Abstract

An Nd:YVO4 laser with a convex-plano cavity is systematically studied to demonstrate the manipulation of output polarization state by using the birefringent thermal lensing effect of the gain crystal. Based on the theoretical analysis of the cavity stability under the influence of thermal lens, the polarization state of output emission is experimentally confirmed that can be controlled to switch from pure π- to pure σ-polarization by simply varying the pump focus position from the tight-focusing to defocusing conditions. More importantly, it is found that there exists an adequate pump focus position within the switching region to lead the π- and σ-polarization to have balanced gain for achieving a stable self-mode-locked laser with orthogonally polarized components. Under the orthogonally polarized mode-locked operation, the pulse repetition rates are found to be 2.23 and 2.33 GHz for the π- and σ-polarization with pulse duration to be 16.1 and 15.1 ps, respectively.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Exploiting concave-convex linear resonators to design end-pumped solid-state lasers with flexible cavity lengths: Application for exploring the self-mode-locked operation

P. H. Tuan, C. C. Chang, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen
Opt. Express 24(23) 26024-26034 (2016)

Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen
Opt. Express 23(8) 10111-10116 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Krausz, T. Brabec, and C. Spielmann, “Self-starting passive mode locking,” Opt. Lett. 16(4), 235–237 (1991).
    [PubMed]
  2. H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
    [PubMed]
  3. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibbett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers,” Opt. Lett. 30(23), 3234–3236 (2005).
    [PubMed]
  4. G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
    [PubMed]
  5. H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
    [PubMed]
  6. C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).
  7. Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).
  8. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [PubMed]
  9. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [PubMed]
  10. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
    [PubMed]
  11. N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
    [PubMed]
  12. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
    [PubMed]
  13. X. Yan, J. Liu, J. Su, X. Zhao, and X. Jiang, “Gain competition in orthogonally linearly polarized Nd:YVO4 laser,” J. Opt. 18, 035201 (2016).
  14. H. Huang, D. Shen, and J. He, “Simultaneous pulse generation of orthogonally polarized dual-wavelength at 1091 and 1095 nm by coupled stimulated Raman scattering,” Opt. Express 20(25), 27838–27846 (2012).
    [PubMed]
  15. C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
    [PubMed]
  16. M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
    [PubMed]
  17. S. V. Sergeyev, C. Mou, A. Rozhin, and S. K. Turitsyn, “Vector solitons with locked and precessing states of polarization,” Opt. Express 20(24), 27434–27440 (2012).
    [PubMed]
  18. Y. Lü, J. Zhang, J. Xia, and H. Liu, “Diode-Pumped Quasi-Three-Level Nd:YVO4 Laser With Orthogonally Polarized Emission,” IEEE Photonics Technol. Lett. 26(7), 656–659 (2014).
  19. B. Xu, Y. Wang, Z. Lin, S. Cui, Y. Cheng, H. Xu, and Z. Cai, “Efficient and compact orthogonally polarized dual-wavelength Nd:YVO4 laser at 1342 and 1345 nm,” Appl. Opt. 55(1), 42–46 (2016).
    [PubMed]
  20. Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, “Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm,” Laser Phys. 26(1), 015801 (2016).
  21. H. C. Liang, F. L. Chang, T. W. Wu, C. L. Sung, and Y. F. Chen, “Generation of Orthogonally Polarized Mode-Locked Lasers at Wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
  22. A. Agnesi and S. D. Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).
  23. H. C. Liang and C. S. Wu, “Diode-pumped orthogonally polarized self-mode-locked Nd:YLF lasers subject to gain competition and thermal lensing effect,” Opt. Express 25(12), 13697–13704 (2017).
    [PubMed]
  24. Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).
  25. N. Hodgson and H. Weber, Laser Resonator and beam propagation, 2nd ed. (Springer, 2005), Chaps. 8 and 13.
  26. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006), Chap. 7.
  27. Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).

2017 (2)

H. C. Liang, F. L. Chang, T. W. Wu, C. L. Sung, and Y. F. Chen, “Generation of Orthogonally Polarized Mode-Locked Lasers at Wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).

H. C. Liang and C. S. Wu, “Diode-pumped orthogonally polarized self-mode-locked Nd:YLF lasers subject to gain competition and thermal lensing effect,” Opt. Express 25(12), 13697–13704 (2017).
[PubMed]

2016 (4)

B. Xu, Y. Wang, Z. Lin, S. Cui, Y. Cheng, H. Xu, and Z. Cai, “Efficient and compact orthogonally polarized dual-wavelength Nd:YVO4 laser at 1342 and 1345 nm,” Appl. Opt. 55(1), 42–46 (2016).
[PubMed]

Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, “Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm,” Laser Phys. 26(1), 015801 (2016).

X. Yan, J. Liu, J. Su, X. Zhao, and X. Jiang, “Gain competition in orthogonally linearly polarized Nd:YVO4 laser,” J. Opt. 18, 035201 (2016).

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[PubMed]

2015 (2)

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

2014 (3)

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).

Y. Sato and T. Taira, “Highly accurate interferometric evaluation of thermal expansion and dn/dT of optical materials,” Opt. Mater. Express 4(5), 876–888 (2014).

Y. Lü, J. Zhang, J. Xia, and H. Liu, “Diode-Pumped Quasi-Three-Level Nd:YVO4 Laser With Orthogonally Polarized Emission,” IEEE Photonics Technol. Lett. 26(7), 656–659 (2014).

2012 (2)

2011 (1)

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[PubMed]

2010 (1)

2008 (2)

H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[PubMed]

2007 (2)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

G. Q. Xie, D. Y. Tang, L. M. Zhao, L. J. Qian, and K. Ueda, “High-power self-mode-locked Yb:Y2O3 ceramic laser,” Opt. Lett. 32(18), 2741–2743 (2007).
[PubMed]

2005 (2)

2003 (1)

A. Agnesi and S. D. Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).

2002 (1)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[PubMed]

1997 (1)

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).

1991 (1)

Acqua, S. D.

A. Agnesi and S. D. Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).

Agnesi, A.

A. Agnesi and S. D. Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

Brabec, T.

Brehm, M.

Brown, C. T. A.

Cai, Z.

Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, “Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm,” Laser Phys. 26(1), 015801 (2016).

B. Xu, Y. Wang, Z. Lin, S. Cui, Y. Cheng, H. Xu, and Z. Cai, “Efficient and compact orthogonally polarized dual-wavelength Nd:YVO4 laser at 1342 and 1345 nm,” Appl. Opt. 55(1), 42–46 (2016).
[PubMed]

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

Chang, C. C.

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).

Chang, F. L.

H. C. Liang, F. L. Chang, T. W. Wu, C. L. Sung, and Y. F. Chen, “Generation of Orthogonally Polarized Mode-Locked Lasers at Wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).

Chang, M. T.

Chen, R. C.

Chen, Y. F.

H. C. Liang, F. L. Chang, T. W. Wu, C. L. Sung, and Y. F. Chen, “Generation of Orthogonally Polarized Mode-Locked Lasers at Wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[PubMed]

M. T. Chang, H. C. Liang, K. W. Su, and Y. F. Chen, “Dual-comb self-mode-locked monolithic Yb:KGW laser with orthogonal polarizations,” Opt. Express 23(8), 10111–10116 (2015).
[PubMed]

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[PubMed]

H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[PubMed]

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).

Cheng, H. P.

Cheng, Y.

Cho, C. Y.

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[PubMed]

Cui, S.

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

Denisov, I. A.

He, J.

Higuchi, T.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[PubMed]

Huang, H.

Huang, T. M.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).

Huang, W. C.

Huang, Y. J.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

H. C. Liang, Y. J. Huang, W. C. Huang, K. W. Su, and Y. F. Chen, “High-power, diode-end-pumped, multigigahertz self-mode-locked Nd:YVO4 laser at 1342 nm,” Opt. Lett. 35(1), 4–6 (2010).
[PubMed]

H. C. Liang, R. C. Chen, Y. J. Huang, K. W. Su, and Y. F. Chen, “Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd:YVO4 laser,” Opt. Express 16(25), 21149–21154 (2008).
[PubMed]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

Jiang, X.

X. Yan, J. Liu, J. Su, X. Zhao, and X. Jiang, “Gain competition in orthogonally linearly polarized Nd:YVO4 laser,” J. Opt. 18, 035201 (2016).

Kanda, N.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[PubMed]

Kao, C. F.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).

Keilmann, F.

Kisel, V. E.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

Konishi, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[PubMed]

Krausz, F.

Kuleshov, N. V.

Kupchenko, M. I.

Kuwata-Gonokami, M.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[PubMed]

Lagatsky, A. A.

Lee, C. Y.

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[PubMed]

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).

Liang, H. C.

Lin, Z.

B. Xu, Y. Wang, Z. Lin, S. Cui, Y. Cheng, H. Xu, and Z. Cai, “Efficient and compact orthogonally polarized dual-wavelength Nd:YVO4 laser at 1342 and 1345 nm,” Appl. Opt. 55(1), 42–46 (2016).
[PubMed]

Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, “Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm,” Laser Phys. 26(1), 015801 (2016).

Liu, H.

Y. Lü, J. Zhang, J. Xia, and H. Liu, “Diode-Pumped Quasi-Three-Level Nd:YVO4 Laser With Orthogonally Polarized Emission,” IEEE Photonics Technol. Lett. 26(7), 656–659 (2014).

Liu, J.

X. Yan, J. Liu, J. Su, X. Zhao, and X. Jiang, “Gain competition in orthogonally linearly polarized Nd:YVO4 laser,” J. Opt. 18, 035201 (2016).

Lü, Y.

Y. Lü, J. Zhang, J. Xia, and H. Liu, “Diode-Pumped Quasi-Three-Level Nd:YVO4 Laser With Orthogonally Polarized Emission,” IEEE Photonics Technol. Lett. 26(7), 656–659 (2014).

Matrosov, V. N.

Matrosova, T. A.

Mou, C.

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[PubMed]

Qian, L. J.

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[PubMed]

Rozhin, A.

Sarmani, A. R.

Sato, Y.

Schliesser, A.

Selivanov, A. G.

Sergeyev, S. V.

Shen, D.

Shimizu, H.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[PubMed]

Sibbett, W.

Spielmann, C.

Su, J.

X. Yan, J. Liu, J. Su, X. Zhao, and X. Jiang, “Gain competition in orthogonally linearly polarized Nd:YVO4 laser,” J. Opt. 18, 035201 (2016).

Su, K. W.

Sung, C. L.

H. C. Liang, F. L. Chang, T. W. Wu, C. L. Sung, and Y. F. Chen, “Generation of Orthogonally Polarized Mode-Locked Lasers at Wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).

C. L. Sung, H. P. Cheng, C. Y. Lee, C. Y. Cho, H. C. Liang, and Y. F. Chen, “Generation of orthogonally polarized self-mode-locked Nd:YAG lasers with tunable beat frequencies from the thermally induced birefringence,” Opt. Lett. 41(8), 1781–1784 (2016).
[PubMed]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[PubMed]

Taira, T.

Tang, C. Y.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

Tang, D. Y.

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

Troshin, A. E.

Turitsyn, S. K.

Tzeng, Y. S.

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

Ueda, K.

van der Weide, D.

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[PubMed]

Wang, C. L.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).

Wang, S. C.

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).

Wang, Y.

B. Xu, Y. Wang, Z. Lin, S. Cui, Y. Cheng, H. Xu, and Z. Cai, “Efficient and compact orthogonally polarized dual-wavelength Nd:YVO4 laser at 1342 and 1345 nm,” Appl. Opt. 55(1), 42–46 (2016).
[PubMed]

Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, “Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm,” Laser Phys. 26(1), 015801 (2016).

Wu, C. S.

Wu, T. W.

H. C. Liang, F. L. Chang, T. W. Wu, C. L. Sung, and Y. F. Chen, “Generation of Orthogonally Polarized Mode-Locked Lasers at Wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).

Xia, J.

Y. Lü, J. Zhang, J. Xia, and H. Liu, “Diode-Pumped Quasi-Three-Level Nd:YVO4 Laser With Orthogonally Polarized Emission,” IEEE Photonics Technol. Lett. 26(7), 656–659 (2014).

Xie, G. Q.

Xu, B.

B. Xu, Y. Wang, Z. Lin, S. Cui, Y. Cheng, H. Xu, and Z. Cai, “Efficient and compact orthogonally polarized dual-wavelength Nd:YVO4 laser at 1342 and 1345 nm,” Appl. Opt. 55(1), 42–46 (2016).
[PubMed]

Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, “Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm,” Laser Phys. 26(1), 015801 (2016).

Xu, H.

Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, “Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm,” Laser Phys. 26(1), 015801 (2016).

B. Xu, Y. Wang, Z. Lin, S. Cui, Y. Cheng, H. Xu, and Z. Cai, “Efficient and compact orthogonally polarized dual-wavelength Nd:YVO4 laser at 1342 and 1345 nm,” Appl. Opt. 55(1), 42–46 (2016).
[PubMed]

Yan, X.

X. Yan, J. Liu, J. Su, X. Zhao, and X. Jiang, “Gain competition in orthogonally linearly polarized Nd:YVO4 laser,” J. Opt. 18, 035201 (2016).

Yoshioka, K.

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[PubMed]

Yumashev, K. V.

Zhang, J.

Y. Lü, J. Zhang, J. Xia, and H. Liu, “Diode-Pumped Quasi-Three-Level Nd:YVO4 Laser With Orthogonally Polarized Emission,” IEEE Photonics Technol. Lett. 26(7), 656–659 (2014).

Zhao, L. M.

Zhao, X.

X. Yan, J. Liu, J. Su, X. Zhao, and X. Jiang, “Gain competition in orthogonally linearly polarized Nd:YVO4 laser,” J. Opt. 18, 035201 (2016).

Appl. Opt. (1)

Appl. Phys. B (1)

A. Agnesi and S. D. Acqua, “High-peak-power diode-pumped passively Q-switched Nd:YVO4 laser,” Appl. Phys. B 76(4), 351–354 (2003).

IEEE J. Sel. Top. Quantum Electron. (2)

Y. F. Chen, C. F. Kao, T. M. Huang, C. L. Wang, and S. C. Wang, “Influence of thermal effect on output power optimization in fiber-coupled laser-diode end-pumped lasers,” IEEE J. Sel. Top. Quantum Electron. 3(1), 29–34 (1997).

Y. J. Huang, Y. S. Tzeng, C. Y. Tang, and Y. F. Chen, “Efficient dual-wavelength synchronously mode-locked picosecond laser operating on the 4F3/2 → 4I11/2 transition with compactly combined dual gain media,” IEEE J. Sel. Top. Quantum Electron. 21(1), 1100107 (2015).

IEEE Photonics J. (1)

H. C. Liang, F. L. Chang, T. W. Wu, C. L. Sung, and Y. F. Chen, “Generation of Orthogonally Polarized Mode-Locked Lasers at Wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).

IEEE Photonics Technol. Lett. (1)

Y. Lü, J. Zhang, J. Xia, and H. Liu, “Diode-Pumped Quasi-Three-Level Nd:YVO4 Laser With Orthogonally Polarized Emission,” IEEE Photonics Technol. Lett. 26(7), 656–659 (2014).

J. Opt. (1)

X. Yan, J. Liu, J. Su, X. Zhao, and X. Jiang, “Gain competition in orthogonally linearly polarized Nd:YVO4 laser,” J. Opt. 18, 035201 (2016).

Laser Photonics Rev. (1)

C. Y. Lee, C. C. Chang, H. C. Liang, and Y. F. Chen, “Frequency comb expansion in a monolithic self-mode-locked laser concurrent with stimulated Raman scattering,” Laser Photonics Rev. 8(5), 750–755 (2014).

Laser Phys. (1)

Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, “Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm,” Laser Phys. 26(1), 015801 (2016).

Nat. Commun. (1)

N. Kanda, T. Higuchi, H. Shimizu, K. Konishi, K. Yoshioka, and M. Kuwata-Gonokami, “The vectorial control of magnetization by light,” Nat. Commun. 2, 362 (2011).
[PubMed]

Opt. Express (6)

Opt. Lett. (5)

Opt. Mater. Express (1)

Phys. Rev. Lett. (2)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88(9), 097903 (2002).
[PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[PubMed]

Rev. Sci. Instrum. (1)

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[PubMed]

Other (2)

N. Hodgson and H. Weber, Laser Resonator and beam propagation, 2nd ed. (Springer, 2005), Chaps. 8 and 13.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006), Chap. 7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The effective focal length of thermal lens for the π- and σ-polarization as functions of the pump focus position zo under the pump power (a) Pin = 5 W, (b) Pin = 10 W, and (c) Pin = 15 W, respectively.
Fig. 2
Fig. 2 The experimental setup of the Nd:YVO4 laser with the convex-plano cavity.
Fig. 3
Fig. 3 (a) The average output power and (b) the cavity mode size on the gain medium for the π- and σ-polarization versus the pump focus position zo under an incident pump power Pin = 10 W.
Fig. 4
Fig. 4 The average output power versus the incident pump power for the cases of π-, σ-, and dual-polarization emission at their optimum pump positions of (a) 2.5, (b) 4.4, and (c) 5 mm.
Fig. 5
Fig. 5 (a) The optical spectrum, (b) the oscilloscope trace with time span of 5 ns, (c) the RF spectrum, and (d) the second-order autocorrelation trace measured at Pin = 10 W for the Nd:YVO4 SML laser with pure π-polarization. The inset of (d) shows the transverse pattern.
Fig. 6
Fig. 6 (a) The optical spectrum, (b) the oscilloscope trace with time span of 5 ns, (c) the RF spectrum, and (d) the second-order autocorrelation trace measured at Pin = 10 W for the Nd:YVO4 SML laser with pure σ-polarization. The inset of (d) shows the transverse pattern.
Fig. 7
Fig. 7 (a) The optical spectrum and (b) the SML pulse trains of the Nd:YVO4 laser with 1:1 dual-polarization components. The insets of (a) show the transverse patterns of the π- and σ-components, respectively.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g i * =( 1 L R i ) d j f th ( 1 d i R i ),i,j=1,2&ij
d( Ld )( 1+d/ | R | ) f th 2 1 f th ( L+ 2Ld | R | d 2 | R | )+ L | R | 0.
f th = π K i ξ ω ˜ p 2 P in [ 1 2 d n i dT + α T ( n i 1 ) r o l c ] 1 ,
ω ˜ p ( z o )= α 0 l g ω p (z, z o ) e αz dz 1exp( α l c )
ω p (z, z o )= ω po 1+ ( z z o ) 2 n i 2 ω po 2 θ p 2 ,
ω c = λ L * π g 2 * g 1 * (1 g 1 * g 2 * ) [ ( 1 d 1 R 1 ) 2 + ( d 1 L * ) 2 g 1 * (1 g 1 * g 2 * ) g 2 * ]

Metrics