Abstract

The mode discrimination criterion for single mode operation, usually considered in fiber amplifiers designed for high power operation, has been investigated and tested on three different fiber designs, a large pitch fiber and two symmetry free photonic crystal fibers. To have a significant collection of results, parameters like pump configuration, pump power, and amplifier length have been varied. The analysis has been carried out through the use of a custom numerical tool provided with efficient thermal and spatial amplification models. From the obtained results, it is possible to observe that the mode discrimination criterion is helpful but not strictly necessary to pledge an effective single mode operation through differential amplification. This fact extends the possibility for the study, as well as for the optimization, of different fiber designs. The use of advanced numerical analysis, which takes into consideration amplification along with thermally influenced modes guidance, becomes extremely useful for an effective fiber design.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding

E. Coscelli, C. Molardi, M. Masruri, A. Cucinotta, and S. Selleri
Opt. Express 22(8) 9707-9714 (2014)

Thermally induced mode loss evolution in the coiled ytterbium doped large mode area fiber

Lingchao Kong, Jinyong Leng, Pu Zhou, and Zongfu Jiang
Opt. Express 25(19) 23437-23450 (2017)

Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier

Lorenzo Rosa, Enrico Coscelli, Federica Poli, Annamaria Cucinotta, and Stefano Selleri
Opt. Express 23(14) 18638-18644 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
    [Crossref]
  2. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  3. W. Shi, Q. Fang, X. Zhu, R. A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications [invited],” Appl. Opt. 53(28), 6554–6568 (2014).
    [Crossref] [PubMed]
  4. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  5. T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
    [Crossref]
  6. F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
    [Crossref]
  7. J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1, e8 (2012).
    [Crossref]
  8. M. Laurila, M. Jørgensen, K. Hansen, T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
    [Crossref] [PubMed]
  9. L. Dong, H. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
    [Crossref] [PubMed]
  10. X. Ma, C. Zhu, I. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50μm diameter cores,” Opt. Express 22(8) , 9206–9219 (2014).
    [Crossref] [PubMed]
  11. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightw. Technol. 23(11), 3580–3590 (2005).
    [Crossref]
  12. D. K. Sharma and A. Sharma, “Characteristic of microstructured optical fibers: an analytical approach,” Opt. Quantum Electron. 44(8), 415–424 (2012).
    [Crossref]
  13. M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
    [Crossref] [PubMed]
  14. R. Dauliat, D. Gaponov, A. Benoit, F. Salin, K. Schuster, R. Jamier, and P. Roy, “Inner cladding microstructuration based on symmetry reduction for improvement of singlemode robustness in VLMA fiber,” Opt. Express 21(16), 18927–18936 (2013).
    [Crossref] [PubMed]
  15. E. Coscelli, C. Molardi, M. Masruri, A. Cucinotta, and S. Selleri, “Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding,” Opt. Express 22(8), 9707–9714 (2014).
    [Crossref] [PubMed]
  16. E. Coscelli, C. Molardi, A. Cucinotta, and S. Selleri,“Symmetry-Free Tm-Doped Photonic Crystal Fiber With Enhanced Mode Area,” IEEE J. Sel. Top. Quantum Electron. 20(5), 544–550 (2014).
    [Crossref]
  17. C. Molardi, B. Sun, X. Yu, A. Cucinotta, and S. Selleri, “Polarization-Maintaining Large Mode Area Fiber Design for 2-μ m Operation,” IEEE Photon. Technol. Lett. 28(22), 2483–2486 (2016).
    [Crossref]
  18. L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
    [Crossref]
  19. F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-Mode Propagation in Yb-Doped Large Mode Area Fibers With Reduced Cladding Symmetry,” IEEE Photon. Technol. Lett. 26(24), 2454–2457 (2014).
    [Crossref]
  20. L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri,“Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
    [Crossref] [PubMed]
  21. F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Non-hexagonal Large-Pitch Fibers for enhanced mode discrimination,” Opt. Express 19(13), 12081–12086 (2011).
    [Crossref] [PubMed]
  22. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]
  23. S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
    [Crossref] [PubMed]
  24. E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
    [Crossref]

2016 (2)

C. Molardi, B. Sun, X. Yu, A. Cucinotta, and S. Selleri, “Polarization-Maintaining Large Mode Area Fiber Design for 2-μ m Operation,” IEEE Photon. Technol. Lett. 28(22), 2483–2486 (2016).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

2015 (1)

2014 (7)

2013 (3)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
[Crossref]

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

R. Dauliat, D. Gaponov, A. Benoit, F. Salin, K. Schuster, R. Jamier, and P. Roy, “Inner cladding microstructuration based on symmetry reduction for improvement of singlemode robustness in VLMA fiber,” Opt. Express 21(16), 18927–18936 (2013).
[Crossref] [PubMed]

2012 (5)

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1, e8 (2012).
[Crossref]

M. Laurila, M. Jørgensen, K. Hansen, T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

D. K. Sharma and A. Sharma, “Characteristic of microstructured optical fibers: an analytical approach,” Opt. Quantum Electron. 44(8), 415–424 (2012).
[Crossref]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
[Crossref] [PubMed]

2011 (1)

2009 (1)

2006 (1)

2005 (1)

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightw. Technol. 23(11), 3580–3590 (2005).
[Crossref]

2003 (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Alkeskjold, T.

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

M. Laurila, M. Jørgensen, K. Hansen, T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

Alkeskjold, T. T.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
[Crossref] [PubMed]

Benoit, A.

Broeng, J.

M. Laurila, M. Jørgensen, K. Hansen, T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Chen, D.

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Coscelli, E.

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri,“Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

E. Coscelli, C. Molardi, M. Masruri, A. Cucinotta, and S. Selleri, “Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding,” Opt. Express 22(8), 9707–9714 (2014).
[Crossref] [PubMed]

E. Coscelli, C. Molardi, A. Cucinotta, and S. Selleri,“Symmetry-Free Tm-Doped Photonic Crystal Fiber With Enhanced Mode Area,” IEEE J. Sel. Top. Quantum Electron. 20(5), 544–550 (2014).
[Crossref]

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-Mode Propagation in Yb-Doped Large Mode Area Fibers With Reduced Cladding Symmetry,” IEEE Photon. Technol. Lett. 26(24), 2454–2457 (2014).
[Crossref]

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

Cucinotta, A.

C. Molardi, B. Sun, X. Yu, A. Cucinotta, and S. Selleri, “Polarization-Maintaining Large Mode Area Fiber Design for 2-μ m Operation,” IEEE Photon. Technol. Lett. 28(22), 2483–2486 (2016).
[Crossref]

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri,“Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

E. Coscelli, C. Molardi, M. Masruri, A. Cucinotta, and S. Selleri, “Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding,” Opt. Express 22(8), 9707–9714 (2014).
[Crossref] [PubMed]

E. Coscelli, C. Molardi, A. Cucinotta, and S. Selleri,“Symmetry-Free Tm-Doped Photonic Crystal Fiber With Enhanced Mode Area,” IEEE J. Sel. Top. Quantum Electron. 20(5), 544–550 (2014).
[Crossref]

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-Mode Propagation in Yb-Doped Large Mode Area Fibers With Reduced Cladding Symmetry,” IEEE Photon. Technol. Lett. 26(24), 2454–2457 (2014).
[Crossref]

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

Dauliat, R.

Dong, L.

Eberhardt, R.

Eidam, T.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1, e8 (2012).
[Crossref]

Fang, Q.

Feng, S.

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

Fermann, M.

Fu, L.

Galvanauskas, A.

Gaponov, D.

Hädrich, S.

Hansen, K.

He, D.

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Hu, I.

Hu, L.

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

Jakobsen, C.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

Jamier, R.

Jansen, F.

Jauregui, C.

F. Stutzki, F. Jansen, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
[Crossref]

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
[Crossref]

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1, e8 (2012).
[Crossref]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Non-hexagonal Large-Pitch Fibers for enhanced mode discrimination,” Opt. Express 19(13), 12081–12086 (2011).
[Crossref] [PubMed]

Johansen, M. M.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

Jørgensen, M.

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

M. Laurila, M. Jørgensen, K. Hansen, T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

Jørgensen, M. M.

Kaplan, A.

Koshiba, M.

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightw. Technol. 23(11), 3580–3590 (2005).
[Crossref]

Lægsgaard, J.

Laurila, M.

Leick, L.

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

Limpert, J.

Lumholt, O.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

Ma, X.

Maack, M. D.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

Marcinkevicius, A.

Masruri, M.

McKay, H.

Molardi, C.

C. Molardi, B. Sun, X. Yu, A. Cucinotta, and S. Selleri, “Polarization-Maintaining Large Mode Area Fiber Design for 2-μ m Operation,” IEEE Photon. Technol. Lett. 28(22), 2483–2486 (2016).
[Crossref]

E. Coscelli, C. Molardi, A. Cucinotta, and S. Selleri,“Symmetry-Free Tm-Doped Photonic Crystal Fiber With Enhanced Mode Area,” IEEE J. Sel. Top. Quantum Electron. 20(5), 544–550 (2014).
[Crossref]

E. Coscelli, C. Molardi, M. Masruri, A. Cucinotta, and S. Selleri, “Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding,” Opt. Express 22(8), 9707–9714 (2014).
[Crossref] [PubMed]

Noordegraaf, D.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

Norwood, R. A.

Ohta, M.

Olausson, C. B.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

Otto, H.

Otto, H. J.

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1, e8 (2012).
[Crossref]

Pertsch, T.

Peschel, T.

Petersen, S. R.

Peyghambarian, N.

Poli, F.

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri,“Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-Mode Propagation in Yb-Doped Large Mode Area Fibers With Reduced Cladding Symmetry,” IEEE Photon. Technol. Lett. 26(24), 2454–2457 (2014).
[Crossref]

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

Rosa, L.

Roy, P.

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Saitoh, K.

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightw. Technol. 23(11), 3580–3590 (2005).
[Crossref]

Salin, F.

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-Mode Propagation in Yb-Doped Large Mode Area Fibers With Reduced Cladding Symmetry,” IEEE Photon. Technol. Lett. 26(24), 2454–2457 (2014).
[Crossref]

R. Dauliat, D. Gaponov, A. Benoit, F. Salin, K. Schuster, R. Jamier, and P. Roy, “Inner cladding microstructuration based on symmetry reduction for improvement of singlemode robustness in VLMA fiber,” Opt. Express 21(16), 18927–18936 (2013).
[Crossref] [PubMed]

Schreiber, T.

Schuster, K.

Selleri, S.

C. Molardi, B. Sun, X. Yu, A. Cucinotta, and S. Selleri, “Polarization-Maintaining Large Mode Area Fiber Design for 2-μ m Operation,” IEEE Photon. Technol. Lett. 28(22), 2483–2486 (2016).
[Crossref]

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri,“Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

E. Coscelli, C. Molardi, M. Masruri, A. Cucinotta, and S. Selleri, “Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding,” Opt. Express 22(8), 9707–9714 (2014).
[Crossref] [PubMed]

E. Coscelli, C. Molardi, A. Cucinotta, and S. Selleri,“Symmetry-Free Tm-Doped Photonic Crystal Fiber With Enhanced Mode Area,” IEEE J. Sel. Top. Quantum Electron. 20(5), 544–550 (2014).
[Crossref]

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-Mode Propagation in Yb-Doped Large Mode Area Fibers With Reduced Cladding Symmetry,” IEEE Photon. Technol. Lett. 26(24), 2454–2457 (2014).
[Crossref]

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

Sharma, A.

D. K. Sharma and A. Sharma, “Characteristic of microstructured optical fibers: an analytical approach,” Opt. Quantum Electron. 44(8), 415–424 (2012).
[Crossref]

Sharma, D. K.

D. K. Sharma and A. Sharma, “Characteristic of microstructured optical fibers: an analytical approach,” Opt. Quantum Electron. 44(8), 415–424 (2012).
[Crossref]

Shi, W.

Stutzki, F.

Sun, B.

C. Molardi, B. Sun, X. Yu, A. Cucinotta, and S. Selleri, “Polarization-Maintaining Large Mode Area Fiber Design for 2-μ m Operation,” IEEE Photon. Technol. Lett. 28(22), 2483–2486 (2016).
[Crossref]

Suzuki, S.

Tünnermann, A.

Wang, L.

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

Weirich, J.

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

Yu, C.

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

Yu, X.

C. Molardi, B. Sun, X. Yu, A. Cucinotta, and S. Selleri, “Polarization-Maintaining Large Mode Area Fiber Design for 2-μ m Operation,” IEEE Photon. Technol. Lett. 28(22), 2483–2486 (2016).
[Crossref]

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zhu, C.

Zhu, X.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

E. Coscelli, C. Molardi, A. Cucinotta, and S. Selleri,“Symmetry-Free Tm-Doped Photonic Crystal Fiber With Enhanced Mode Area,” IEEE J. Sel. Top. Quantum Electron. 20(5), 544–550 (2014).
[Crossref]

L. Wang, D. He, C. Yu, S. Feng, L. Hu, and D. Chen, “Very Large-Mode-Area, Symmetry-Reduced, Neodymium-Doped Silicate Glass All-Solid Large-Pitch Fiber,” IEEE J. Sel. Top. Quantum Electron. 22(2), 108–112 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

F. Poli, E. Coscelli, A. Cucinotta, S. Selleri, and F. Salin, “Single-Mode Propagation in Yb-Doped Large Mode Area Fibers With Reduced Cladding Symmetry,” IEEE Photon. Technol. Lett. 26(24), 2454–2457 (2014).
[Crossref]

C. Molardi, B. Sun, X. Yu, A. Cucinotta, and S. Selleri, “Polarization-Maintaining Large Mode Area Fiber Design for 2-μ m Operation,” IEEE Photon. Technol. Lett. 28(22), 2483–2486 (2016).
[Crossref]

J. Lightw. Technol. (2)

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightw. Technol. 23(11), 3580–3590 (2005).
[Crossref]

E. Coscelli, F. Poli, T. Alkeskjold, M. Jørgensen, L. Leick, J. Broeng, A. Cucinotta, and S. Selleri, “Thermal Effects on the Single-Mode Regime of Distributed Modal Filtering Rod Fiber,” J. Lightw. Technol. 30(22) , 3494–3499 (2012).
[Crossref]

Light Sci. Appl. (1)

J. Limpert, F. Stutzki, F. Jansen, H. J. Otto, T. Eidam, C. Jauregui, and A. Tünnermann, “Yb-doped large-pitch fibers: effective single-mode operation based on higher-order mode delocalization,” Light Sci. Appl. 1, e8 (2012).
[Crossref]

Nanophotonics (1)

T. T. Alkeskjold, M. Laurila, J. Weirich, M. M. Johansen, C. B. Olausson, O. Lumholt, D. Noordegraaf, M. D. Maack, and C. Jakobsen, “Photonic crystal fiber amplifiers for high power ultrafast fiber lasers,” Nanophotonics 2(5–6), 369–381 (2013).
[Crossref]

Nat. Photon. (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High-power fibre lasers,” Nat. Photon. 7(11), 861–867 (2013).
[Crossref]

Opt. Express (9)

S. Hädrich, T. Schreiber, T. Pertsch, J. Limpert, T. Peschel, R. Eberhardt, and A. Tünnermann, “Thermo-optical behavior of rare-earth-doped low-NA fibers in high power operation,” Opt. Express 14(13), 6091–6097 (2006).
[Crossref] [PubMed]

L. Dong, H. McKay, L. Fu, M. Ohta, A. Marcinkevicius, S. Suzuki, and M. Fermann, “Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding,” Opt. Express 17(11), 8962–8969 (2009).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann, “Non-hexagonal Large-Pitch Fibers for enhanced mode discrimination,” Opt. Express 19(13), 12081–12086 (2011).
[Crossref] [PubMed]

M. Laurila, M. Jørgensen, K. Hansen, T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

M. M. Jørgensen, S. R. Petersen, M. Laurila, J. Lægsgaard, and T. T. Alkeskjold, “Optimizing single mode robustness of the distributed modal filtering rod fiber amplifier,” Opt. Express 20(7), 7263–7273 (2012).
[Crossref] [PubMed]

R. Dauliat, D. Gaponov, A. Benoit, F. Salin, K. Schuster, R. Jamier, and P. Roy, “Inner cladding microstructuration based on symmetry reduction for improvement of singlemode robustness in VLMA fiber,” Opt. Express 21(16), 18927–18936 (2013).
[Crossref] [PubMed]

X. Ma, C. Zhu, I. Hu, A. Kaplan, and A. Galvanauskas, “Single-mode chirally-coupled-core fibers with larger than 50μm diameter cores,” Opt. Express 22(8) , 9206–9219 (2014).
[Crossref] [PubMed]

E. Coscelli, C. Molardi, M. Masruri, A. Cucinotta, and S. Selleri, “Thermally resilient Tm-doped large mode area photonic crystal fiber with symmetry-free cladding,” Opt. Express 22(8), 9707–9714 (2014).
[Crossref] [PubMed]

L. Rosa, E. Coscelli, F. Poli, A. Cucinotta, and S. Selleri,“Thermal modeling of gain competition in Yb-doped large-mode-area photonic-crystal fiber amplifier,” Opt. Express 23(14), 18638–18644 (2015).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

D. K. Sharma and A. Sharma, “Characteristic of microstructured optical fibers: an analytical approach,” Opt. Quantum Electron. 44(8), 415–424 (2012).
[Crossref]

Optica (1)

Science (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Cross-section of: LPF (a); SF1 (b); SF2 (c).
Fig. 2
Fig. 2 Evolution on z of the overlap difference ΔΓ between the FM and the most detrimental HOM for: LPF (a); SF1 (c); SF2 (e). Evolution on z of the heat density for pump power values of 100, 200, 300, and 400 W, for: LPF (b); SF1 (d); SF2 (f).
Fig. 3
Fig. 3 Mode discrimination over the pump power: at the output ending (a); at the maximum of heat density (b). Gain of FM and HOM at the output ending after the process of amplification (c).
Fig. 4
Fig. 4 Evolution on z of the overlap difference ΔΓ between the FM and the most detrimental HOM for: LPF (a); SF1 (c); SF2 (e). Evolution on z of the heat density for pump power values of 100, 200, 300, and 400 W, for: LPF (b); SF1 (d); SF2 (f).
Fig. 5
Fig. 5 Mode discrimination over the pump power at the output ending (a). Gain of FM and HOM at the output ending after the process of amplification (b).
Fig. 6
Fig. 6 Mode discrimination over the doped fiber length at the output ending (a). Gain of FM and HOM for different fiber lengths (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Γ = core i ( x , y ) d x d y .
Δ n = β ( T T 0 ) ,

Metrics