Abstract

We experimentally demonstrated the generation of a dynamic nonlinear vortex beam array by utilizing a fundamental wave with a modulated phase structure, which was incident into a homogeneous nonlinear medium. In our experiment, one-dimensional and two-dimensional second harmonic vortex beam arrays were investigated, and the topological charge of second harmonic vortex beam of different order was measured. This study presents a method of dynamic control of the nonlinear vortex beam array, which may have applications in multiple-particles optical trapping, optical communication, and so on.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear Raman-Nath second harmonic generation with structured fundamental wave

Haigang Liu, Jun Li, Xiaohui Zhao, Yuanlin Zheng, and Xianfeng Chen
Opt. Express 24(14) 15666-15671 (2016)

Nonlinear Raman-Nath second harmonic generation of hybrid structured fundamental wave

Huaqing Zhou, Haigang Liu, Minghuang Sang, Jun Li, and Xianfeng Chen
Opt. Express 25(4) 3774-3779 (2017)

Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal

Dan Wei, Jiale Guo, Xinyuan Fang, Dunzhao Wei, Rui Ni, Peng Chen, Xiaopeng Hu, Yong Zhang, Wei Hu, Y. Q. Lu, S. N. Zhu, and Min Xiao
Opt. Express 25(10) 11556-11563 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
    [PubMed]
  2. R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).
  3. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
    [PubMed]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [PubMed]
  5. M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
    [PubMed]
  6. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
  7. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
    [PubMed]
  8. Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).
  9. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [PubMed]
  10. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
  11. N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
    [PubMed]
  12. G. H. Shao, Z. J. Wu, J. H. Chen, F. Xu, and Y. Q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).
  13. K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
    [PubMed]
  14. S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).
  15. F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
    [PubMed]
  16. G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
    [PubMed]
  17. D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
    [PubMed]
  18. A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).
  19. S. Lightman, R. Gvishi, G. Hurvitz, and A. Arie, “Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals,” Opt. Lett. 40(19), 4460–4463 (2015).
    [PubMed]
  20. A. Libster-Hershko, S. Trajtenberg-Mills, and A. Arie, “Dynamic control of light beams in second harmonic generation,” Opt. Lett. 40(9), 1944–1947 (2015).
    [PubMed]
  21. B. K. Singh, R. Remez, Y. Tsur, and A. Arie, “Super-Airy beam: self-accelerating beam with intensified main lobe,” Opt. Lett. 40(20), 4703–4706 (2015).
    [PubMed]
  22. R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).
  23. B. Yang, X. H. Hong, R. E. Lu, Y. Y. Yue, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
    [PubMed]
  24. H. Liu, J. Li, X. Zhao, Y. Zheng, and X. Chen, “Nonlinear Raman-Nath second harmonic generation with structured fundamental wave,” Opt. Express 24(14), 15666–15671 (2016).
    [PubMed]
  25. V. Denisenko, V. Shvedov, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, A. Volyar, M. Soskin, and Y. S. Kivshar, “Determination of topological charges of polychromatic optical vortices,” Opt. Express 17(26), 23374–23379 (2009).
    [PubMed]
  26. V. G. Shvedov, C. Hnatovsky, W. Krolikowski, and A. V. Rode, “Efficient beam converter for the generation of high-power femtosecond vortices,” Opt. Lett. 35(15), 2660–2662 (2010).
    [PubMed]
  27. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).

2017 (2)

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

2016 (4)

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).

B. Yang, X. H. Hong, R. E. Lu, Y. Y. Yue, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
[PubMed]

H. Liu, J. Li, X. Zhao, Y. Zheng, and X. Chen, “Nonlinear Raman-Nath second harmonic generation with structured fundamental wave,” Opt. Express 24(14), 15666–15671 (2016).
[PubMed]

2015 (3)

2014 (1)

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

2013 (4)

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).

G. H. Shao, Z. J. Wu, J. H. Chen, F. Xu, and Y. Q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[PubMed]

S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).

2012 (2)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[PubMed]

2011 (1)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

2010 (1)

2009 (1)

2006 (1)

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

2004 (1)

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).

2003 (2)

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

2002 (1)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[PubMed]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

1936 (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).

Adhikary, G.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Allen, L.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[PubMed]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Andersen, M. F.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

Arie, A.

Arissian, L.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Berry, M. V.

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).

Beth, R. A.

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).

Bloch, N. V.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[PubMed]

Bouchard, F.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

Boyd, R. W.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

Brown, G. G.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

Camper, A.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Chappuis, C.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Chen, J. H.

G. H. Shao, Z. J. Wu, J. H. Chen, F. Xu, and Y. Q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).

Chen, X.

Cladé, P.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

Corkum, P. B.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

Cucini, R.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Curtis, J. E.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[PubMed]

De Ninno, G.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Denisenko, V.

Desyatnikov, A. S.

DiMauro, L. F.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Dovillaire, G.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Du, L.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Frassetto, F.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Frumker, E.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

Gariepy, G.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

Gauthier, D.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Géneaux, R.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Grier, D. G.

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

Gvishi, R.

Hammond, T. J.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

Helmerson, K.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

Hnatovsky, C.

Hong, X. H.

Hu, X. P.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Hurvitz, G.

Juwiler, I.

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[PubMed]

Karimi, E.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

Kim, K. T.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

Kivshar, Y. S.

Ko, D. H.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

Kong, F.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

Kong, L. J.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).

Krolikowski, W.

Leach, J.

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

Li, J.

Li, S. M.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).

Li, Z.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

Libster, A.

Libster-Hershko, A.

Lightman, S.

Lilach, Y.

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).

Liu, H.

Lu, R. E.

Lu, Y. Q.

G. H. Shao, Z. J. Wu, J. H. Chen, F. Xu, and Y. Q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).

MacVicar, I.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Miotti, P.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Nan Li, Y.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).

Natarajan, V.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

Neshev, D. N.

Ni, R.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).

Niu, Y. F.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).

O’Neil, A. T.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[PubMed]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

Padgett, M. J.

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[PubMed]

Phillips, W. D.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

Poletto, L.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Qin, Y. Q.

Remez, R.

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Ren, Z. C.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).

Ressel, B.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Ribic, P. R.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Rode, A. V.

Ruchon, T.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Ryu, C.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

Shao, G. H.

G. H. Shao, Z. J. Wu, J. H. Chen, F. Xu, and Y. Q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).

Shapira, A.

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[PubMed]

Shemer, K.

K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, “Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals,” Opt. Lett. 38(24), 5470–5473 (2013).
[PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[PubMed]

Shen, Y. C.

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).

Shen, Z.

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).

Shiloh, R.

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[PubMed]

Shvedov, V.

Shvedov, V. G.

Singh, B. K.

Soskin, M.

Spezzani, C.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Stupar, M.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

Su, L.

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).

Trajtenberg-Mills, S.

Tsur, Y.

Tu, C. H.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Vaziri, A.

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Voloch-Bloch, N.

Volyar, A.

Wang, H. T.

S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Willner, A. E.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

Wu, Z. J.

G. H. Shao, Z. J. Wu, J. H. Chen, F. Xu, and Y. Q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).

Xu, F.

G. H. Shao, Z. J. Wu, J. H. Chen, F. Xu, and Y. Q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Yang, B.

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Yuan, X. C.

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

Yue, Y. Y.

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

Zhang, C.

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

B. Yang, X. H. Hong, R. E. Lu, Y. Y. Yue, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, “2D wave-front shaping in optical superlattices using nonlinear volume holography,” Opt. Lett. 41(13), 2927–2929 (2016).
[PubMed]

Zhang, Y.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).

Zhao, X.

Zheng, Y.

Zhu, S. N.

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).

Zhu, Y. Y.

Appl. Phys. Lett. (2)

Z. Shen, L. Su, X. C. Yuan, and Y. C. Shen, “Trapping and rotating of a metallic particle trimer with optical vortex,” Appl. Phys. Lett. 109(24), 241901 (2016).

R. Ni, Y. F. Niu, L. Du, X. P. Hu, Y. Zhang, and S. N. Zhu, “Topological charge transfer in frequency doubling of fractional orbital angular momentum state,” Appl. Phys. Lett. 109(15), 151103 (2016).

J. Opt. A, Pure Appl. Opt. (1)

M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl. Opt. 6(2), 259–268 (2004).

Nat. Commun. (2)

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. DiMauro, G. Dovillaire, F. Frassetto, R. Géneaux, P. Miotti, L. Poletto, B. Ressel, C. Spezzani, M. Stupar, T. Ruchon, and G. De Ninno, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8(14971), 14971 (2017).
[PubMed]

F. Kong, C. Zhang, F. Bouchard, Z. Li, G. G. Brown, D. H. Ko, T. J. Hammond, L. Arissian, R. W. Boyd, E. Karimi, and P. B. Corkum, “Controlling the orbital angular momentum of high harmonic vortices,” Nat. Commun. 8(14970), 14970 (2017).
[PubMed]

Nat. Photonics (2)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[PubMed]

Opt. Commun. (1)

A. Shapira, A. Libster, Y. Lilach, and A. Arie, “Functional facets for nonlinear crystals,” Opt. Commun. 300, 244–248 (2013).

Opt. Express (2)

Opt. Lett. (6)

Phys. Rev. (1)

R. A. Beth, “Mechanical detection and measurement of the angular momentum of light,” Phys. Rev. 50(2), 115–125 (1936).

Phys. Rev. A (3)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992).
[PubMed]

S. M. Li, L. J. Kong, Z. C. Ren, Y. Nan Li, C. H. Tu, and H. T. Wang, “Managing orbital angular momentum in second-harmonic generation,” Phys. Rev. A 88(3), 035801 (2013).

G. H. Shao, Z. J. Wu, J. H. Chen, F. Xu, and Y. Q. Lu, “Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase-matching,” Phys. Rev. A 88(6), 063827 (2013).

Phys. Rev. Lett. (5)

A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88(5), 053601 (2002).
[PubMed]

N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, “Twisting light by nonlinear photonic crystals,” Phys. Rev. Lett. 108(23), 233902 (2012).
[PubMed]

G. Gariepy, J. Leach, K. T. Kim, T. J. Hammond, E. Frumker, R. W. Boyd, and P. B. Corkum, “Creating high-harmonic beams with controlled orbital angular momentum,” Phys. Rev. Lett. 113(15), 153901 (2014).
[PubMed]

M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson, and W. D. Phillips, “Quantized rotation of atoms from photons with orbital angular momentum,” Phys. Rev. Lett. 97(17), 170406 (2006).
[PubMed]

J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90(13), 133901 (2003).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Left column: The different phase structures of the FW with 0-π/2 phase modulation. Right column: The generated SH vortex beams in different orders of nonlinear Raman-Nath diffraction. l SH =u l 1 for the uth order SH.
Fig. 2
Fig. 2 The measurement of the topological charge by a cylindrical lens when l SH =±1,±2,±3. The number of the dark stripes represents the topological charge.
Fig. 3
Fig. 3 Left column: different phase structures of the FW with 0-π phase modulation. Right column: The generated SH vortex beam in different orders of nonlinear Raman-Nath diffraction. l SH =u l 1 for the uth order SH.
Fig. 4
Fig. 4 Left column: Different phase structures of the FW with 0-π/2 phase modulation with fractional topological charge l 1 =2.5,2.6,2.7,2.9, respectively. Right column: The generated SH vortex beams in different orders of nonlinear Raman-Nath diffraction. l SH =u l 1 for the uth order SH.
Fig. 5
Fig. 5 Evolution of dark stripes with the topological charge changing from 2 to 3.
Fig. 6
Fig. 6 Top row: The different phase structures of the FW with 0-π/2 phase modulation. l x and l z represent the topological charge along x and z axis, respectively. Bottom row: The generated SH vortex beams in different orders of nonlinear Raman-Nath diffraction. l SH =u l x +v l z for the ( uth, vth) order SH.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E 1 = A 1 exp[ i( k 1 yωt ) ] C m exp[ i2πmf( r ,φ )im l 1 φ ],
d A 2 dy = ε 0 χ ( 2 ) A 1 2 b u exp( i k 2y yi2 k 1 y )exp[ i k 2t r i2πuf( r ,φ ) ]exp( iu l 1 φ ),
E 1 = A 1 e i( k 1 yωt ) m= m=+ C m e im[ 2π f 1 ( r ,φ )+ l x φ ] p= p=+ C p e ip[ 2π f 2 ( r ,φ )+ l z φ ] ,
d A 2 dy = ε 0 χ ( 2 ) A 1 2 e i( k 2y 2 k 1 )y u= u=+ b u v= v=+ b v e i[ k 2t r 2πu f 1 ( r ,φ )2πv f 2 ( r ,φ ) ] e i( u l x +v l z )φ ,

Metrics