Abstract

As a consequence of the urgent demand for an electro-optic (EO) polymer modulator with an elevated temperature stability, we have prepared a selection of EO polymers having glass transition temperatures of up to 194°C. The measured half-wave voltage characteristics of the fabricated Mach-Zehnder interference modulators revealed an excellent thermal resistance at 105°C for approximately 2,000 hours. By utilizing traveling-wave electrodes on the modulator, the high-frequency response at 10-40 GHz was evaluated under ascending temperatures. The advantage of such high-temperature stability EO polymer modulators was clearly demonstrated by the continuous frequency response up to 130°C.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integration of electro-optic polymer modulators with low-loss fluorinated polymer waveguides

Seh-Won Ahn, William H. Steier, Yin-Hao Kuo, Min-Cheol Oh, Hyung-Jong Lee, Cheng Zhang, and Harold R. Fetterman
Opt. Lett. 27(23) 2109-2111 (2002)

Low-V? electro-optic modulator with a high-?? chromophore and a constant-bias field

Antao Chen, Vadim Chuyanov, Sean Garner, Hua Zhang, William H. Steier, Jinghong Chen, Jingsong Zhu, Fang Wang, Mingqian He, Shane S. H. Mao, and Larry R. Dalton
Opt. Lett. 23(6) 478-480 (1998)

All-organic electro-optic waveguide modulator comprising SU-8 and nonlinear optical polymer

Edgars Nitiss, Andrejs Tokmakovs, Kaspars Pudzs, Janis Busenbergs, and Martins Rutkis
Opt. Express 25(25) 31036-31044 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).
  2. X. Zhang, A. Hosseini, X. Li, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and broad-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
  3. H. Huang, S. R. Nuccuo, Y. Yue, J.-Y. Yang, Y. Chen, C. Wei, G. Yu, R. Dinu, D. Parekh, C. J. Chang-Hasnain, and A. E. Willner, “Broadband modulation performance of 100-GHz EO polymer MZMs,” J. Lightwave Technol. 30(23), 3647–3652 (2012).
  4. R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).
  5. C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NZR,” Opt. Express 25, 1762–1768 (2017).
  6. W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).
  7. C. C. Tang, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).
  8. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).
  9. B. Li, J. Vemagiri, and R. Dinu, “Design and modeling of traveling-wave electro-optic polymer modulator for ultrahigh speed applications,” J. Lightwave Technol. 27(5), 606–611 (2009).
  10. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
    [PubMed]
  11. X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).
  12. Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).
  13. A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, “Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenylvinylene thiophene chromophore,” Polymer (Guildf.) 119, 13–27 (2017).
  14. H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low Driving Voltage Mach-Zehnder Interference Modulator Constructed from an Electro-optic Polymer on Ultra-thin Silicon with a Broadband Operation,” Opt. Express 25(2), 768–775 (2017).
    [PubMed]
  15. F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).
  16. X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).
  17. C. C. Tang, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).
  18. B. Li, J. Vemagiri, and R. Dinu, “Design and modeling of traveling-wave electro-optic polymer modulator for ultrahigh speed applications,” J. Lightwave Technol. 27(5), 606–611 (2009).
  19. X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).

2017 (4)

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, “Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenylvinylene thiophene chromophore,” Polymer (Guildf.) 119, 13–27 (2017).

H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low Driving Voltage Mach-Zehnder Interference Modulator Constructed from an Electro-optic Polymer on Ultra-thin Silicon with a Broadband Operation,” Opt. Express 25(2), 768–775 (2017).
[PubMed]

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NZR,” Opt. Express 25, 1762–1768 (2017).

2016 (1)

2014 (2)

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).

2013 (2)

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

X. Zhang, A. Hosseini, X. Li, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and broad-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

2012 (2)

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).

H. Huang, S. R. Nuccuo, Y. Yue, J.-Y. Yang, Y. Chen, C. Wei, G. Yu, R. Dinu, D. Parekh, C. J. Chang-Hasnain, and A. E. Willner, “Broadband modulation performance of 100-GHz EO polymer MZMs,” J. Lightwave Technol. 30(23), 3647–3652 (2012).

2011 (2)

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).

2010 (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[PubMed]

2009 (2)

1997 (1)

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

1992 (2)

C. C. Tang, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).

C. C. Tang, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).

Aoki, I.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Baeuerle, B.

Bale, D. H.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[PubMed]

Bannaron, A.

A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, “Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenylvinylene thiophene chromophore,” Polymer (Guildf.) 119, 13–27 (2017).

Bogaerts, W.

Chang-Hasnain, C. J.

Chen, A.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

Chen, D.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

Chen, R. T.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

X. Zhang, A. Hosseini, X. Li, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and broad-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

Chen, Y.

Chung, C.

Dalton, L.

Dalton, L. R.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NZR,” Opt. Express 25, 1762–1768 (2017).

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[PubMed]

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

Dinu, R.

Elder, D. L.

Fedoryshyn, Y.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NZR,” Opt. Express 25, 1762–1768 (2017).

Fetterman, H. R.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

Freude, W.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).

Haffner, C.

C. Hoessbacher, A. Josten, B. Baeuerle, Y. Fedoryshyn, H. Hettrich, Y. Salamin, W. Heni, C. Haffner, C. Kaiser, R. Schmid, D. L. Elder, D. Hillerkuss, M. Möller, L. R. Dalton, and J. Leuthold, “Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NZR,” Opt. Express 25, 1762–1768 (2017).

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Heni, W.

Hettrich, H.

Hillerkuss, D.

Hoessbacher, C.

Hong, J.

A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, “Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenylvinylene thiophene chromophore,” Polymer (Guildf.) 119, 13–27 (2017).

Hosseini, A.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

X. Zhang, A. Hosseini, X. Li, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and broad-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

Huang, H.

Huang, S.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).

Inoue, S.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Jen, A. K.

Jen, A. K. Y.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).

Johnson, L. E.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Josten, A.

Kaiser, C.

Kashino, T.

Kieninger, C.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Kikuchi, T.

Koeber, S.

Koishi, M.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Koo, C.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Koos, C.

Korn, D.

Kutuvantavida, Y.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Lauermann, M.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

R. Palmer, S. Koeber, D. L. Elder, M. Woessner, W. Heni, D. Korn, M. Lauermann, W. Bogaerts, L. Dalton, W. Freude, J. Leuthold, and C. Koos, “High-speed, low drive-voltage silicon-organic hybrid modulator based on a binary-chromophore electro-optic material,” J. Lightwave Technol. 32(16), 2726–2734 (2014).

Lee, C. Y.-C.

Leuthold, J.

Li, B.

Li, X.

X. Zhang, A. Hosseini, X. Li, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and broad-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

Lin, X.

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

Luo, J.

Luo, J. D.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).

Maeda, D.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

Miura, H.

Möller, M.

Mori, Y.

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Nakaya, A.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Nakaya, K.

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).

Nawata, H.

Nelson, R. L.

Nuccuo, S. R.

Odoi, K.

H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low Driving Voltage Mach-Zehnder Interference Modulator Constructed from an Electro-optic Polymer on Ultra-thin Silicon with a Broadband Operation,” Opt. Express 25(2), 768–775 (2017).
[PubMed]

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

Otomo, A.

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Ozawa, M.

H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low Driving Voltage Mach-Zehnder Interference Modulator Constructed from an Electro-optic Polymer on Ultra-thin Silicon with a Broadband Operation,” Opt. Express 25(2), 768–775 (2017).
[PubMed]

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

Palmer, R.

Parekh, D.

Piao, X.

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Polishak, B. M.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).

Qiu, F.

A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, “Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenylvinylene thiophene chromophore,” Polymer (Guildf.) 119, 13–27 (2017).

H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low Driving Voltage Mach-Zehnder Interference Modulator Constructed from an Electro-optic Polymer on Ultra-thin Silicon with a Broadband Operation,” Opt. Express 25(2), 768–775 (2017).
[PubMed]

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

Robinson, B. H.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Salamin, Y.

Sato, H.

Schmid, R.

Shi, Y.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

Shi, Z. W.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).

Spring, A. M.

H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low Driving Voltage Mach-Zehnder Interference Modulator Constructed from an Electro-optic Polymer on Ultra-thin Silicon with a Broadband Operation,” Opt. Express 25(2), 768–775 (2017).
[PubMed]

A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, “Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenylvinylene thiophene chromophore,” Polymer (Guildf.) 119, 13–27 (2017).

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

Steier, W. H.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

Subbaraman, H.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

X. Zhang, A. Hosseini, X. Li, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and broad-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[PubMed]

Tang, C. C.

C. C. Tang, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).

C. C. Tang, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).

Tillack, A. F.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Vemagiri, J.

Wang, W.

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

Wei, C.

Willner, A. E.

Woessner, M.

Wolf, S.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Yamamoto, K.

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).

Yang, J.-Y.

Yokoyama, S.

A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, “Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenylvinylene thiophene chromophore,” Polymer (Guildf.) 119, 13–27 (2017).

H. Sato, H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, “Low Driving Voltage Mach-Zehnder Interference Modulator Constructed from an Electro-optic Polymer on Ultra-thin Silicon with a Broadband Operation,” Opt. Express 25(2), 768–775 (2017).
[PubMed]

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Yu, G.

Yue, Y.

Zhang, X.

X. Zhang, C. Chung, A. Hosseini, H. Subbaraman, J. Luo, A. K. Jen, R. L. Nelson, C. Y.-C. Lee, and R. T. Chen, “High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide,” J. Lightwave Technol. 34(12), 2941–2951 (2016).

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

X. Zhang, A. Hosseini, X. Li, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and broad-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

Zhang, Z.

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Zhou, X. H.

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).

Zwickel, H.

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

ACS Photonics (1)

W. Heni, Y. Kutuvantavida, C. Haffner, H. Zwickel, C. Kieninger, S. Wolf, M. Lauermann, Y. Fedoryshyn, A. F. Tillack, L. E. Johnson, D. L. Elder, B. H. Robinson, W. Freude, C. Koo, J. Leuthold, and L. R. Dalton, “Silicon-organic and plasmonic-orgainic hybrid photonics,” ACS Photonics 4, 1576–1590 (2017).

Appl. Phys. Lett. (4)

C. C. Tang, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).

D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70(25), 3335–3337 (1997).

F. Qiu, A. M. Spring, D. Maeda, M. Ozawa, K. Odoi, I. Aoki, A. Otomo, and S. Yokoyama, “A straightforward electro-optic polymer covered titanium dioxide strip line modulator with a low driving voltage,” Appl. Phys. Lett. 105, 073305 (2014).

C. C. Tang, “Traveling-wave polymeric optical intensity modulator with more than 40 GHz of 3-dB electric bandwidth,” Appl. Phys. Lett. 60(13), 1538–1540 (1992).

Chem. Mater. (1)

J. D. Luo, S. Huang, Z. W. Shi, B. M. Polishak, X. H. Zhou, and A. K. Y. Jen, “Tailored organic electro-optic materials and their hybrid systems for device applications,” Chem. Mater. 23(3), 544–553 (2011).

Chem. Rev. (1)

L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: state of the art and future prospects,” Chem. Rev. 110(1), 25–55 (2010).
[PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

X. Zhang, A. Hosseini, X. Lin, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

X. Zhang, A. Hosseini, X. Li, H. Subbaraman, and R. T. Chen, “Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and broad-level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3401115 (2013).

J. Lightwave Technol. (5)

J. Polym. Sci. Part A (2)

X. Piao, Z. Zhang, Y. Mori, M. Koishi, A. Nakaya, S. Inoue, I. Aoki, A. Otomo, and S. Yokoyama, “Nonlinear optical side-chain polymers postfunctionalized with high-β chromophores exhibiting large electro-optic property,” J. Polym. Sci. Part A 49, 47–54 (2011).

Y. Mori, K. Nakaya, X. Piao, K. Yamamoto, A. Otomo, and S. Yokoyama, “Large Electro-Optic Activity and Enhanced Temporal Stability of Methacrylate-Based Crosslinking Hyperbranched Nonlinear Optical Polymer,” J. Polym. Sci. Part A 50, 1254–1260 (2012).

Opt. Express (2)

Polymer (Guildf.) (1)

A. M. Spring, F. Qiu, J. Hong, A. Bannaron, and S. Yokoyama, “Electro-optic properties of a side chain poly(norbornenedicarboximide) system with an appended phenylvinylene thiophene chromophore,” Polymer (Guildf.) 119, 13–27 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The EO polymers used in this study and the physical properties are summarized in the table. The π-voltage-length products (VπL) were measured for the modulators with 1.0 cm-long electrodes, (b) the GPC trace of the precipitated EO polymer, and (d) the GPC trace after dialysis. The insert shows the magnified molecular weight distribution before and after dialysis.
Fig. 2
Fig. 2 (a) The schematic top view of the EO polymer MZI with the traveling-wave electrode, (b) the fabricated modulator chip, and (c) the measured transfer function of the modulator at 10 kHz.
Fig. 3
Fig. 3 The temperature dependence (85°C and 105°C) of the change of Vπ for the EO polymer modulators using (a) EO172 and (b) EO194.
Fig. 4
Fig. 4 The measured optical transmission spectra of the EO polymer modulator (EO194) at (a, b, and c) 10-40 GHz at 25°C and (d, e, and f) 10-40 GHz at 90°C.
Fig. 5
Fig. 5 The temperature dependence of the modulation indices at (a) 10 GHz, (b) 20 GHz, and (c) 40 GHz for the EO polymer MZI.

Metrics