Abstract

Interferometric near-infrared spectroscopy (iNIRS) is a time-of-flight- (TOF-) resolved sensing modality for determining optical and dynamical properties of a turbid medium. iNIRS achieves this by measuring the interference spectrum of light traversing the medium with a rapidly tunable, or frequency-swept, light source. Thus, iNIRS system performance critically depends on the source and detection apparatus. Using a current-tuned 855 nm distributed feedback laser as the source, we experimentally characterize iNIRS system parameters, including speed, sensitivity, dynamic range, TOF resolution, and TOF range. We also employ a novel Mach-Zehnder interferometer variant with a multi-pass loop to monitor the laser instantaneous linewidth and TOF range at high tuning speeds. We identify and investigate tradeoffs between parameters, with the goal of optimizing performance. We also demonstrate a technique to combine forward and backward sweeps to double the effective speed. Combining these advances, we present in vivo TPSFs and autocorrelations from the mouse brain with TOF resolutions of 22-60 ps, 36-47 dB peak-sidelobe dynamic range, 4-10 μs autocorrelation lag time resolution, a TOF range of nanoseconds or more, and nearly shot noise limited sensitivity.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media

Dawid Borycki, Oybek Kholiqov, Shau Poh Chong, and Vivek J. Srinivasan
Opt. Express 24(1) 329-354 (2016)

Interferometric near-infrared spectroscopy directly quantifies optical field dynamics in turbid media

Dawid Borycki, Oybek Kholiqov, and Vivek J. Srinivasan
Optica 3(12) 1471-1476 (2016)

Time-domain diffuse correlation spectroscopy

Jason Sutin, Bernhard Zimmerman, Danil Tyulmankov, Davide Tamborini, Kuan Cheng Wu, Juliette Selb, Angelo Gulinatti, Ivan Rech, Alberto Tosi, David A. Boas, and Maria Angela Franceschini
Optica 3(9) 1006-1013 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
    [Crossref] [PubMed]
  2. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
    [Crossref] [PubMed]
  3. S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
    [Crossref] [PubMed]
  4. D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4407–4424 (2011).
  5. T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
    [Crossref] [PubMed]
  6. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref] [PubMed]
  7. N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
    [Crossref] [PubMed]
  8. V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
    [Crossref] [PubMed]
  9. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
    [Crossref] [PubMed]
  10. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
    [Crossref] [PubMed]
  11. M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4452–4469 (2011).
  12. D. Borycki, O. Kholiqov, S. P. Chong, and V. J. Srinivasan, “Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media,” Opt. Express 24(1), 329–354 (2016).
    [Crossref] [PubMed]
  13. D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Interferometric near-infrared spectroscopy directly quantifies optical field dynamics in turbid media,” Optica 3(12), 1471–1476 (2016).
    [Crossref]
  14. D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo,” Opt. Lett. 42(3), 591–594 (2017).
    [Crossref] [PubMed]
  15. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A 14(1), 246–254 (1997).
    [Crossref] [PubMed]
  16. S. M. Kazmi, R. K. Wu, and A. K. Dunn, “Evaluating multi-exposure speckle imaging estimates of absolute autocorrelation times,” Opt. Lett. 40(15), 3643–3646 (2015).
    [Crossref] [PubMed]
  17. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
    [Crossref] [PubMed]
  18. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  19. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]
  20. S. W. C. Larry, A. Coldren, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (2012).
  21. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  22. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  23. J. Sutin, B. Zimmerman, D. Tyulmankov, D. Tamborini, K. C. Wu, J. Selb, A. Gulinatti, I. Rech, A. Tosi, D. A. Boas, and M. A. Franceschini, “Time-domain diffuse correlation spectroscopy,” Optica 3(9), 1006–1013 (2016).
    [Crossref] [PubMed]
  24. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  25. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
    [Crossref] [PubMed]
  26. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
    [Crossref] [PubMed]
  27. T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
    [Crossref] [PubMed]
  28. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  29. A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
    [Crossref] [PubMed]
  30. A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
    [Crossref] [PubMed]
  31. M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
    [Crossref]
  32. “nanoplus | Distributed Feedback Lasers: 760 nm - 830 nm,” http://nanoplus.com/en/products/distributed-feedback-lasers/distributed-feedback-lasers-760-nm-830-nm/ .
  33. M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
    [Crossref] [PubMed]
  34. N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
    [Crossref]
  35. Laser Institute of America, ANSI Z136.1, American National Standard for Safe Use of Lasers (n.d.).
  36. T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).
  37. A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
    [Crossref] [PubMed]
  38. H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
    [Crossref] [PubMed]
  39. D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
    [Crossref]
  40. K. K. Hamamatsu Photonics, (editorial committee), Photomultiplier Tubes - Basics and Applications, 3rd ed. (Hamamatsu Photonics, 2007).
  41. S. Han, J. Johansson, M. Mireles, A. R. Proctor, M. D. Hoffman, J. B. Vella, D. S. W. Benoit, T. Durduran, and R. Choe, “Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model,” Biomed. Opt. Express 6(7), 2695–2712 (2015).
    [Crossref] [PubMed]
  42. G. Dietsche, M. Ninck, C. Ortolf, J. Li, F. Jaillon, and T. Gisler, “Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue,” Appl. Opt. 46(35), 8506–8514 (2007).
    [Crossref] [PubMed]

2017 (2)

D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo,” Opt. Lett. 42(3), 591–594 (2017).
[Crossref] [PubMed]

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

2016 (4)

2015 (4)

2014 (8)

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

2012 (1)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

2011 (4)

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4452–4469 (2011).

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4407–4424 (2011).

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

2010 (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

2008 (2)

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (1)

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (4)

1997 (1)

1994 (1)

1989 (1)

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

1977 (1)

F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Barbieri, B.

Bargigia, I.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Benoit, D. S. W.

Boas, D. A.

J. Sutin, B. Zimmerman, D. Tyulmankov, D. Tamborini, K. C. Wu, J. Selb, A. Gulinatti, I. Rech, A. Tosi, D. A. Boas, and M. A. Franceschini, “Time-domain diffuse correlation spectroscopy,” Optica 3(9), 1006–1013 (2016).
[Crossref] [PubMed]

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4407–4424 (2011).

Bonesi, M.

Borycki, D.

Boschert, P.

Boso, G.

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

Boudoux, C.

Bouma, B. E.

Buckley, E. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Butler, T.

Buttafava, M.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

Caffini, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Carp, S. A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

Castello, N. A.

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

Cense, B.

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Chance, B.

Choe, R.

Choi, B.

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

Choma, M.

Chong, S. P.

Contini, D.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Cooper, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Cova, S.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Crawford, M.

Cubeddu, R.

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

Dalla Mora, A.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

de Boer, J. F.

Del Bianco, S.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

Dietsche, G.

Drexler, W.

Dubb, J.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

Duker, J.

Dunn, A. K.

Durduran, T.

S. Han, J. Johansson, M. Mireles, A. R. Proctor, M. D. Hoffman, J. B. Vella, D. S. W. Benoit, T. Durduran, and R. Choe, “Non-contact scanning diffuse correlation tomography system for three-dimensional blood flow imaging in a murine bone graft model,” Biomed. Opt. Express 6(7), 2695–2712 (2015).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Durkin, A. J.

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

Eibl, M.

T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

Ensher, J.

Fantini, S.

Farina, A.

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Fenoglio, A.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

Fercher, A.

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Fishkin, J. B.

Franceschini, M. A.

J. Sutin, B. Zimmerman, D. Tyulmankov, D. Tamborini, K. C. Wu, J. Selb, A. Gulinatti, I. Rech, A. Tosi, D. A. Boas, and M. A. Franceschini, “Time-domain diffuse correlation spectroscopy,” Optica 3(9), 1006–1013 (2016).
[Crossref] [PubMed]

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4407–4424 (2011).

S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, “Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique,” Appl. Opt. 33(22), 5204–5213 (1994).
[Crossref] [PubMed]

Fujimoto, J.

Fujiwara, N.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Gisler, T.

Goulding, D.

Grant, P. E.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

Gratton, E.

Green, K. N.

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Gulinatti, A.

Han, S.

Hebden, J.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Hegarty, S. P.

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Hitzenberger, C.

Hoffman, M. D.

Hoover, E.

Huber, R.

T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

Huyet, G.

Ishii, H.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Izatt, J.

Jaillon, F.

Jain, V.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Jelzow, A.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Jobsis, F. F.

F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

Johansson, J.

Kacprzak, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Kano, F.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Karnowski, K.

Kato, K.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Kawaguchi, Y.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Kazmi, S. M.

Kelleher, B.

Kholiqov, O.

Kienle, A.

Kim, J. G.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Klein, T.

T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

Kleiser, S.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Ko, T.

Kocienski-Filip, M.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

Koike, M. A.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Kolb, J.-P.

T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

Kondo, Y.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Kowalczyk, A.

LaFerla, F.

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

LaFerla, F. M.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Lavin, N. A.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Lee, G.

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Li, J.

Licht, D. J.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Liebert, A.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Lin, A. J.

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Lynch, J. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Lyu, H.-C.

Macdonald, R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Martelli, F.

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

Martinenghi, E.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

Mata Pavia, J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Mazhar, A.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Mazurenka, M.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Milej, D.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Minneman, M. P.

Mireles, M.

Montenegro, L. M.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Mora, A. D.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

Naim, M. Y.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Nicolson, S. C.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Ninck, M.

O’Shaughnessy, B.

Ohbayashi, K.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Oohashi, H.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Ortolf, C.

Park, B. H.

Patterson, M. S.

Petermann, M.

T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

Pfeiffer, T.

T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

Pierce, M. C.

Pifferi, A.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Proctor, A. R.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

Radhakrishnan, H.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

Re, R.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

Rech, I.

Renna, M.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

Rice, T. B.

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Roche-Labarbe, N.

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

Sarunic, M.

Sattmann, H.

Sawosz, P.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Schwab, P. J.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Selb, J.

Slepneva, S.

Smith, M.

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4452–4469 (2011).

Spinelli, L.

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

Srinivasan, V.

Srinivasan, V. J.

Steinkellner, O.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Sutin, J.

Tamborini, D.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

J. Sutin, B. Zimmerman, D. Tyulmankov, D. Tamborini, K. C. Wu, J. Selb, A. Gulinatti, I. Rech, A. Tosi, D. A. Boas, and M. A. Franceschini, “Time-domain diffuse correlation spectroscopy,” Optica 3(9), 1006–1013 (2016).
[Crossref] [PubMed]

Taubert, D. R.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Tearney, G. J.

Torricelli, A.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

Tosi, A.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

J. Sutin, B. Zimmerman, D. Tyulmankov, D. Tamborini, K. C. Wu, J. Selb, A. Gulinatti, I. Rech, A. Tosi, D. A. Boas, and M. A. Franceschini, “Time-domain diffuse correlation spectroscopy,” Optica 3(9), 1006–1013 (2016).
[Crossref] [PubMed]

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Tromberg, B. J.

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Tyulmankov, D.

Vella, J. B.

Wabnitz, H.

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Wehrli, F. W.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

Weitz, D. A.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

Wieser, W.

T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

Wilson, B. C.

Wojtkowski, M.

Wolf, M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Wu, K. C.

Wu, R. K.

Yang, C.

Yodh, A. G.

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Yoshimura, R.

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

Yun, S. H.

Zabihian, B.

Zaccanti, G.

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

Zappa, F.

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Zimmerman, B.

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

A. J. Lin, M. A. Koike, K. N. Green, J. G. Kim, A. Mazhar, T. B. Rice, F. M. LaFerla, and B. J. Tromberg, “Spatial frequency domain imaging of intrinsic optical property contrast in a mouse model of Alzheimer’s disease,” Ann. Biomed. Eng. 39(4), 1349–1357 (2011).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (1)

IEEE Photonics J. (1)

M. Buttafava, E. Martinenghi, D. Tamborini, D. Contini, A. D. Mora, M. Renna, A. Torricelli, A. Pifferi, F. Zappa, and A. Tosi, “A compact two-wavelength time-domain NIRS system based on SiPM and pulsed diode lasers,” IEEE Photonics J. 9(1), 1–14 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Fujiwara, R. Yoshimura, K. Kato, H. Ishii, F. Kano, Y. Kawaguchi, Y. Kondo, K. Ohbayashi, and H. Oohashi, “140-nm Quasi-Continuous Fast Sweep Using SSG-DBR Lasers,” IEEE Photonics Technol. Lett. 20(12), 1015–1017 (2008).
[Crossref]

J. Biomed. Opt. (1)

H. Wabnitz, D. R. Taubert, M. Mazurenka, O. Steinkellner, A. Jelzow, R. Macdonald, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, R. Cooper, J. Hebden, A. Pifferi, A. Farina, I. Bargigia, D. Contini, M. Caffini, L. Zucchelli, L. Spinelli, R. Cubeddu, and A. Torricelli, “Performance assessment of time-domain optical brain imagers, part 1: basic instrumental performance protocol,” J. Biomed. Opt. 19(8), 086010 (2014).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (1)

V. Jain, E. M. Buckley, D. J. Licht, J. M. Lynch, P. J. Schwab, M. Y. Naim, N. A. Lavin, S. C. Nicolson, L. M. Montenegro, A. G. Yodh, and F. W. Wehrli, “Cerebral oxygen metabolism in neonates with congenital heart disease quantified by MRI and optics,” J. Cereb. Blood Flow Metab. 34(3), 380–388 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

D. Contini, A. D. Mora, L. Spinelli, A. Farina, A. Torricelli, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, G. Boso, F. Zappa, and A. Pifferi, “Effects of time-gated detection in diffuse optical imaging at short source-detector separation,” J. Phys. D Appl. Phys. 48(4), 045401 (2015).
[Crossref]

Lasers Surg. Med. (1)

A. J. Lin, N. A. Castello, G. Lee, K. N. Green, A. J. Durkin, B. Choi, F. LaFerla, and B. J. Tromberg, “In vivo optical signatures of neuronal death in a mouse model of Alzheimer’s disease,” Lasers Surg. Med. 46(1), 27–33 (2014).
[Crossref] [PubMed]

Neuroimage (5)

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” Neuroimage 85(Pt 1), 28–50 (2014).
[Crossref] [PubMed]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. Mata Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” Neuroimage 85(Pt 1), 6–27 (2014).
[Crossref] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage 63(2), 921–935 (2012).
[Crossref] [PubMed]

T. Durduran and A. G. Yodh, “Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement,” Neuroimage 85(Pt 1), 51–63 (2014).
[Crossref] [PubMed]

N. Roche-Labarbe, A. Fenoglio, H. Radhakrishnan, M. Kocienski-Filip, S. A. Carp, J. Dubb, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates,” Neuroimage 85(Pt 1), 279–286 (2014).
[Crossref] [PubMed]

Opt. Express (6)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
[Crossref] [PubMed]

A. Tosi, A. D. Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express 19(11), 10735–10746 (2011).
[Crossref] [PubMed]

M. Bonesi, M. P. Minneman, J. Ensher, B. Zabihian, H. Sattmann, P. Boschert, E. Hoover, R. A. Leitgeb, M. Crawford, and W. Drexler, “Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length,” Opt. Express 22(3), 2632–2655 (2014).
[Crossref] [PubMed]

D. Borycki, O. Kholiqov, S. P. Chong, and V. J. Srinivasan, “Interferometric Near-Infrared Spectroscopy (iNIRS) for determination of optical and dynamical properties of turbid media,” Opt. Express 24(1), 329–354 (2016).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (2)

Philos. Trans. A Math Phys. Eng. Sci. (2)

D. A. Boas and M. A. Franceschini, “Haemoglobin oxygen saturation as a biomarker: the problem and a solution,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4407–4424 (2011).

M. Smith, “Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy,” Philos. Trans. A Math Phys. Eng. Sci. 369, 4452–4469 (2011).

Phys. Rev. Lett. (3)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett. 60(12), 1134–1137 (1988).
[Crossref] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett. 95(7), 078101 (2005).
[Crossref] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett. 100(13), 138101 (2008).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Pfeiffer, W. Wieser, T. Klein, M. Petermann, J.-P. Kolb, M. Eibl, and R. Huber, “Flexible A-scan rate MHz OCT: Computational downscaling by coherent averaging,” Proc. SPIE 9697, 96970S (2016).

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Science (1)

F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref] [PubMed]

Other (4)

S. W. C. Larry, A. Coldren, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (2012).

Laser Institute of America, ANSI Z136.1, American National Standard for Safe Use of Lasers (n.d.).

“nanoplus | Distributed Feedback Lasers: 760 nm - 830 nm,” http://nanoplus.com/en/products/distributed-feedback-lasers/distributed-feedback-lasers-760-nm-830-nm/ .

K. K. Hamamatsu Photonics, (editorial committee), Photomultiplier Tubes - Basics and Applications, 3rd ed. (Hamamatsu Photonics, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

iNIRS optical system and modulation scheme. a) The function generator (FG) sinusoidally modulates the injected drive current via the integrated current/temperature controller (I/T controller); the injected drive current in turn modulates the optical frequency of the distributed feedback laser (DFB). The laser output beam is collimated (L1), shaped with an anamorphic prism pair (APP), isolated (55 dB Thorlabs isolator), and finally coupled (L2) to a few mode fiber (SMF-28). M1-M4 are steering mirrors. The beam is split into reference (1%) and sample (99%) arms with a 99:1 fiber coupler, where the sample arm is collimated (L3) before illuminating the turbid medium. A single mode fiber coupler (L4) collects multiply scattered sample light, which is combined with the reference light by a 50:50 fiber coupler, before detection by a dual-balanced detector (DBD). Simultaneous reference power measurements are recorded with a photodiode (PD). Finally, iNIRS interference signals and reference power measurements are digitized and processed with a PC. b) This implementation of iNIRS relies on injection current modulation for wavelength tuning, resulting in concomitant modulation of the DFB laser output power as the wavelength is tuned.

Fig. 2
Fig. 2

Current tuning of a distributed feedback (DFB) laser incurs a reduction in tuning range and consequently, TOF resolution, with increased tuning speed. a) Maximal tuning range (ΔV) versus tuning speed. b) Peak-peak current during the sweep. c) Current tuning coefficient (dλ/dI) versus tuning speed. d) “Max”, or best, achievable time-of-flight (TOF) resolution (δτs) based on measurements shown in (a) and Eqs. (7) and (8).

Fig. 3
Fig. 3

Interpolation procedure optimizes time-of-flight (TOF) resolution by linearizing interference fringes. Raw mean-subtracted interference signals (a-b, i-j, and q-r). Phase of interference signals before (blue) and after (red) interpolation (c-d, k-l, and s-t). The interpolation procedure linearizes the fringes (e-f, m-n, and u-v) and improves the TOF resolution (g-h, o-p, and w-x), nearly achieving the “ideal” IRF (dotted black) set by the fringe envelopes.

Fig. 4
Fig. 4

The iNIRS sensitivity increases with increasing reference arm power and approaches the shot noise limit for both low (a) and high (b) resolution modes, as well as high speed mode (c). The input sample powers were PS,in = 35.6 mW for low resolution mode, PS,in = 23.2 mW for high resolution mode, and PS,in = 29.3 mW for high speed mode. Note that in (a), sensitivities are nearly identical for forward and backward sweeps.

Fig. 5
Fig. 5

Impact of Hamming windowing and Gaussian shaping on IRFs (a-d: low resolution mode, e-h: high resolution mode, i-l: high speed mode). Corresponding interference spectra (a-b, e-f, and i-j) and IRFs (c-d, g-h, and k-l) are shown, illustrating a tradeoff between dynamic range (peak-sidelobe ratio) and TOF resolution.

Fig. 6
Fig. 6

a) Multi-pass loop method for coherence time measurement of rapidly tunable lasers (DFB – distributed feedback laser, APP – anamorphic prism pair, L1/L2 – lenses, OI – optical isolator, FOPC – fiber optic polarization controller, C1-C4 – FC/APC connections, DBD – dual balanced detector). b) Interference signals are generated for each pass through the loop. c) Without multi-pass losses, Fourier analysis of interference signals yields the rolloff, whose half-width at half maximum is the coherence time (τc) of the laser. Loop signals for 50 kHz (d) and 500 kHz (g) tuning rates. The TOF regions around each peak were summed, to mitigate TPSF broadening caused by resampling errors at large TOFs, for 50 kHz (e) and 500 kHz (h) tuning rates. Assuming that the rolloff at a very slow speed of 500 Hz, represented by the bold black line in (e) and (h), is only due to multi-pass losses, normalized rolloffs at higher speeds (50 kHz and 500 kHz) that exclude multi-pass losses can be estimated as the difference in summed rolloffs, (f and i, respectively).

Fig. 7
Fig. 7

a-c) Envelopes and fringe frequencies are nearly identical for forward and backward sweeps prior to inverse Fourier transformation. d-f) Resulting forward and backward sweep IRFs show good agreement.

Fig. 8
Fig. 8

a) iNIRS was performed noninvasively in the nude mouse brain in vivo in reflectance mode. (b-d) In vivo TPSFs at null (dashed blue/red) and 7.6 mm (solid blue/red) source-detector separations. The solid black vertical line in b-d represents the zero TOF position as determined by the centroid of the null SD TPSF.

Fig. 9
Fig. 9

a-c) TPSFs (black circles) are fitted with diffusion theory (red). The fitting window is highlighted green. Corresponding in vivo mouse brain optical properties are shown in Table 3.

Fig. 10
Fig. 10

Normalized optical field autocorrelations for all modes approximately agree at a time-of-flight of τs ≈100 ps. Note that autocorrelations with δτd = 10 μs are derived from coherent comparisons of bidirectional (forward and backward) sweeps at 50 kHz, while autocorrelations with δτd = 4 μs are derived from unidirectional sweep comparisons only.

Tables (3)

Tables Icon

Table 1 Digital spectral shaping and windowing affect iNIRS sensitivity. The shot noise limit, measured iNIRS sensitivity, and sensitivity loss (difference of previous columns) are provided for all operating regimes. Shaping or windowing methods are color-coded, consistent with other figures.

Tables Icon

Table 2 Digital spectral shaping and windowing affect iNIRS TOF resolution and dynamic range. The IRF full-width-at-half-maximum (FWHM), dynamic range (SNR definition), and dynamic range (peak-sidelobe definition) are provided for all operating regimes. Shaping or windowing methods are color-coded, consistent with other figures.

Tables Icon

Table 3 Extracted optical properties of the in vivo mouse brain. For the three operating regimes, the extracted optical properties, the 95% confidence interval (CI), and the mean squared error (MSE) are provided.

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

I iNIRS s ) =  | Γ rs s ,t d ) | 2 t d .
I iNIRS s ) = I(τ s )*IRF(τ s ).
min ( μ a , μ s ,A ) [ s )*IRF(τ s ) ]  - I iNIRS s ) 2 .
G 1 iNIRS s d ) =  Γ rs * s ,t d rs ( τ s ,t d d ) t d .
G 1 iNIRS s d ) = G 1 s d )*IRF(τ s ).
g 1 s d ) =  G 1 s d ) G 1 s ,0)  = exp[ -ξ(τ s d ] = exp[ -2k 2 αD B μ s  Lτ d ],
δτ s  =  2 2 ln( 2 ) πΔν  =  2 2 ln( 2 ) λ c 2 πcΔλ .
ΔΛ =  λ c 2 ΔV c  =  πΔλ 2ln( 2 ) .
ΔΛ =  N fringes λ c 2 nΔL .
signal =  S S ( ν ) S R ( ν ) dν  N S N R s 2 ( ν )dν  N S N R .
σ noise 2  =  S R ( ν ) dν = N R s 2 ( ν ) dν = N R ,
SNR =  signal 2 σ noise 2  =  N S N R [ s 2 ( ν ) ] 2 N R s 2 ( ν )  = N S .
sensitivity =  1 α min  = ρ d N S, inc  =  ρ d λ c P S Δt hc .
signal =  N S N R w( ν ) s 2 ( ν )
σ noise 2  = N R w 2 (ν)s 2 (ν)dν .
sensitivity loss from shaping =  [ w( ν ) s 2 ( ν ) ] 2 w 2 ( ν ) s 2 ( ν ) .
sensitivity loss from shaping =  [ s w ( ν )s( ν ) ] 2 s w 2 ( ν ) ,
sensitivity loss from shaping   s w 2 ( ν ) s 2 ( ν ) s w 2 ( ν )  = 1,
sensitivity = 10log 10 ( | Γ rs,peak | 2 σ noise,τd 2 τ s ) +10log 10 ( P S,in P S,out )
τ s ,max  =  N s 2ΔV  =  Δt  f s δτ s 2 2 ,
τ s ,max  =  N s πΔV  =  Δt  f s δτ s π 2 .
dynamic range (SNR) = 10log 10 ( | Γ rs,peak | 2 σ noise,τ d 2 τ s )
dynamic range (peak-sidelobe) = 10log 10 ( | Γ rs,peak | 2 | Γ rs,sidelobe | 2 ).
τ c  =  2ln( 2 ) πδν .
I out  = { α c I in               for  n = 0 β n I in ( 1-α c ) 2 α c n-1   for  n > 0 .
Δf   πcΔΛF S Δτ s λ c 2 .
g 1 iNIRS ( τ s d ) =  G 1 iNIRS ( τ s d ) G 1 iNIRS ( τ s ,0 ) .

Metrics