q.

Zheng, Y.

Y. Zheng, C. Gao, R. Wang, M. Gao, and Q. Ye, “Single frequency 1645 nm Er:YAG nonplanar ring oscillator resonantly pumped by a 1470 nm laser diode,” Opt. Lett. 38(5), 784–786 (2013).
[PubMed]

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).

Zhou, K.

Zhou, P.

Zhu, B.

Zhu, L. N.

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).

Zhu, T.

Zhu, X. S.

Appl. Phys. Express (1)

C. Yang, S. Xu, C. Li, S. Mo, Z. Feng, Z. Yang, and Z. Jiang, “Ultra compact kilohertz-linewidth high-power single-frequency laser based on Er3+/Yb3+-codoped phosphate fiber amplifier,” Appl. Phys. Express 6(2), 022703 (2013).

Chin. Phys. Lett. (2)

S. Xu, Z. Yang, Z. Feng, Q. Zhang, Z. Jiang, and W. Xu, “Efficient fibre amplifiers based on a highly Er3+/Yb3+ co-doped phosphate glass-fibre,” Chin. Phys. Lett. 26(24), 047806 (2009).

Y. Deng, B. Q. Yao, Y. L. Ju, X. M. Duan, T. Y. Dai, and Y. Z. Wang, “A diode-pumped 1617 nm single longitudinal mode Er:YAG laser with intra-cavity etalons,” Chin. Phys. Lett. 31(7), 074202 (2014).

Electron. Lett. (1)

M. Sejka, P. Varming, J. Hubner, and M. Kristensen, “Distributed feedback Er3+-doped fibre laser,” Electron. Lett. 31(17), 1445–1446 (1995).

IEEE J Quantum. Electron. (1)

N. W. H. Chang, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Stable single-frequency Er:YAG laser at 1.6 μm,” IEEE J Quantum. Electron. 46(7), 1039–1042 (2010).

IEEE J. Quantum Electron. (1)

C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. Quantum Electron. 30(8), 1817–1830 (1994).

IEEE Photonics J. (1)

X. Bai, Q. Sheng, H. Zhang, S. Fu, W. Shi, and J. Yao, “High-power all-fiber single-frequency Erbium–Ytterbium co-doped fiber master oscillator power amplifier,” IEEE Photonics J. 7(6), 7103106 (2015).

IEEE Photonics Technol. Lett. (3)

J. J. Pan and Y. Shi, “166-mW single-frequency output power interactive fiber lasers with low noise,” IEEE Photonics Technol. Lett. 11(1), 36–38 (1999).

Z. G. Lu and C. P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photonics Technol. Lett. 17(1), 22–24 (2005).

T. Qiu, L. Li, A. Schülzgen, V. L. Temyanko, T. Luo, S. Jiang, A. Mafi, J. V. Moloney, and N. Peyghambarian, “Generation of 9.3-W multimode and 4-W single-mode output from 7-cm short fiber lasers,” IEEE Photonics Technol. Lett. 16(12), 2592–2594 (2004).

J. Lightwave Technol. (3)

J. Non-Cryst. Solids (1)

G. Tang, Z. Fang, Q. Qian, G. Qian, W. Liu, Z. Shi, X. Shan, D. Chen, and Z. Yang, “Silicate-clad highly Er3+/Yb3+ co-doped phosphate core multimaterial fibers,” J. Non-Cryst. Solids 452, 82–86 (2016).

J. Opt. A, Pure Appl. Opt. (1)

M. Kar’asek, “The design of L-band EDFA for multiwavelength applications,” J. Opt. A, Pure Appl. Opt. 3, 96–102 (2001).

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

L. N. Zhu, C. Q. Gao, R. Wang, Y. Zheng, and M. W. Gao, “Fiber-bulk hybrid Er:YAG laser with 1617 nm single frequency laser output,” Laser Phys. Lett. 9(9), 674–677 (2012).

Opt. Express (10)

L. Wang, Q. Ye, M. Gao, C. Gao, and S. Wang, “Stable high-power Er:YAG ceramic single-frequency laser at 1645 nm,” Opt. Express 24(13), 14966–14973 (2016).
[PubMed]

S. H. Xu, Z. M. Yang, T. Liu, W. N. Zhang, Z. M. Feng, Q. Y. Zhang, and Z. H. Jiang, “An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 µm,” Opt. Express 18(2), 1249–1254 (2010).
[PubMed]

C. Yang, X. Guan, Q. Zhao, B. Wu, Z. Feng, J. Gan, H. Cheng, M. Peng, Z. Yang, and S. Xu, “High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser,” Opt. Express 25(12), 13324–13331 (2017).
[PubMed]

X. Wang, P. Zhou, X. Wang, H. Xiao, and L. Si, “102 W monolithic single frequency Tm-doped fiber MOPA,” Opt. Express 21(26), 32386–32392 (2013).
[PubMed]

N. W. H. Chang, N. Simakov, D. J. Hosken, J. Munch, D. J. Ottaway, and P. J. Veitch, “Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm,” Opt. Express 18(13), 13673–13678 (2010).
[PubMed]

E. Fujita, Y. Mashiko, S. Asaya, M. Musha, and M. Tokurakawa, “High power narrow-linewidth linearly-polarized 1610 nm Er:Yb all-fiber MOPA,” Opt. Express 24(23), 26255–26260 (2016).
[PubMed]

C. Yang, S. Xu, S. Mo, C. Li, Z. Feng, D. Chen, Z. Yang, and Z. Jiang, “10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm,” Opt. Express 21(10), 12546–12551 (2013).
[PubMed]

A. Polynkin, P. Polynkin, M. Mansuripur, and N. Peyghambarian, “Single-frequency fiber ring laser with 1W output power at 1.5 µm,” Opt. Express 13(8), 3179–3184 (2005).
[PubMed]

F. Huang, J. Cheng, X. Liu, L. Hu, and D. Chen, “Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications,” Opt. Express 22(17), 20924–20935 (2014).
[PubMed]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
[PubMed]

Opt. Fiber Technol. (1)

E. Rønnekleiv, “Frequency and intensity noise of single frequency fiber Bragg grating lasers,” Opt. Fiber Technol. 7(3), 206–235 (2001).

Opt. Lett. (7)

Opt. Mater. Express (1)

Phys. Rev. (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136(4A), A954–A957 (1964).

Proc. SPIE (2)

A. Meissner, P. Kucireka, J. Lib, S. Yangb, M. Hoefera, and D. Hoffmanna, “Simulations and experiments on resonantly-pumped single-frequency Erbium lasers at 1.6 μm,” Proc. SPIE 8599, 85990H (2013).

Q. Wang and N. K. Dutta, “Er-Yb doped double clad fiber amplifier,” Proc. SPIE 5246, 208–215 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Net gains versus the pump powers of a 30-mm-long EYPF for different input powers. Inset: cross section of the EYPF.
Fig. 2
Fig. 2 Experiment setup of 1.6 μm linearly-polarized DBR SFFL. (HR-FBG: high-reflection fiber Bragg grating; PM-FBG: polarization-maintaining fiber Bragg grating; EYPF: Er3+/Yb3+ co-doped phosphate fiber; PM-WDM: polarization-maintaining wavelength division multiplexer; PM-ISO: polarization-maintaining isolator; LD: laser diode).
Fig. 3
Fig. 3 (a) Simulation results of output powers as a function of the fiber lengths (blue line) at the reflectivity of 90% and the reflectivity of PM-FBG (red point) at the fiber length of 20 mm. (b) Single longitudinal mode operation of the fiber laser with a 16-mm-long EYPF.
Fig. 4
Fig. 4 (a) Measured laser output power as a function of the pump power. (b) Output spectrum of the fiber laser.
Fig. 5
Fig. 5 (a) Measured self-heterodyne spectrum of the fiber laser. (b) Measured RIN of the fiber laser and the SNL are also shown for comparison in the frequency band of 0–50 MHz. Inset: power stability of the fiber laser over 2.5 hours.

Tables (1)

Tables Icon

Table 1 Optical parameters of different doped fibers

Metrics