Abstract

We show that the group-velocity-led optical event horizon (OEH) in optical fibers provides a convenient way to actively control the propagation property of higher-order solitons by a comparatively weak dispersive wave (DW) pulse. It has been found numerically that clean soliton breakup, a process by which a second-order soliton completely splits into a pair of constituent solitons with vastly different power proportions after interacting with the weak DW pulse, will occur while external DWs become polychromatic. The temporal separation between both constituent solitons can be controlled by adjusting the power of the external DW. The more energetic main soliton is advanced/trailed in time depending on the selected frequency of input DW pulse. We have developed an analytic formalism describing the external acting-force (AF) perturbation. These results provide a fundamental explanation and physical scaling of optical pulse evolution in optical fibers and can find applications in improved supercontinuum sources.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dark solitons manipulation using optical event horizon

Zhixiang Deng, Jun Liu, Xianwei Huang, Chujun Zhao, and Xinlin Wang
Opt. Express 26(13) 16535-16546 (2018)

Observation of an optical event horizon in a silicon-on-insulator photonic wire waveguide

Charles Ciret, François Leo, Bart Kuyken, Gunther Roelkens, and Simon-Pierre Gorza
Opt. Express 24(1) 114-124 (2016)

Reversible conversion between optical frequencies of probe and idler waves in regime of optical event horizon

Zhixiang Deng, Xiaohui Shi, Chao Tan, and Xiquan Fu
J. Opt. Soc. Am. B 33(5) 857-863 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
  2. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).
  3. F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
    [PubMed]
  4. M. Selim Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
    [PubMed]
  5. Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80(3), 033610 (2009).
  6. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004).
    [PubMed]
  7. R. Driben and B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in Raman-free fibers,” Opt. Lett. 38(18), 3623–3626 (2013).
    [PubMed]
  8. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).
  9. F. Braud, M. Conforti, A. Cassez, A. Mussot, and A. Kudlinski, “Solitonization of a dispersive wave,” Opt. Lett. 41(7), 1412–1415 (2016).
    [PubMed]
  10. A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95(3), 033813 (2017).
  11. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
    [PubMed]
  12. K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13(5), 392–394 (1988).
    [PubMed]
  13. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).
  14. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
    [PubMed]
  15. C. Liu, E. J. Rees, T. Laurila, S. Jian, and C. F. Kaminski, “Periodic interactions between solitons and dispersive waves during the generation of non-coherent supercontinuum radiation,” Opt. Express 20(6), 6316–6324 (2012).
    [PubMed]
  16. A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20(5), 5538–5546 (2012).
    [PubMed]
  17. A. Bendahmane, A. Mussot, M. Conforti, and A. Kudlinski, “Observation of the stepwise blue shift of a dispersive wave preceding its trapping by a soliton,” Opt. Express 23(13), 16595–16601 (2015).
    [PubMed]
  18. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [PubMed]
  19. A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
    [PubMed]
  20. T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
    [PubMed]
  21. K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
    [PubMed]
  22. L. Tartara, “Soliton control by a weak dispersive pulse,” J. Opt. Soc. Am. B 32(3), 395–399 (2015).
  23. J. Gu, H. Guo, S. Wang, and X. Zeng, “Probe-controlled soliton frequency shift in the regime of optical event horizon,” Opt. Express 23(17), 22285–22290 (2015).
    [PubMed]
  24. Z. Deng, X. Shi, C. Tan, and X. Fu, “Reversible conversion between optical frequencies of probe and idler waves in regime of optical event horizon,” J. Opt. Soc. Am. B 33(5), 857–863 (2016).
  25. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14474–14479 (2013).
    [PubMed]
  26. Z. Deng, X. Fu, J. Liu, C. Zhao, and S. Wen, “Trapping and controlling the dispersive wave within a solitonic well,” Opt. Express 24(10), 10302–10312 (2016).
    [PubMed]
  27. S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40(14), 3320–3323 (2015).
    [PubMed]
  28. I. Oreshnikov, R. Driben, and A. V. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40(21), 4871–4874 (2015).
    [PubMed]
  29. I. Oreshnikov, R. Driben, and A. V. Yulin, “Interaction of high-order solitons with external dispersive waves,” Opt. Lett. 40(23), 5554–5557 (2015).
    [PubMed]
  30. S. Pickartz, U. Bandelow, and S. Amiranashvili, “Adiabatic theory of solitons fed by dispersive waves,” Phys. Rev. A 94(3), 033811 (2016).
  31. P. Kanakis and T. Kamalakis, “Enabling transistor-like action in photonic crystal waveguides using optical event horizons,” Opt. Lett. 41(7), 1372–1375 (2016).
    [PubMed]
  32. E. A. Anashkina, A. V. Andrianov, and A. V. Kim, “Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8–1 μm in silica fibres,” Quantum Electron. 43(3), 263–270 (2013).
  33. C. M. Arabí, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94(6), 063847 (2016).
  34. B. W. Plansinis, W. R. Donaldson, and G. P. Agrawal, “Temporal waveguides for optical pulses,” J. Opt. Soc. Am. B 33(6), 1112–1119 (2016).

2017 (3)

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[PubMed]

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95(3), 033813 (2017).

M. Selim Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
[PubMed]

2016 (7)

2015 (6)

2014 (1)

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

2013 (4)

E. A. Anashkina, A. V. Andrianov, and A. V. Kim, “Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8–1 μm in silica fibres,” Quantum Electron. 43(3), 263–270 (2013).

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14474–14479 (2013).
[PubMed]

R. Driben and B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in Raman-free fibers,” Opt. Lett. 38(18), 3623–3626 (2013).
[PubMed]

2012 (2)

2011 (1)

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[PubMed]

2010 (1)

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).

2009 (2)

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80(3), 033610 (2009).

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

2008 (1)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
[PubMed]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

2005 (1)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

2004 (1)

1988 (1)

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).

1986 (1)

Agrawal, G. P.

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95(3), 033813 (2017).

B. W. Plansinis, W. R. Donaldson, and G. P. Agrawal, “Temporal waveguides for optical pulses,” J. Opt. Soc. Am. B 33(6), 1112–1119 (2016).

Akhmediev, N.

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80(3), 033610 (2009).

Amiranashvili, S.

S. Pickartz, U. Bandelow, and S. Amiranashvili, “Adiabatic theory of solitons fed by dispersive waves,” Phys. Rev. A 94(3), 033811 (2016).

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[PubMed]

Anashkina, E. A.

E. A. Anashkina, A. V. Andrianov, and A. V. Kim, “Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8–1 μm in silica fibres,” Quantum Electron. 43(3), 263–270 (2013).

Andrianov, A. V.

E. A. Anashkina, A. V. Andrianov, and A. V. Kim, “Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8–1 μm in silica fibres,” Quantum Electron. 43(3), 263–270 (2013).

Antikainen, A.

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95(3), 033813 (2017).

Arabí, C. M.

C. M. Arabí, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94(6), 063847 (2016).

Arteaga-Sierra, F. R.

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95(3), 033813 (2017).

Bache, M.

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

Bandelow, U.

S. Pickartz, U. Bandelow, and S. Amiranashvili, “Adiabatic theory of solitons fed by dispersive waves,” Phys. Rev. A 94(3), 033811 (2016).

Bang, O.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).

Bekki, N.

Bendahmane, A.

Bessin, F.

C. M. Arabí, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94(6), 063847 (2016).

Bludov, Y. V.

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80(3), 033610 (2009).

Braud, F.

Broderick, N. G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

Cassez, A.

Chen, H. H.

Choudhary, A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Conforti, M.

Cristiani, I.

Degiorgio, V.

Demircan, A.

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[PubMed]

Deng, Z.

Donaldson, W. R.

Driben, R.

Dudley, J. M.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Efimov, A.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

Erkintalo, M.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

Fu, X.

Genty, G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

Gorbach, A. V.

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).

Gu, J.

Guo, H.

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

Hasegawa, A.

Hill, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
[PubMed]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

Jian, S.

Joly, N.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

Kamalakis, T.

Kaminski, C. F.

Kanakis, P.

Kim, A. V.

E. A. Anashkina, A. V. Andrianov, and A. V. Kim, “Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8–1 μm in silica fibres,” Quantum Electron. 43(3), 263–270 (2013).

Knight, J. C.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

König, F.

A. Choudhary and F. König, “Efficient frequency shifting of dispersive waves at solitons,” Opt. Express 20(5), 5538–5546 (2012).
[PubMed]

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
[PubMed]

Konotop, V. V.

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80(3), 033610 (2009).

Köttig, F.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[PubMed]

Kudlinski, A.

Kuklewicz, C.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
[PubMed]

Laurila, T.

Lee, Y. C.

Leonhardt, U.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
[PubMed]

Liu, C.

Liu, J.

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

Malomed, B. A.

Markos, C.

Menyuk, C. R.

Murdoch, S. G.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

Mussot, A.

Omenetto, F. G.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

Oreshnikov, I.

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

Philbin, T. G.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
[PubMed]

Pickartz, S.

S. Pickartz, U. Bandelow, and S. Amiranashvili, “Adiabatic theory of solitons fed by dispersive waves,” Phys. Rev. A 94(3), 033811 (2016).

Plansinis, B. W.

Rees, E. J.

Robertson, S.

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
[PubMed]

Russell, P.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

Russell, P. S. J.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[PubMed]

Selim Habib, M.

Shi, X.

Skryabin, D.

C. M. Arabí, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94(6), 063847 (2016).

Skryabin, D. V.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14474–14479 (2013).
[PubMed]

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

Steinmeyer, G.

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[PubMed]

Tai, K.

Tan, C.

Tani, F.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[PubMed]

Tartara, L.

Taylor, A. J.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

Tediosi, R.

Travers, J. C.

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[PubMed]

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

Wai, P. K. A.

Wang, S.

Wang, S. F.

Webb, K. E.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).

Wen, S.

Xu, Y.

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

Yulin, A. V.

I. Oreshnikov, R. Driben, and A. V. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40(21), 4871–4874 (2015).
[PubMed]

I. Oreshnikov, R. Driben, and A. V. Yulin, “Interaction of high-order solitons with external dispersive waves,” Opt. Lett. 40(23), 5554–5557 (2015).
[PubMed]

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14474–14479 (2013).
[PubMed]

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

Zeng, X.

Zeng, X. L.

Zhao, C.

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).

IEEE J. Quantum Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23(11), 1938–1946 (1987).

J. Opt. Soc. Am. B (3)

Nat. Commun. (1)

K. E. Webb, M. Erkintalo, Y. Xu, N. G. Broderick, J. M. Dudley, G. Genty, and S. G. Murdoch, “Nonlinear optics of fibre event horizons,” Nat. Commun. 5, 4969 (2014).
[PubMed]

Opt. Express (7)

Opt. Lett. (9)

I. Oreshnikov, R. Driben, and A. V. Yulin, “Weak and strong interactions between dark solitons and dispersive waves,” Opt. Lett. 40(21), 4871–4874 (2015).
[PubMed]

I. Oreshnikov, R. Driben, and A. V. Yulin, “Interaction of high-order solitons with external dispersive waves,” Opt. Lett. 40(23), 5554–5557 (2015).
[PubMed]

P. Kanakis and T. Kamalakis, “Enabling transistor-like action in photonic crystal waveguides using optical event horizons,” Opt. Lett. 41(7), 1372–1375 (2016).
[PubMed]

F. Braud, M. Conforti, A. Cassez, A. Mussot, and A. Kudlinski, “Solitonization of a dispersive wave,” Opt. Lett. 41(7), 1412–1415 (2016).
[PubMed]

S. F. Wang, A. Mussot, M. Conforti, X. L. Zeng, and A. Kudlinski, “Bouncing of a dispersive wave in a solitonic cage,” Opt. Lett. 40(14), 3320–3323 (2015).
[PubMed]

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986).
[PubMed]

K. Tai, A. Hasegawa, and N. Bekki, “Fission of optical solitons induced by stimulated Raman effect,” Opt. Lett. 13(5), 392–394 (1988).
[PubMed]

M. Selim Habib, C. Markos, O. Bang, and M. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42(11), 2232–2235 (2017).
[PubMed]

R. Driben and B. A. Malomed, “Generation of tightly compressed solitons with a tunable frequency shift in Raman-free fibers,” Opt. Lett. 38(18), 3623–3626 (2013).
[PubMed]

Phys. Rev. A (5)

S. Pickartz, U. Bandelow, and S. Amiranashvili, “Adiabatic theory of solitons fed by dispersive waves,” Phys. Rev. A 94(3), 033811 (2016).

C. M. Arabí, F. Bessin, A. Kudlinski, A. Mussot, D. Skryabin, and M. Conforti, “Efficiency of four-wave mixing between orthogonally polarized linear waves and solitons in a birefringent fiber,” Phys. Rev. A 94(6), 063847 (2016).

Y. V. Bludov, V. V. Konotop, and N. Akhmediev, “Matter rogue waves,” Phys. Rev. A 80(3), 033610 (2009).

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton’s cradles in optics: From N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013).

A. Antikainen, F. R. Arteaga-Sierra, and G. P. Agrawal, “Temporal reflection as a spectral-broadening mechanism in dual-pumped dispersion-decreasing fibers and its connection to dispersive waves,” Phys. Rev. A 95(3), 033813 (2017).

Phys. Rev. Lett. (4)

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an optical soliton with a dispersive wave,” Phys. Rev. Lett. 95(21), 213902 (2005).
[PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, and M. D. Lukin, “Efficient all-optical switching using slow light within a hollow fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[PubMed]

A. Demircan, S. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011).
[PubMed]

F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118(26), 263902 (2017).
[PubMed]

Quantum Electron. (1)

E. A. Anashkina, A. V. Andrianov, and A. V. Kim, “Nonlinear frequency up-conversion of femtosecond pulses from an erbium fibre laser to the range of 0.8–1 μm in silica fibres,” Quantum Electron. 43(3), 263–270 (2013).

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).

D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010).

Science (1)

T. G. Philbin, C. Kuklewicz, S. Robertson, S. Hill, F. König, and U. Leonhardt, “Fiber-optical analog of the event horizon,” Science 319(5868), 1367–1370 (2008).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Numerical results of the propagation of higher-order soliton control using the external dispersive wave with different power level (top row: PDW = 1 W and bottom row: PDW = 4 W) and simulated spectrum against the propagation length. (a, d) Evolution of the temporal intensity of the collision of 2-soliton and external DW. (b, e) and (c, f) represents evolution of spectral intensity of soliton and external DW, respectively. The results demonstrate that the clean soliton breakup was induced by the interaction between 2-soliton and intensive DW pulse.
Fig. 2
Fig. 2 Generation of frequency-tuned fundamental solitons for the 2-soliton input with relative delay −3 ps at three different values of PDW. The output pulse shape demonstrated that the temporal separation between a pair of constituent solitons can be manipulated by adjusting the peak power of external DW pulse.
Fig. 3
Fig. 3 Dynamics of higher-order soliton fission induced by the external DW (PDW = 4 W) at optical event horizon when the initial central frequency of external DW pulse is shifted to 172 THz. (a) Evolution of the temporal intensity of the interaction between external DW and 2-soliton. (b) and (c) represent evolution of spectral intensity of soliton and external DW, respectively.
Fig. 4
Fig. 4 Analysis of the external acting-force perturbation generated from the collision between the 2-soliton and the external DW pulse. Here we show the external DW pulse power PDW and the walk-off length LW versus the κ NL perturbation indicating the different scaling for each ( κ NL P DW and κ NL L W 2 ).
Fig. 5
Fig. 5 Temporal evolution of solitonic well created by two co-propagating 2-solitons and external DW pulse bouncing between them. (a) DW with relative weak amplitude (PDW = 1 W); (b) DW of considerable intensity (PDW = 4 W).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A(z,T) z =iD(i T )A(z,T)+iγ|A(z,T) | 2 A(z,T)
A(t)= A sol (t)+ A DW (t),
A sol (t)=2 P 0 sech(t/ T 0 )
A DW (t)= P DW sech((t t 1 )/ T 1 )exp(iΔωt)
ξ= z L D ,T= t β 11 z T 0 ,U(ξ,T)=A(z,T)/ P 0
i U ξ sign( β 2 ) 2 2 U T 2 + N 2 |U | 2 U= N 2 P 1 P 0 | U g | 2 U
i U g ξ +i( β 12 β 11 ) U g T +γ P 0 P DW P 1 U 2 U DW e i(Δν)T =0,
U g (T,ξ)=iγ P 0 P DW P 1 0 z U 2 U DW e iΔν[τ+( β 11 β 12 )s] ds
U g (T,ξ)= iγ P 0 β 11 β 12 P DW P 1 T( β 11 β 12 )z T sech 2 ( t T 0 ) e iΔν t d t iγ P 0 | β 11 β 12 | P DW P 1 sech 2 ( t / T 0 ) e iΔν t d t = γ P 0 πΔν T 0 | β 11 β 12 | P DW P 1 sin h 1 ( Δν T 0 π 2 ).
κ NL = L NL L AF = 4γ T 0 2 N 2 P DW | β `11 β 12 | 2 =4γ N 2 P DW L W 2 ,
A(t)=2 P 0 sech[(t+ t 1 )/ T 0 ]+ P DW sech(t/ T 1 )exp(iΔωt)+2 P 0 sech[(t t 1 )/ T 0 ].

Metrics