Abstract

We experimentally demonstrate perfect absorption of incident light in an ultrathin, planar organic layer, together with large photoluminescence (PL) enhancement. We find that diverse features appear in the absorption spectra of J-aggregate excitonic films, depending on the incident light angle and the phase controller thickness. We achieve strong absorption even away from the excitonic absorption pole. We explain the angle-dependent perfect absorption by comparing radiative and nonradiative damping rates for different incident angles. Moreover, we achieve large PL enhancement at strong light absorption conditions. This demonstrates that the absorbed light energy in excitonic perfect absorbers can be retrieved, unlike other perfect absorbers based on metal nanostructures where the absorbed energy is mainly dissipated as heat due to ohmic losses. Excitonic perfect absorbers can be useful for energy conversion devices or fluorescence-based optical devices.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Surface bound waves and optical interactions in excitonic thin films

Eunsongyi Lee, Byung Hoon Woo, In Cheol Seo, Soo-Chan An, and Young Chul Jun
Opt. Mater. Express 8(9) 2687-2701 (2018)

Enhancement of sub-bandgap light absorption in perovskite semiconductor films via critical coupling

Byung Hoon Woo, In Cheol Seo, Jungwoo Heo, Yung Jin Yoon, Jin Young Kim, and Young Chul Jun
Opt. Express 27(18) 25293-25304 (2019)

Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation

Jong-Bum You, Wook-Jae Lee, Dongshik Won, and Kyoungsik Yu
Opt. Express 22(7) 8339-8348 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [PubMed]
  2. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [PubMed]
  3. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [PubMed]
  4. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
  5. J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).
  6. Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).
  7. S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).
  8. M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).
  9. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
    [PubMed]
  10. J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).
  11. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
  12. M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpattern thin films,” Opt. Commun. 332, 206–213 (2014).
  13. J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
    [PubMed]
  14. T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
    [PubMed]
  15. J.-B. You, W.-J. Lee, D. Won, and K. Yu, “Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation,” Opt. Express 22(7), 8339–8348 (2014).
    [PubMed]
  16. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).
  17. S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032–1042 (2016).
  18. G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
  19. M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-Layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).
  20. L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).
  21. M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
    [PubMed]
  22. A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).
  23. B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).
  24. S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, “Photonics meets excitonics: natural and artificial molecular aggregates,” Nanophotonics 2(1), 21–38 (2013).
  25. Few Chemicals, “special chemicals,” http://www.few.de/1/special-chemicals/functional-dyes/water-soluble-cyanine-dyes/500-699-nm/ (CAS #18462–64–1).
  26. R. T. Phillips, “A numerical method for determining the complex refractive index from reflectance and transmittance of supported thin films,” J. Phys. D Appl. Phys. 16(4), 489–497 (1983).
  27. J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
    [PubMed]
  28. B. Ding, M. Qiu, and R. J. Blaikie, “Manipulating light absorption in dye-doped dielectric films on reflecting surfaces,” Opt. Express 22(21), 25965–25975 (2014).
    [PubMed]
  29. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007) Chap. 7.
  30. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [PubMed]
  31. S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
    [PubMed]
  32. L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).
  33. D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).
  34. J. D. Jackson, Classical Electrodynamics (Wiley, 1999) Chap. 6.
  35. J. Xiao, M. Zhao, Y. Wang, and X. Zhang, “Excitons in atomically thin 2D semiconductors and their applications,” Nanophotonics 6(6), 160 (2017).
  36. J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).

2017 (5)

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).

J. Xiao, M. Zhao, Y. Wang, and X. Zhang, “Excitons in atomically thin 2D semiconductors and their applications,” Nanophotonics 6(6), 160 (2017).

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).

2016 (4)

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[PubMed]

S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032–1042 (2016).

2015 (4)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[PubMed]

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

2014 (9)

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[PubMed]

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[PubMed]

B. Ding, M. Qiu, and R. J. Blaikie, “Manipulating light absorption in dye-doped dielectric films on reflecting surfaces,” Opt. Express 22(21), 25965–25975 (2014).
[PubMed]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpattern thin films,” Opt. Commun. 332, 206–213 (2014).

J.-B. You, W.-J. Lee, D. Won, and K. Yu, “Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation,” Opt. Express 22(7), 8339–8348 (2014).
[PubMed]

2013 (3)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[PubMed]

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).

S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, “Photonics meets excitonics: natural and artificial molecular aggregates,” Nanophotonics 2(1), 21–38 (2013).

2012 (2)

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[PubMed]

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).

2010 (1)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

2006 (1)

2005 (1)

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-Layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).

2003 (1)

1983 (1)

R. T. Phillips, “A numerical method for determining the complex refractive index from reflectance and transmittance of supported thin films,” J. Phys. D Appl. Phys. 16(4), 489–497 (1983).

Alaee, R.

Aspuru-Guzik, A.

S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, “Photonics meets excitonics: natural and artificial molecular aggregates,” Nanophotonics 2(1), 21–38 (2013).

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).

Badsha, M. A.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[PubMed]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[PubMed]

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpattern thin films,” Opt. Commun. 332, 206–213 (2014).

Bahauddin, S. M.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

Barnes, W. L.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[PubMed]

Blaikie, R. J.

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[PubMed]

Bradley, M. S.

J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
[PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-Layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).

Brener, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Brongersma, M. L.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

Bulovic, V.

J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
[PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-Layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).

Cacciola, A.

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

Campione, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[PubMed]

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Collin, S.

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[PubMed]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Ding, B.

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Economou, E. N.

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

Eisfeld, A.

S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, “Photonics meets excitonics: natural and artificial molecular aggregates,” Nanophotonics 2(1), 21–38 (2013).

Fan, S.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
[PubMed]

Farhat, M.

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Genco, A.

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[PubMed]

Gentile, M. J.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Gu, L.

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).

Guo, J.

Hasman, E.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Hu, J.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

Huang, J.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).

Hwangbo, C. K.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[PubMed]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[PubMed]

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpattern thin films,” Opt. Commun. 332, 206–213 (2014).

Jeong, H. Y.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Joannopoulos, J. D.

Jun, Y. C.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[PubMed]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[PubMed]

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpattern thin films,” Opt. Commun. 332, 206–213 (2014).

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Kafesaki, M.

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

Kang, J.-H.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[PubMed]

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).

Katsarakis, N.

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

Kenanakis, G.

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

Kim, H.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Kim, S. Y.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

Kim, T. Y.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[PubMed]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Lederer, F.

Lee, E.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

Lee, S. Y.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[PubMed]

Lee, W.-J.

Li, Q.

D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).

Lim, S. C.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

Lin, H.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

Lin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Liu, D.

D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).

Liu, F.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Liu, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Livenere, J.

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).

Luk, T. S.

S. S. Mirshafieyan, T. S. Luk, and J. Guo, “Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms,” Opt. Mater. Express 6(4), 1032–1042 (2016).

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Mavidis, Ch. P.

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

Mazzeo, M.

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Mirshafieyan, S. S.

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Narimanov, E. E.

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).

Noginov, M. A.

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).

Núñez-Sánchez, S.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Park, J.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

Patanè, S.

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

Phillips, R. T.

R. T. Phillips, “A numerical method for determining the complex refractive index from reflectance and transmittance of supported thin films,” J. Phys. D Appl. Phys. 16(4), 489–497 (1983).

Piper, J. R.

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

Qiu, M.

Ra’di, Y.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

Robatjazi, H.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

Rockstuhl, C.

Saija, R.

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

Saikin, S. K.

S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, “Photonics meets excitonics: natural and artificial molecular aggregates,” Nanophotonics 2(1), 21–38 (2013).

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Savasta, S.

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

Schoen, D. T.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

Seo, I. C.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

Shao, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).

Sharma, D.

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).

Simovski, C. R.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

Sinclair, M. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Soukoulis, C. M.

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

Stefano, O. D.

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

Suh, W.

Thomann, I.

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

Tischler, J. R.

J. R. Tischler, M. S. Bradley, and V. Bulović, “Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film,” Opt. Lett. 31(13), 2045–2047 (2006).
[PubMed]

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-Layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).

Tretyakov, S. A.

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

Triolo, C.

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

Valleau, S.

S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, “Photonics meets excitonics: natural and artificial molecular aggregates,” Nanophotonics 2(1), 21–38 (2013).

Vasilaki, E.

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

Vasudev, A. P.

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

Wang, X.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

Wang, Y.

J. Xiao, M. Zhao, Y. Wang, and X. Zhang, “Excitons in atomically thin 2D semiconductors and their applications,” Nanophotonics 6(6), 160 (2017).

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Won, D.

Woo, B. H.

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Xiao, J.

J. Xiao, M. Zhao, Y. Wang, and X. Zhang, “Excitons in atomically thin 2D semiconductors and their applications,” Nanophotonics 6(6), 160 (2017).

Yan, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Yang, Z.

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Yoon, J.

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[PubMed]

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[PubMed]

You, J.-B.

Yu, K.

Yu, Z.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

Yuan, Y.

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).

Zhang, X.

J. Xiao, M. Zhao, Y. Wang, and X. Zhang, “Excitons in atomically thin 2D semiconductors and their applications,” Nanophotonics 6(6), 160 (2017).

Zhao, M.

J. Xiao, M. Zhao, Y. Wang, and X. Zhang, “Excitons in atomically thin 2D semiconductors and their applications,” Nanophotonics 6(6), 160 (2017).

Zhong, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Zhou, M.

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[PubMed]

Zhu, G.

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).

Zhu, L.

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

ACS Photonics (6)

J. R. Piper and S. Fan, “Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance,” ACS Photonics 1(4), 347–353 (2014).

S. M. Bahauddin, H. Robatjazi, and I. Thomann, “Broadband absorption engineering to enhance light absorption in monolayer MoS2,” ACS Photonics 3(5), 853–862 (2016).

J. Park, J.-H. Kang, A. P. Vasudev, D. T. Schoen, H. Kim, E. Hasman, and M. L. Brongersma, “Omnidirectional near-unity absorption in an ultrathin planar semiconductor layer on a metal substrate,” ACS Photonics 1(9), 812–821 (2014).

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2(2), 183–188 (2015).

A. Cacciola, C. Triolo, O. D. Stefano, A. Genco, M. Mazzeo, R. Saija, S. Patanè, and S. Savasta, “Subdiffraction light concentration by J-aggregate nanostructures,” ACS Photonics 2(7), 971–979 (2015).

B. H. Woo, I. C. Seo, E. Lee, S. Y. Kim, T. Y. Kim, S. C. Lim, H. Y. Jeong, C. K. Hwangbo, and Y. C. Jun, “Dispersion control of excitonic thin films for tailored super-absorption in the visible region,” ACS Photonics 4(5), 1138–1145 (2017).

Adv. Mater. (1)

M. S. Bradley, J. R. Tischler, and V. Bulović, “Layer-by-Layer J-aggregate thin films with a peak absorption constant of 106 cm−1,” Adv. Mater. 17(15), 1881–1886 (2005).

Appl. Phys. Lett. (2)

L. Gu, J. Livenere, G. Zhu, E. E. Narimanov, and M. A. Noginov, “Quest for organic plasmonics,” Appl. Phys. Lett. 103(2), 021104 (2013).

M. A. Kats, D. Sharma, Z. Yang, and F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012).

Appl. Phys., A Mater. Sci. Process. (1)

G. Kenanakis, Ch. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal–insulator–metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

R. T. Phillips, “A numerical method for determining the complex refractive index from reflectance and transmittance of supported thin films,” J. Phys. D Appl. Phys. 16(4), 489–497 (1983).

Laser Photonics Rev. (1)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, S. Zhong, Y. Lin, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).

Light Sci. Appl. (1)

L. Zhu, F. Liu, H. Lin, J. Hu, Z. Yu, X. Wang, and S. Fan, “Angle-selective perfect absorption with two-dimensional materials,” Light Sci. Appl. 5, e16052 (2016).

Nano Energy (1)

D. Liu and Q. Li, “Sub-nanometer planar solar absorber,” Nano Energy 34, 172–180 (2017).

Nano Lett. (2)

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Nanophotonics (2)

S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, “Photonics meets excitonics: natural and artificial molecular aggregates,” Nanophotonics 2(1), 21–38 (2013).

J. Xiao, M. Zhao, Y. Wang, and X. Zhang, “Excitons in atomically thin 2D semiconductors and their applications,” Nanophotonics 6(6), 160 (2017).

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2013).
[PubMed]

Nat. Rev. Mater. (1)

J. Huang, Y. Yuan, Y. Shao, and Y. Yan, “Understanding the physical properties of hybrid perovskites for photovoltaic applications,” Nat. Rev. Mater. 2, 17042 (2017).

Opt. Commun. (1)

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpattern thin films,” Opt. Commun. 332, 206–213 (2014).

Opt. Express (3)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. Appl. (1)

Y. Ra’di, C. R. Simovski, and S. A. Tretyakov, “Thin perfect absorbers for electromagnetic waves: theory, design, and realizations,” Phys. Rev. Appl. 3(3), 037001 (2015).

Phys. Rev. B (1)

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low permittivity films,” Phys. Rev. B 90(8), 085411 (2014).

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Rep. Prog. Phys. (1)

S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77(12), 126402 (2014).
[PubMed]

Sci. Rep. (2)

J. Yoon, M. Zhou, M. A. Badsha, T. Y. Kim, Y. C. Jun, and C. K. Hwangbo, “Broadband epsilon-near-zero perfect absorption in the near-infrared,” Sci. Rep. 5, 12788 (2015).
[PubMed]

T. Y. Kim, M. A. Badsha, J. Yoon, S. Y. Lee, Y. C. Jun, and C. K. Hwangbo, “General strategy for broadband coherent perfect absorption and multi-wavelength all-optical switching based on epsilon-near-zero multilayer films,” Sci. Rep. 6, 22941 (2016).
[PubMed]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007) Chap. 7.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999) Chap. 6.

Few Chemicals, “special chemicals,” http://www.few.de/1/special-chemicals/functional-dyes/water-soluble-cyanine-dyes/500-699-nm/ (CAS #18462–64–1).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Dielectric constants of the excitonic film. The imaginary part of dielectric constants has a strong and sharp pole near 590 nm. The optically metallic region (Re[ε] < 0) appears right below the pole. (b) Schematic of the sample ([Excitonic film/SiO2/Ag]) and the measurement condition (oblique incidence of light). (c) Picture of the three samples (tox = 47 nm, 96 nm, 150 nm). Color looks slightly different for three samples with different oxide thicknesses.
Fig. 2
Fig. 2 p-polarized absorption spectra for three samples. (a)-(c) measured absorption spectra and (d)-(f) calculated absorption spectra maps. Three samples show different angular dependence, as indicated by dotted arrows. For tox = 96 nm, near-perfect absorption is experimentally achieved (A ~98.5%) over a broad range of incident angle.
Fig. 3
Fig. 3 s-polarized absorption spectra for three samples. (a)-(c) measured absorption spectra and (d)-(f) calculated absorption spectra maps. For tox = 96nm, the near-perfect absorption peak blueshifts with increasing angles. Three samples show different angular dependence, as indicated by dotted arrows.
Fig. 4
Fig. 4 Analysis of critical coupling conditions. Radiative and nonradiative damping rates are extracted from the calculated data for two cases. (a) tox = 47 nm (s-polarization): two damping rates crosses around 86°, where perfect absorption occurs. (b) tox = 96 nm (p-polarization): two damping rates are very close and we obtain perfect absorption over a broad range of angles (near normal incidence). The difference between them becomes larger when the incident angle increases.
Fig. 5
Fig. 5 Absorption power profile obtained from the FDTD simulation for 1 W of incident light power. The absorption per unit volume ( P abs ) is plotted for tox = 96 nm at 566nm (normal incidence of light). The excitonic layer has strong absorption, as indicated by red color. We find that about 96.74% of total incident light power is absorbed in the excitonic film.
Fig. 6
Fig. 6 Absorption spectra vs Photoluminescence (PL) spectra for different incident angles. (a) Measured absorption spectra of p-polarized light (tox = 150 nm). (b) Integrated PL power for two incident angles (15° and 60°). We take the integration of normalized PL spectra from 580 nm to 700 nm to obtain integrated PL powers. Normalized PL spectra are shown for the incident angles of (c) 15° and (d) 60°. We gradually varied the pump wavelength, so that we can see the effect of absorption strength on the PL intensity. Although the pump beam with oblique incidence does not enter directly into our detector, we still collect some of scattered pump light from the sample surface, and this appears as a strong tail in our spectrum. To block such a pump beam tail, we cut off the PL spectrum at some position.
Fig. 7
Fig. 7 Integrated PL power for tox = 96nm. We compare two incident angles: red line (15°) and blue line (60°). (a) p-polarization and (b) s-polarization of pump light show different light emission behavior. This agrees with the absorption spectra in Figs. 2(b) and 3(b). The PL enhancement factors in (c) and (d) are obtained by normalizing the integrated PL power with that from the same excitonic film on bare quartz (i.e. black dots in (a) and (c)). The absorption enhancement factors are also presented in (e) and (f) for the direct comparisons with PL enhancement factors in (c) and (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A(ω)= 4 γ rad γ nonrad (ω ω 0 ) 2 + ( γ rad + γ nonrad ) 2 ,
A m = 4 γ rad γ nonrad ( γ rad + γ nonrad ) 2 .
P abs = 1 2 ω | E(ω) | 2 Im[ ε 0 ε(ω)].

Metrics