Abstract

A new infrared confocal refractive index measurement (IR-CRIM) method with high precision is proposed for a lens. Based on the property that the maximum point of a confocal axial intensity response curve accurately corresponds to the converging focus of the measuring beam, IR-CRIM can precisely identify the front and back vertices of the test lens, and obtain the optical thickness d of the test lens, and resulting calculate the lens refractive index n using the ray-tracing algorithm. The broadband refractive index dispersion of the test lens can be acquired by the Cauchy dispersion law and the n obtained at several wavelengths. Preliminary experimental results and theoretical analyses indicate that IR-CRIM achieves an accuracy of 6 × 10−4 in the wavelength range of 500–1700 nm. It provides a novel approach for the high-precision and direct measurement of the refractive index of a lens in visible and near infrared wavelength range.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser differential confocal lens refractive index measurement

Weiqian Zhao, Yun Wang, Lirong Qiu, and Haorong Guo
Appl. Opt. 50(24) 4769-4778 (2011)

Spectrometer-based refractive index and dispersion measurement using low-coherence interferometry with confocal scanning

Daniel Francis, Helen D. Ford, and Ralph P. Tatam
Opt. Express 26(3) 3604-3617 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tan, K. Zhu, and S. Zhang, “New method for lens thickness measurement by the frequency-shifted confocal feedback,” Opt. Commun. 380, 91–94 (2016).
  2. R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Appl. Opt. 12(12), 2901–2908 (1973).
    [PubMed]
  3. M. Debenham, G. D. Dew, and D. E. Putland, “An improved recording refractometer for optical glasses in the wavelength range 300 to 2600 nm,” Opt. Acta (Lond.) 26, 1487–1503 (1979).
  4. S. Singh, “Refractive Index Measurement and its Applications,” Phys. Scr. 65, 167–180 (2002).
  5. S. W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C. S. Kim, “Line-field swept-source interferometer for simultaneous measurement of thickness and refractive index distribution,” J. Lightwave Technol. 35, 16 (2017).
  6. K. R. Soni and S. Kasana, “The role of an acousto-optic grating in determining the refractive index of a lens,” Meas. Sci. Technol. 18, 1667–1671 (2007).
  7. K. R. Soni and S. Kasana, “The use of defocussed position of a Ronchi grating for evaluating the refractive index of lens,” Opt. Laser Technol. 39, 1334–1338 (2007).
  8. H. Suhara, “Interferometric measurement of the refractive-index distribution in plastic lenses by use of computed tomography,” Appl. Opt. 41(25), 5317–5325 (2002).
    [PubMed]
  9. K. N. Joo, “Sub-sampling low coherence scanning interferometry and its application: refractive index measurements of a silicon wafer,” Appl. Opt. 52(36), 8644–8649 (2013).
    [PubMed]
  10. Z. J. Tan, D. Jin, and N. X. Fang, “High-precision broadband measurement of refractive index by picosecond real-time interferometry,” Appl. Opt. 55(24), 6625–6629 (2016).
    [PubMed]
  11. V. K. Chhaniwal, A. Anand, and C. S. Narayanamurthy, “Determination of refractive indices of biconvex lenses by use of a Michelson interferometer,” Appl. Opt. 45(17), 3985–3990 (2006).
    [PubMed]
  12. A. Anand and V. K. Chhaniwal, “Measurement of parameters of simple lenses using digital holographic interferometry and a synthetic reference wave,” Appl. Opt. 46(11), 2022–2026 (2007).
    [PubMed]
  13. C. R. Eddy, C. G. Brown, G. Beadie, I. Vurgaftman, J. A. Freitas, J. K. Hite, J. R. Meyer, M. Brindza, and S. R. Bowman, “Broadband measurements of the refractive indices of bulk gallium nitride,” Opt. Mater. Express 4, 7 (2014).
  14. S. H. Kim, S. H. Lee, J. I. Lim, and K. H. Kim, “Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry,” Appl. Opt. 49(5), 910–914 (2010).
    [PubMed]
  15. H. A. Qiao, K. A. Lipschultz, N. C. Anheier, and J. S. McCloy, “Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS,” Opt. Lett. 37(9), 1403–1405 (2012).
    [PubMed]
  16. M. Shan, M. E. Kandel, and G. Popescu, “Refractive index variance of cells and tissues measured by quantitative phase imaging,” Opt. Express 25(2), 1573–1581 (2017).
    [PubMed]
  17. K. N. Joo, “Sub-sampling low coherence scanning interferometry and its application: refractive index measurements of a silicon wafer,” Appl. Opt. 52(36), 8644–8649 (2013).
    [PubMed]
  18. Z. J. Tan, D. Jin, and N. X. Fang, “High-precision broadband measurement of refractive index by picosecond real-time interferometry,” Appl. Opt. 55(24), 6625–6629 (2016).
    [PubMed]
  19. C. Lee, H. Choi, J. Jin, and M. Cha, “Measurement of refractive index distribution of a fused silica plate using Fabry-Perot interference,” Appl. Opt. 55, 23 (2016).

2017 (2)

S. W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C. S. Kim, “Line-field swept-source interferometer for simultaneous measurement of thickness and refractive index distribution,” J. Lightwave Technol. 35, 16 (2017).

M. Shan, M. E. Kandel, and G. Popescu, “Refractive index variance of cells and tissues measured by quantitative phase imaging,” Opt. Express 25(2), 1573–1581 (2017).
[PubMed]

2016 (4)

Z. J. Tan, D. Jin, and N. X. Fang, “High-precision broadband measurement of refractive index by picosecond real-time interferometry,” Appl. Opt. 55(24), 6625–6629 (2016).
[PubMed]

Y. Tan, K. Zhu, and S. Zhang, “New method for lens thickness measurement by the frequency-shifted confocal feedback,” Opt. Commun. 380, 91–94 (2016).

Z. J. Tan, D. Jin, and N. X. Fang, “High-precision broadband measurement of refractive index by picosecond real-time interferometry,” Appl. Opt. 55(24), 6625–6629 (2016).
[PubMed]

C. Lee, H. Choi, J. Jin, and M. Cha, “Measurement of refractive index distribution of a fused silica plate using Fabry-Perot interference,” Appl. Opt. 55, 23 (2016).

2014 (1)

2013 (2)

2012 (1)

2010 (1)

2007 (3)

A. Anand and V. K. Chhaniwal, “Measurement of parameters of simple lenses using digital holographic interferometry and a synthetic reference wave,” Appl. Opt. 46(11), 2022–2026 (2007).
[PubMed]

K. R. Soni and S. Kasana, “The role of an acousto-optic grating in determining the refractive index of a lens,” Meas. Sci. Technol. 18, 1667–1671 (2007).

K. R. Soni and S. Kasana, “The use of defocussed position of a Ronchi grating for evaluating the refractive index of lens,” Opt. Laser Technol. 39, 1334–1338 (2007).

2006 (1)

2002 (2)

1979 (1)

M. Debenham, G. D. Dew, and D. E. Putland, “An improved recording refractometer for optical glasses in the wavelength range 300 to 2600 nm,” Opt. Acta (Lond.) 26, 1487–1503 (1979).

1973 (1)

Anand, A.

Anheier, N. C.

Beadie, G.

Bowman, S. R.

Brindza, M.

Brown, C. G.

Cha, M.

C. Lee, H. Choi, J. Jin, and M. Cha, “Measurement of refractive index distribution of a fused silica plate using Fabry-Perot interference,” Appl. Opt. 55, 23 (2016).

Chhaniwal, V. K.

Cho, S. W.

S. W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C. S. Kim, “Line-field swept-source interferometer for simultaneous measurement of thickness and refractive index distribution,” J. Lightwave Technol. 35, 16 (2017).

Choi, H.

C. Lee, H. Choi, J. Jin, and M. Cha, “Measurement of refractive index distribution of a fused silica plate using Fabry-Perot interference,” Appl. Opt. 55, 23 (2016).

Debenham, M.

M. Debenham, G. D. Dew, and D. E. Putland, “An improved recording refractometer for optical glasses in the wavelength range 300 to 2600 nm,” Opt. Acta (Lond.) 26, 1487–1503 (1979).

Dew, G. D.

M. Debenham, G. D. Dew, and D. E. Putland, “An improved recording refractometer for optical glasses in the wavelength range 300 to 2600 nm,” Opt. Acta (Lond.) 26, 1487–1503 (1979).

Eddy, C. R.

Fang, N. X.

Freitas, J. A.

Hite, J. K.

Jin, D.

Jin, J.

C. Lee, H. Choi, J. Jin, and M. Cha, “Measurement of refractive index distribution of a fused silica plate using Fabry-Perot interference,” Appl. Opt. 55, 23 (2016).

Joo, K. N.

Kandel, M. E.

Kasana, S.

K. R. Soni and S. Kasana, “The role of an acousto-optic grating in determining the refractive index of a lens,” Meas. Sci. Technol. 18, 1667–1671 (2007).

K. R. Soni and S. Kasana, “The use of defocussed position of a Ronchi grating for evaluating the refractive index of lens,” Opt. Laser Technol. 39, 1334–1338 (2007).

Kim, C. S.

S. W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C. S. Kim, “Line-field swept-source interferometer for simultaneous measurement of thickness and refractive index distribution,” J. Lightwave Technol. 35, 16 (2017).

Kim, G. H.

S. W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C. S. Kim, “Line-field swept-source interferometer for simultaneous measurement of thickness and refractive index distribution,” J. Lightwave Technol. 35, 16 (2017).

Kim, K. H.

Kim, M.

S. W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C. S. Kim, “Line-field swept-source interferometer for simultaneous measurement of thickness and refractive index distribution,” J. Lightwave Technol. 35, 16 (2017).

Kim, S. H.

Lee, C.

C. Lee, H. Choi, J. Jin, and M. Cha, “Measurement of refractive index distribution of a fused silica plate using Fabry-Perot interference,” Appl. Opt. 55, 23 (2016).

Lee, S. H.

Lim, J. I.

Lipschultz, K. A.

McCloy, J. S.

Meyer, J. R.

Narayanamurthy, C. S.

Popescu, G.

Putland, D. E.

M. Debenham, G. D. Dew, and D. E. Putland, “An improved recording refractometer for optical glasses in the wavelength range 300 to 2600 nm,” Opt. Acta (Lond.) 26, 1487–1503 (1979).

Qiao, H. A.

Shan, M.

Shin, B. S.

S. W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C. S. Kim, “Line-field swept-source interferometer for simultaneous measurement of thickness and refractive index distribution,” J. Lightwave Technol. 35, 16 (2017).

Singh, S.

S. Singh, “Refractive Index Measurement and its Applications,” Phys. Scr. 65, 167–180 (2002).

Soni, K. R.

K. R. Soni and S. Kasana, “The role of an acousto-optic grating in determining the refractive index of a lens,” Meas. Sci. Technol. 18, 1667–1671 (2007).

K. R. Soni and S. Kasana, “The use of defocussed position of a Ronchi grating for evaluating the refractive index of lens,” Opt. Laser Technol. 39, 1334–1338 (2007).

Suhara, H.

Tan, Y.

Y. Tan, K. Zhu, and S. Zhang, “New method for lens thickness measurement by the frequency-shifted confocal feedback,” Opt. Commun. 380, 91–94 (2016).

Tan, Z. J.

Torge, R.

Ulrich, R.

Vurgaftman, I.

Zhang, S.

Y. Tan, K. Zhu, and S. Zhang, “New method for lens thickness measurement by the frequency-shifted confocal feedback,” Opt. Commun. 380, 91–94 (2016).

Zhu, K.

Y. Tan, K. Zhu, and S. Zhang, “New method for lens thickness measurement by the frequency-shifted confocal feedback,” Opt. Commun. 380, 91–94 (2016).

Appl. Opt. (10)

R. Ulrich and R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Appl. Opt. 12(12), 2901–2908 (1973).
[PubMed]

H. Suhara, “Interferometric measurement of the refractive-index distribution in plastic lenses by use of computed tomography,” Appl. Opt. 41(25), 5317–5325 (2002).
[PubMed]

K. N. Joo, “Sub-sampling low coherence scanning interferometry and its application: refractive index measurements of a silicon wafer,” Appl. Opt. 52(36), 8644–8649 (2013).
[PubMed]

Z. J. Tan, D. Jin, and N. X. Fang, “High-precision broadband measurement of refractive index by picosecond real-time interferometry,” Appl. Opt. 55(24), 6625–6629 (2016).
[PubMed]

V. K. Chhaniwal, A. Anand, and C. S. Narayanamurthy, “Determination of refractive indices of biconvex lenses by use of a Michelson interferometer,” Appl. Opt. 45(17), 3985–3990 (2006).
[PubMed]

A. Anand and V. K. Chhaniwal, “Measurement of parameters of simple lenses using digital holographic interferometry and a synthetic reference wave,” Appl. Opt. 46(11), 2022–2026 (2007).
[PubMed]

S. H. Kim, S. H. Lee, J. I. Lim, and K. H. Kim, “Absolute refractive index measurement method over a broad wavelength region based on white-light interferometry,” Appl. Opt. 49(5), 910–914 (2010).
[PubMed]

K. N. Joo, “Sub-sampling low coherence scanning interferometry and its application: refractive index measurements of a silicon wafer,” Appl. Opt. 52(36), 8644–8649 (2013).
[PubMed]

Z. J. Tan, D. Jin, and N. X. Fang, “High-precision broadband measurement of refractive index by picosecond real-time interferometry,” Appl. Opt. 55(24), 6625–6629 (2016).
[PubMed]

C. Lee, H. Choi, J. Jin, and M. Cha, “Measurement of refractive index distribution of a fused silica plate using Fabry-Perot interference,” Appl. Opt. 55, 23 (2016).

J. Lightwave Technol. (1)

S. W. Cho, G. H. Kim, M. Kim, B. S. Shin, and C. S. Kim, “Line-field swept-source interferometer for simultaneous measurement of thickness and refractive index distribution,” J. Lightwave Technol. 35, 16 (2017).

Meas. Sci. Technol. (1)

K. R. Soni and S. Kasana, “The role of an acousto-optic grating in determining the refractive index of a lens,” Meas. Sci. Technol. 18, 1667–1671 (2007).

Opt. Acta (Lond.) (1)

M. Debenham, G. D. Dew, and D. E. Putland, “An improved recording refractometer for optical glasses in the wavelength range 300 to 2600 nm,” Opt. Acta (Lond.) 26, 1487–1503 (1979).

Opt. Commun. (1)

Y. Tan, K. Zhu, and S. Zhang, “New method for lens thickness measurement by the frequency-shifted confocal feedback,” Opt. Commun. 380, 91–94 (2016).

Opt. Express (1)

Opt. Laser Technol. (1)

K. R. Soni and S. Kasana, “The use of defocussed position of a Ronchi grating for evaluating the refractive index of lens,” Opt. Laser Technol. 39, 1334–1338 (2007).

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Scr. (1)

S. Singh, “Refractive Index Measurement and its Applications,” Phys. Scr. 65, 167–180 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Principles of IR-CRIM measurement.
Fig. 2
Fig. 2 Ray-tracing principle for the refractive index calculation.
Fig. 3
Fig. 3 Structure of the broadband IR-convergence system.
Fig. 4
Fig. 4 Annular beam.
Fig. 5
Fig. 5 Axial response curves for various ε.
Fig. 6
Fig. 6 Axial focusing resolution for various ε.
Fig. 7
Fig. 7 Structure of the IR-CRIM apparatus.
Fig. 8
Fig. 8 IR-CRIM experimental apparatus.
Fig. 9
Fig. 9 Chromatography focusing curve for the optical flat.
Fig. 10
Fig. 10 Experimental and standard index dispersion curves for the CaF2 lens.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I C (z)= | 2 0 1 p 1 (ρ) e (ju ρ 2 )/2 p 2 (ρ) e j ρ 2 (u)/2 ρdρ] | 2 ,
u= π 2λ ( D f ) 2 z .
I C (z)= { sin[ πz 4λ ( D f ) 2 ]/[ πz 4λ ( D f ) 2 ] } 2 .
t(r,d,n,α)=r+ 1 n sinα sin(α+arcsin( dr r sinα)arcsin( 1 n dr r sinα)) (dr) ,
α=arcsin( ρD/2f ).
n= 0 1 t(r,d,n,ρ,D,f)K(ρ)ρd ρ,
α=arcsin( 2 ρD/4f ).
{ n 1 =a+b/ λ 1 2 +c/ λ 1 4 n 2 =a+b/ λ 2 2 +c/ λ 2 4 n 3 =a+b/ λ 3 2 +c/ λ 3 4 .
n( λ )=a+b/ λ 2 +c/ λ 4 .
I CB (u)= | 2 0 1 p 1 (ρ) e (ju ρ 2 )/2 p 2 (ρ) e j2kΦ(ρ) e j ρ 2 (u)/2 J 0 (ρv)ρdρ] | 2 ,
v= π 2λ ( D f ) x 2 + y 2 .
I CB (z)= | 2 ε 1 e j2kΦ(ρ) e j ρ 2 πz D 2 / 2λ f 2 J 0 (ρv)ρdρ | 2 .

Metrics