Abstract

Green and red up-conversion luminescence spectra related to 2H11/2,4S3/24I15/2 and 4F9/24I15/2 transitions of trivalent erbium in Er3+/Yb3+ co-doped lead silicate glasses have been studied. The luminescence intensity ratio for bands due to the 2H11/24I15/2 and 4S3/24I15/2 transitions of Er3+ was determined and temperature sensitivity parameters were calculated. The maximal temperature sensitivities for Er3+/Yb3+ co-doped glass samples depend critically on rare earth ion concentrations. Based on gathered data it was concluded that Er3+/Yb3+ co-doped lead silicate glasses are promising for optical temperature sensing.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring

Jianfeng Tang, Maojun Sun, Yawen Huang, Jie Gou, Yu Zhang, Guannan Li, Yuan Li, Yuhong Man, and Jun Yang
Opt. Mater. Express 7(9) 3238-3250 (2017)

Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ co-doped ZnWO4

Xiaona Chai, Jun Li, Xusheng Wang, Yanxia Li, and Xi Yao
Opt. Express 24(20) 22438-22447 (2016)

Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles

V.K. Tikhomirov, K. Driesen, V.D. Rodriguez, P. Gredin, M. Mortier, and V.V. Moshchalkov
Opt. Express 17(14) 11794-11798 (2009)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Dumbaugh and J. C. Lapp, “Heavy-metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).
  2. M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).
  3. P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+, and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).
  4. W. A. Pisarski, L. Żur, and J. Pisarska, “Optical transitions of Eu3+ and Dy3+ ions in lead phosphate glasses,” Opt. Lett. 36(6), 990–992 (2011).
    [PubMed]
  5. H. T. Munasinghe, A. Winterstein-Beckmann, Ch. Schiele, D. Manzani, L. Wondraczek, V. Shahraam Afshar, T. M. Monro, and H. Ebendorff-Heidepriem, “Lead-germanate glasses and fibers: a practical alternative to tellurite for nonlinear fiber applications,” Opt. Mater. Express 3, 1488–1503 (2013).
  6. S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).
  7. P. Manasa and C. K. Jayasankar, “Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses,” Opt. Mater. 62, 139–145 (2016).
  8. K. Zou, H. Guo, M. Lu, W. Li, C. Hou, W. Wei, J. He, B. Peng, and B. Xiangli, “Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass,” Opt. Express 17(12), 10001–10009 (2009).
    [PubMed]
  9. M. Bettinelli, A. Speghini, and M. G. Brik, “Spectroscopic studies of emission and absorption properties of 38PbO-62SiO2:Nd3+ glass,” Opt. Mater. 32, 1592–1596 (2010).
  10. P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).
  11. N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).
  12. B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).
  13. X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).
  14. G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 µm laser applications,” Opt. Mater. Express 6, 2147–2157 (2016).
  15. T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, and Z. Yang, “Enhanced 1.8 μm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser,” J. Rare Earths 34, 978–985 (2016).
  16. X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).
  17. X. Liu, P. Kuan, D. Li, S. Gao, X. Wang, L. Zhang, L. Hu, and D. Chen, “Heavily Ho3+-doped lead silicate glass fiber for ∼2 µm fiber lasers,” Opt. Mater. Express 6, 1093–1098 (2016).
  18. I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. N. Abramov, A. N. Guryanov, and E. M. Dianov, “Luminescence and optical gain in Pb-doped silica-based optical fibers,” Opt. Express 17(16), 13487–13492 (2009).
    [PubMed]
  19. M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling,” Opt. Express 17(12), 9940–9946 (2009).
    [PubMed]
  20. S. Taccheo, H. Gebavi, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, T. Robin, D. Milanese, and T. Durrant, “Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation,” Opt. Express 19(20), 19340–19345 (2011).
    [PubMed]
  21. K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
    [PubMed]
  22. R. S. Barker, D. A. Richardson, E. A. G. McConkey, and R. Rimmer, “Gamma irradiation of lead silicate glass,” Nature 187, 135–136 (1960).
  23. H. Berthou and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15(19), 1100–1102 (1990).
    [PubMed]
  24. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).
  25. C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
  26. H. Li, Y. Zhang, L. Shao, Z. Htwe, and P. Yuan, “Luminescence probe for temperature sensor based on fluorescence intensity ratio,” Opt. Mater. Express 7, 1077–1083 (2017).
  27. R. Wang, X. Zhang, Z. Zhang, H. Zhong, Y. Chen, E. Zhao, S. Vasilescu, and L. Liu, “Modified FIR thermometry for surface temperature sensing by using high power laser,” Opt. Express 25(2), 848–856 (2017).
    [PubMed]
  28. Y. Liu, W. A. Pisarski, S. Zeng, C. Xu, and Q. Yang, “Tri-color upconversion luminescence of rare earth doped BaTiO3 nanocrystals and lowered color separation,” Opt. Express 17(11), 9089–9098 (2009).
    [PubMed]
  29. R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).
  30. L. Li, W. Xu, L. Zheng, F. Qin, Y. Zhou, Z. Liang, Z. Zhang, and W. Cao, “Valley-to-peak intensity ratio thermometry based on the red upconversion emission of Er3+,” Opt. Express 24(12), 13244–13249 (2016).
    [PubMed]
  31. Ch. Li, B. Dong, S. Li, and Ch. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).
  32. W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors,” Sens. Actuators A Phys. 252, 54–58 (2016).
  33. J. Tang, M. Sun, Y. Huang, J. Gou, Y. Zhang, G. Li, Y. Li, Y. Man, and J. Yang, “Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring,” Opt. Mater. Express 7, 3238–3250 (2017).
  34. Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
    [PubMed]
  35. Q. Shao, L. Ouyang, L. Jin, and J. Jiang, “Multifunctional nanoheater based on NaGdF4:Yb3+,Er3+ upconversion nanoparticles,” Opt. Express 23, 30057–30066 (2015).
    [PubMed]
  36. X. Chai, J. Li, X. Wang, Y. Li, and X. Yao, “Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ codoped ZnWO4,” Opt. Express 24, 22438–22447 (2016).
    [PubMed]
  37. W. A. Pisarski, Ł. Grobelny, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses,” J. Alloys Compd. 509, 8088–8092 (2011).
  38. S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).
  39. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
    [PubMed]
  40. B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er-MoYb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159, 8–11 (2011).
  41. W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications,” Opto-Electron. Rev. 25, 238–241 (2017).
  42. C. Li, B. Dong, C. Ming, and M. Lei, “Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass,” Sensors (Basel) 7(11), 2652–2659 (2007).
    [PubMed]
  43. Z. Songqiang, L. Chengren, L. Zhongfan, L. Shufeng, and S. Changlie, “Thermal effect on upconversion in Er3+/Yb3+ co-doped silicate glass,” Opt. Mater. 30, 513–516 (2007).
  44. L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconverted and temperature sensor behavior of Er3+-Yb3+-codoped oxyfluoride glass,” J. Lumin. 130, 2418–2423 (2010).
  45. W. A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing,” Sens. Actuators B Chem. 253, 85–91 (2017).

2017 (7)

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications,” Opto-Electron. Rev. 25, 238–241 (2017).

W. A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing,” Sens. Actuators B Chem. 253, 85–91 (2017).

R. Wang, X. Zhang, Z. Zhang, H. Zhong, Y. Chen, E. Zhao, S. Vasilescu, and L. Liu, “Modified FIR thermometry for surface temperature sensing by using high power laser,” Opt. Express 25(2), 848–856 (2017).
[PubMed]

H. Li, Y. Zhang, L. Shao, Z. Htwe, and P. Yuan, “Luminescence probe for temperature sensor based on fluorescence intensity ratio,” Opt. Mater. Express 7, 1077–1083 (2017).

J. Tang, M. Sun, Y. Huang, J. Gou, Y. Zhang, G. Li, Y. Li, Y. Man, and J. Yang, “Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring,” Opt. Mater. Express 7, 3238–3250 (2017).

2016 (8)

X. Liu, P. Kuan, D. Li, S. Gao, X. Wang, L. Zhang, L. Hu, and D. Chen, “Heavily Ho3+-doped lead silicate glass fiber for ∼2 µm fiber lasers,” Opt. Mater. Express 6, 1093–1098 (2016).

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 µm laser applications,” Opt. Mater. Express 6, 2147–2157 (2016).

L. Li, W. Xu, L. Zheng, F. Qin, Y. Zhou, Z. Liang, Z. Zhang, and W. Cao, “Valley-to-peak intensity ratio thermometry based on the red upconversion emission of Er3+,” Opt. Express 24(12), 13244–13249 (2016).
[PubMed]

X. Chai, J. Li, X. Wang, Y. Li, and X. Yao, “Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ codoped ZnWO4,” Opt. Express 24, 22438–22447 (2016).
[PubMed]

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[PubMed]

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors,” Sens. Actuators A Phys. 252, 54–58 (2016).

P. Manasa and C. K. Jayasankar, “Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses,” Opt. Mater. 62, 139–145 (2016).

T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, and Z. Yang, “Enhanced 1.8 μm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser,” J. Rare Earths 34, 978–985 (2016).

2015 (3)

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).

R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).

Q. Shao, L. Ouyang, L. Jin, and J. Jiang, “Multifunctional nanoheater based on NaGdF4:Yb3+,Er3+ upconversion nanoparticles,” Opt. Express 23, 30057–30066 (2015).
[PubMed]

2014 (2)

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

2013 (1)

2011 (5)

W. A. Pisarski, Ł. Grobelny, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses,” J. Alloys Compd. 509, 8088–8092 (2011).

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er-MoYb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159, 8–11 (2011).

W. A. Pisarski, L. Żur, and J. Pisarska, “Optical transitions of Eu3+ and Dy3+ ions in lead phosphate glasses,” Opt. Lett. 36(6), 990–992 (2011).
[PubMed]

S. Taccheo, H. Gebavi, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, T. Robin, D. Milanese, and T. Durrant, “Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation,” Opt. Express 19(20), 19340–19345 (2011).
[PubMed]

K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
[PubMed]

2010 (3)

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconverted and temperature sensor behavior of Er3+-Yb3+-codoped oxyfluoride glass,” J. Lumin. 130, 2418–2423 (2010).

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

M. Bettinelli, A. Speghini, and M. G. Brik, “Spectroscopic studies of emission and absorption properties of 38PbO-62SiO2:Nd3+ glass,” Opt. Mater. 32, 1592–1596 (2010).

2009 (4)

2007 (3)

C. Li, B. Dong, C. Ming, and M. Lei, “Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass,” Sensors (Basel) 7(11), 2652–2659 (2007).
[PubMed]

Z. Songqiang, L. Chengren, L. Zhongfan, L. Shufeng, and S. Changlie, “Thermal effect on upconversion in Er3+/Yb3+ co-doped silicate glass,” Opt. Mater. 30, 513–516 (2007).

Ch. Li, B. Dong, S. Li, and Ch. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).

2005 (1)

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

2004 (2)

S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[PubMed]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).

2000 (1)

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+, and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).

1998 (1)

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).

1992 (1)

W. H. Dumbaugh and J. C. Lapp, “Heavy-metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).

1990 (1)

1960 (1)

R. S. Barker, D. A. Richardson, E. A. G. McConkey, and R. Rimmer, “Gamma irradiation of lead silicate glass,” Nature 187, 135–136 (1960).

Abramov, A. N.

Ajo, D.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).

Akola, J.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[PubMed]

Barker, R. S.

R. S. Barker, D. A. Richardson, E. A. G. McConkey, and R. Rimmer, “Gamma irradiation of lead silicate glass,” Nature 187, 135–136 (1960).

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).

Berthou, H.

Bettinelli, M.

M. Bettinelli, A. Speghini, and M. G. Brik, “Spectroscopic studies of emission and absorption properties of 38PbO-62SiO2:Nd3+ glass,” Opt. Mater. 32, 1592–1596 (2010).

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).

Boulon, G.

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

Brik, M. G.

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

M. Bettinelli, A. Speghini, and M. G. Brik, “Spectroscopic studies of emission and absorption properties of 38PbO-62SiO2:Nd3+ glass,” Opt. Mater. 32, 1592–1596 (2010).

Bufetov, I. A.

Cadier, B.

Cao, B. S.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er-MoYb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159, 8–11 (2011).

Cao, W.

Chai, X.

Changlie, S.

Z. Songqiang, L. Chengren, L. Zhongfan, L. Shufeng, and S. Changlie, “Thermal effect on upconversion in Er3+/Yb3+ co-doped silicate glass,” Opt. Mater. 30, 513–516 (2007).

Chen, D.

X. Liu, P. Kuan, D. Li, S. Gao, X. Wang, L. Zhang, L. Hu, and D. Chen, “Heavily Ho3+-doped lead silicate glass fiber for ∼2 µm fiber lasers,” Opt. Mater. Express 6, 1093–1098 (2016).

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 µm laser applications,” Opt. Mater. Express 6, 2147–2157 (2016).

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Chen, W.

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

Chen, X.

T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, and Z. Yang, “Enhanced 1.8 μm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser,” J. Rare Earths 34, 978–985 (2016).

Chen, Y.

R. Wang, X. Zhang, Z. Zhang, H. Zhong, Y. Chen, E. Zhao, S. Vasilescu, and L. Liu, “Modified FIR thermometry for surface temperature sensing by using high power laser,” Opt. Express 25(2), 848–856 (2017).
[PubMed]

R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).

Chengren, L.

Z. Songqiang, L. Chengren, L. Zhongfan, L. Shufeng, and S. Changlie, “Thermal effect on upconversion in Er3+/Yb3+ co-doped silicate glass,” Opt. Mater. 30, 513–516 (2007).

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).

Dai, N.

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

Dai, S.

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).

Dianov, E. M.

Dong, B.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er-MoYb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159, 8–11 (2011).

C. Li, B. Dong, C. Ming, and M. Lei, “Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass,” Sensors (Basel) 7(11), 2652–2659 (2007).
[PubMed]

Ch. Li, B. Dong, S. Li, and Ch. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).

Du, G.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconverted and temperature sensor behavior of Er3+-Yb3+-codoped oxyfluoride glass,” J. Lumin. 130, 2418–2423 (2010).

Dumbaugh, W. H.

W. H. Dumbaugh and J. C. Lapp, “Heavy-metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).

Durrant, T.

Ebendorff-Heidepriem, H.

Fan, X.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Feng, L.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconverted and temperature sensor behavior of Er3+-Yb3+-codoped oxyfluoride glass,” J. Lumin. 130, 2418–2423 (2010).

Feng, Z. Q.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er-MoYb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159, 8–11 (2011).

Firstov, S. V.

Fritzer, H. P.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).

Gao, S.

X. Liu, P. Kuan, D. Li, S. Gao, X. Wang, L. Zhang, L. Hu, and D. Chen, “Heavily Ho3+-doped lead silicate glass fiber for ∼2 µm fiber lasers,” Opt. Mater. Express 6, 1093–1098 (2016).

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).

Gatterer, K.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).

Gebavi, H.

Gou, J.

Grobelny, L.

W. A. Pisarski, Ł. Grobelny, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses,” J. Alloys Compd. 509, 8088–8092 (2011).

Guo, C.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[PubMed]

Guo, H.

Guryanov, A. N.

He, J.

He, Y. Y.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er-MoYb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159, 8–11 (2011).

Honkanen, S.

Hou, C.

Htwe, Z.

Hu, L.

X. Liu, P. Kuan, D. Li, S. Gao, X. Wang, L. Zhang, L. Hu, and D. Chen, “Heavily Ho3+-doped lead silicate glass fiber for ∼2 µm fiber lasers,” Opt. Mater. Express 6, 1093–1098 (2016).

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).

Huang, F.

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).

Huang, Y.

Jagannathan, R.

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+, and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).

Janek, J.

W. A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing,” Sens. Actuators B Chem. 253, 85–91 (2017).

Jayasankar, C. K.

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

P. Manasa and C. K. Jayasankar, “Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses,” Opt. Mater. 62, 139–145 (2016).

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).

Jiang, J.

Jiang, Z.

S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).

Jin, L.

Jörgensen, C. K.

Joshi, A. S.

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

Kaewkhao, J.

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

Kaewnuam, E.

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

Khopin, V. F.

Kiran Kumar, K.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).

Kohara, S.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Koplow, J. P.

Kuan, P.

X. Liu, P. Kuan, D. Li, S. Gao, X. Wang, L. Zhang, L. Hu, and D. Chen, “Heavily Ho3+-doped lead silicate glass fiber for ∼2 µm fiber lasers,” Opt. Mater. Express 6, 1093–1098 (2016).

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Lai, B.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconverted and temperature sensor behavior of Er3+-Yb3+-codoped oxyfluoride glass,” J. Lumin. 130, 2418–2423 (2010).

Landais, D.

Lapp, J. C.

W. H. Dumbaugh and J. C. Lapp, “Heavy-metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).

Le Goffic, O.

Lei, M.

C. Li, B. Dong, C. Ming, and M. Lei, “Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass,” Sensors (Basel) 7(11), 2652–2659 (2007).
[PubMed]

León-Luis, S. F.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).

Li, C.

C. Li, B. Dong, C. Ming, and M. Lei, “Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass,” Sensors (Basel) 7(11), 2652–2659 (2007).
[PubMed]

Li, Ch.

Ch. Li, B. Dong, S. Li, and Ch. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).

Li, D.

Li, G.

Li, H.

Li, J.

Li, K.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Li, L.

Li, M.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Li, S.

Ch. Li, B. Dong, S. Li, and Ch. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).

Li, T.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[PubMed]

Li, W.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

K. Zou, H. Guo, M. Lu, W. Li, C. Hou, W. Wei, J. He, B. Peng, and B. Xiangli, “Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass,” Opt. Express 17(12), 10001–10009 (2009).
[PubMed]

Li, Y.

Li, Y. S.

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er-MoYb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159, 8–11 (2011).

Liang, Z.

Lin, W.

Lisiecki, R.

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications,” Opto-Electron. Rev. 25, 238–241 (2017).

W. A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing,” Sens. Actuators B Chem. 253, 85–91 (2017).

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors,” Sens. Actuators A Phys. 252, 54–58 (2016).

W. A. Pisarski, Ł. Grobelny, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses,” J. Alloys Compd. 509, 8088–8092 (2011).

Liu, F.

R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).

Liu, L.

R. Wang, X. Zhang, Z. Zhang, H. Zhong, Y. Chen, E. Zhao, S. Vasilescu, and L. Liu, “Modified FIR thermometry for surface temperature sensing by using high power laser,” Opt. Express 25(2), 848–856 (2017).
[PubMed]

R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).

Liu, W.

Liu, X.

X. Liu, P. Kuan, D. Li, S. Gao, X. Wang, L. Zhang, L. Hu, and D. Chen, “Heavily Ho3+-doped lead silicate glass fiber for ∼2 µm fiber lasers,” Opt. Mater. Express 6, 1093–1098 (2016).

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Liu, Y.

Lu, M.

Lu, P.

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

Man, Y.

Manasa, P.

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

P. Manasa and C. K. Jayasankar, “Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses,” Opt. Mater. 62, 139–145 (2016).

Manzani, D.

Martín, I. R.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).

Martín, L. L.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).

Mattsson, K. E.

McConkey, E. A. G.

R. S. Barker, D. A. Richardson, E. A. G. McConkey, and R. Rimmer, “Gamma irradiation of lead silicate glass,” Nature 187, 135–136 (1960).

Mechin, D.

Meejitpaisan, P.

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

Milanese, D.

Ming, C.

C. Li, B. Dong, C. Ming, and M. Lei, “Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass,” Sensors (Basel) 7(11), 2652–2659 (2007).
[PubMed]

Monro, T. M.

Monteville, A.

Montiel i Ponsoda, J. J.

Morita, H.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Munasinghe, H. T.

Nachimuthu, P.

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+, and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).

Ohno, H.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Ouyang, L.

Peng, B.

Pérez-Rodríguez, C.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).

Piasecki, M.

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

Pisarska, J.

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications,” Opto-Electron. Rev. 25, 238–241 (2017).

W. A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing,” Sens. Actuators B Chem. 253, 85–91 (2017).

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors,” Sens. Actuators A Phys. 252, 54–58 (2016).

W. A. Pisarski, Ł. Grobelny, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses,” J. Alloys Compd. 509, 8088–8092 (2011).

W. A. Pisarski, L. Żur, and J. Pisarska, “Optical transitions of Eu3+ and Dy3+ ions in lead phosphate glasses,” Opt. Lett. 36(6), 990–992 (2011).
[PubMed]

Pisarski, W. A.

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications,” Opto-Electron. Rev. 25, 238–241 (2017).

W. A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing,” Sens. Actuators B Chem. 253, 85–91 (2017).

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors,” Sens. Actuators A Phys. 252, 54–58 (2016).

W. A. Pisarski, Ł. Grobelny, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses,” J. Alloys Compd. 509, 8088–8092 (2011).

W. A. Pisarski, L. Żur, and J. Pisarska, “Optical transitions of Eu3+ and Dy3+ ions in lead phosphate glasses,” Opt. Lett. 36(6), 990–992 (2011).
[PubMed]

Y. Liu, W. A. Pisarski, S. Zeng, C. Xu, and Q. Yang, “Tri-color upconversion luminescence of rare earth doped BaTiO3 nanocrystals and lowered color separation,” Opt. Express 17(11), 9089–9098 (2009).
[PubMed]

Purnachand, N.

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

Pusztai, L.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Qian, Q.

T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, and Z. Yang, “Enhanced 1.8 μm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser,” J. Rare Earths 34, 978–985 (2016).

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 µm laser applications,” Opt. Mater. Express 6, 2147–2157 (2016).

Qiao, T.

Qin, F.

Ramachari, D.

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

Richardson, D. A.

R. S. Barker, D. A. Richardson, E. A. G. McConkey, and R. Rimmer, “Gamma irradiation of lead silicate glass,” Nature 187, 135–136 (1960).

Rimmer, R.

R. S. Barker, D. A. Richardson, E. A. G. McConkey, and R. Rimmer, “Gamma irradiation of lead silicate glass,” Nature 187, 135–136 (1960).

Robin, T.

Ryba-Romanowski, W.

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications,” Opto-Electron. Rev. 25, 238–241 (2017).

W. A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing,” Sens. Actuators B Chem. 253, 85–91 (2017).

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors,” Sens. Actuators A Phys. 252, 54–58 (2016).

W. A. Pisarski, Ł. Grobelny, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses,” J. Alloys Compd. 509, 8088–8092 (2011).

Schiele, Ch.

Shahraam Afshar, V.

Shao, L.

Shao, Q.

Shufeng, L.

Z. Songqiang, L. Chengren, L. Zhongfan, L. Shufeng, and S. Changlie, “Thermal effect on upconversion in Er3+/Yb3+ co-doped silicate glass,” Opt. Mater. 30, 513–516 (2007).

Söderlund, M. J.

Song, Ch.

Ch. Li, B. Dong, S. Li, and Ch. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).

Songqiang, Z.

Z. Songqiang, L. Chengren, L. Zhongfan, L. Shufeng, and S. Changlie, “Thermal effect on upconversion in Er3+/Yb3+ co-doped silicate glass,” Opt. Mater. 30, 513–516 (2007).

Speghini, A.

M. Bettinelli, A. Speghini, and M. G. Brik, “Spectroscopic studies of emission and absorption properties of 38PbO-62SiO2:Nd3+ glass,” Opt. Mater. 32, 1592–1596 (2010).

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).

Srinivasa Reddy, M.

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

Su, Q.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconverted and temperature sensor behavior of Er3+-Yb3+-codoped oxyfluoride glass,” J. Lumin. 130, 2418–2423 (2010).

Suchocki, A.

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

Sun, M.

Suo, H.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[PubMed]

Suresh, B.

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

Suzuya, K.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Taccheo, S.

Takata, M.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Tang, G.

T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, and Z. Yang, “Enhanced 1.8 μm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser,” J. Rare Earths 34, 978–985 (2016).

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 µm laser applications,” Opt. Mater. Express 6, 2147–2157 (2016).

Tang, J.

Tregoat, D.

Usuki, T.

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Vasilescu, S.

Veeraiah, N.

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

Vithal, M.

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+, and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).

Wachtler, M.

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).

Wang, G.

S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).

Wang, J.

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconverted and temperature sensor behavior of Er3+-Yb3+-codoped oxyfluoride glass,” J. Lumin. 130, 2418–2423 (2010).

Wang, L.

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Wang, R.

R. Wang, X. Zhang, Z. Zhang, H. Zhong, Y. Chen, E. Zhao, S. Vasilescu, and L. Liu, “Modified FIR thermometry for surface temperature sensing by using high power laser,” Opt. Express 25(2), 848–856 (2017).
[PubMed]

R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).

Wang, X.

X. Chai, J. Li, X. Wang, Y. Li, and X. Yao, “Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ codoped ZnWO4,” Opt. Express 24, 22438–22447 (2016).
[PubMed]

X. Liu, P. Kuan, D. Li, S. Gao, X. Wang, L. Zhang, L. Hu, and D. Chen, “Heavily Ho3+-doped lead silicate glass fiber for ∼2 µm fiber lasers,” Opt. Mater. Express 6, 1093–1098 (2016).

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Wei, W.

Winterstein-Beckmann, A.

Wondraczek, L.

Xiangli, B.

Xu, C.

Xu, S.

S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).

Xu, W.

Yang, J.

J. Tang, M. Sun, Y. Huang, J. Gou, Y. Zhang, G. Li, Y. Li, Y. Man, and J. Yang, “Study on optical properties and upconversion luminescence of Er3+/Yb3+ co-doped tellurite glass for highly sensitive temperature measuring,” Opt. Mater. Express 7, 3238–3250 (2017).

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

Yang, Q.

Yang, Z.

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 µm laser applications,” Opt. Mater. Express 6, 2147–2157 (2016).

T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, and Z. Yang, “Enhanced 1.8 μm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser,” J. Rare Earths 34, 978–985 (2016).

Yao, X.

Yuan, P.

Zeng, S.

Zhang, J.

S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).

Zhang, L.

Zhang, N.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[PubMed]

Zhang, X.

R. Wang, X. Zhang, Z. Zhang, H. Zhong, Y. Chen, E. Zhao, S. Vasilescu, and L. Liu, “Modified FIR thermometry for surface temperature sensing by using high power laser,” Opt. Express 25(2), 848–856 (2017).
[PubMed]

R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).

Zhang, Y.

Zhang, Z.

Zhao, E.

Zhao, X.

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[PubMed]

Zheng, L.

Zhong, H.

Zhongfan, L.

Z. Songqiang, L. Chengren, L. Zhongfan, L. Shufeng, and S. Changlie, “Thermal effect on upconversion in Er3+/Yb3+ co-doped silicate glass,” Opt. Mater. 30, 513–516 (2007).

Zhou, Y.

Zhu, T.

G. Tang, T. Zhu, W. Liu, W. Lin, T. Qiao, M. Sun, D. Chen, Q. Qian, and Z. Yang, “Tm3+ doped lead silicate glass single mode fibers for 2.0 µm laser applications,” Opt. Mater. Express 6, 2147–2157 (2016).

T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, and Z. Yang, “Enhanced 1.8 μm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser,” J. Rare Earths 34, 978–985 (2016).

Zhydachevskii, Ya.

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

Zou, K.

Zur, L.

Chem. Phys. Lett. (1)

Ch. Li, B. Dong, S. Li, and Ch. Song, “Er3+-Yb3+ co-doped silicate glass for optical temperature sensor,” Chem. Phys. Lett. 443, 426–429 (2007).

Chem. Rev. (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–173 (2004).
[PubMed]

J. Alloys Compd. (1)

W. A. Pisarski, Ł. Grobelny, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Spectroscopic properties of Yb3+ and Er3+ ions in heavy metal glasses,” J. Alloys Compd. 509, 8088–8092 (2011).

J. Am. Ceram. Soc. (3)

W. H. Dumbaugh and J. C. Lapp, “Heavy-metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2326 (1992).

M. Wachtler, A. Speghini, K. Gatterer, H. P. Fritzer, D. Ajo, and M. Bettinelli, “Optical properties of rare-earth ions in lead germanate glasses,” J. Am. Ceram. Soc. 81, 2045–2052 (1998).

P. Nachimuthu, M. Vithal, and R. Jagannathan, “Absorption and emission spectral properties of Pr3+, Nd3+, and Eu3+ ions in heavy-metal oxide glasses,” J. Am. Ceram. Soc. 83, 597–604 (2000).

J. Appl. Phys. (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94, 4743–4756 (2003).

J. Lumin. (5)

P. Manasa, D. Ramachari, J. Kaewkhao, P. Meejitpaisan, E. Kaewnuam, A. S. Joshi, and C. K. Jayasankar, “Studies of radiative and mechanical properties of Nd3+-doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system,” J. Lumin. 188, 558–566 (2017).

N. Dai, L. Hu, W. Chen, G. Boulon, J. Yang, S. Dai, and P. Lu, “Spectroscopic and fluorescence decay behaviors of Yb3+-doped SiO2–PbO–Na2O–K2O glass,” J. Lumin. 113, 221–228 (2005).

B. Suresh, N. Purnachand, Ya. Zhydachevskii, M. G. Brik, M. Srinivasa Reddy, A. Suchocki, M. Piasecki, and N. Veeraiah, “Influence of Bi3+ ions on the amplification of 1.3 μm emission of Pr3+ ions in lead silicate glasses for the applications in second telecom window communications,” J. Lumin. 182, 312–322 (2017).

S. Xu, G. Wang, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Infrared to visible upconversion in Er3+-doped lead oxyfluorosilicate glasses,” J. Lumin. 109, 187–192 (2004).

L. Feng, B. Lai, J. Wang, G. Du, and Q. Su, “Spectroscopic properties of Er3+ in a oxyfluoride glass and upconverted and temperature sensor behavior of Er3+-Yb3+-codoped oxyfluoride glass,” J. Lumin. 130, 2418–2423 (2010).

J. Rare Earths (1)

T. Zhu, G. Tang, X. Chen, M. Sun, Q. Qian, and Z. Yang, “Enhanced 1.8 μm emission in Er3+/Tm3+ co-doped lead silicate glasses under different excitations for near infrared laser,” J. Rare Earths 34, 978–985 (2016).

Mater. Lett. (1)

X. Liu, X. Wang, L. Wang, P. Kuan, M. Li, W. Li, X. Fan, K. Li, L. Hu, and D. Chen, “Realization of 2 µm laser output in Tm3+-doped lead silicate double cladding fiber,” Mater. Lett. 125, 12–14 (2014).

Mater. Res. Bull. (1)

X. Liu, F. Huang, S. Gao, X. Wang, L. Hu, and D. Chen, “Compositional investigation of ∼2.0 luminescence of Ho3+-doped lead silicate glass,” Mater. Res. Bull. 71, 11–15 (2015).

Nature (1)

R. S. Barker, D. A. Richardson, E. A. G. McConkey, and R. Rimmer, “Gamma irradiation of lead silicate glass,” Nature 187, 135–136 (1960).

Opt. Express (10)

Y. Liu, W. A. Pisarski, S. Zeng, C. Xu, and Q. Yang, “Tri-color upconversion luminescence of rare earth doped BaTiO3 nanocrystals and lowered color separation,” Opt. Express 17(11), 9089–9098 (2009).
[PubMed]

M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, and S. Honkanen, “Heat-induced darkening and spectral broadening in photodarkened ytterbium-doped fiber under thermal cycling,” Opt. Express 17(12), 9940–9946 (2009).
[PubMed]

K. Zou, H. Guo, M. Lu, W. Li, C. Hou, W. Wei, J. He, B. Peng, and B. Xiangli, “Broad-spectrum and long-lifetime emissions of Nd3+ ions in lead fluorosilicate glass,” Opt. Express 17(12), 10001–10009 (2009).
[PubMed]

I. A. Bufetov, S. V. Firstov, V. F. Khopin, A. N. Abramov, A. N. Guryanov, and E. M. Dianov, “Luminescence and optical gain in Pb-doped silica-based optical fibers,” Opt. Express 17(16), 13487–13492 (2009).
[PubMed]

S. Taccheo, H. Gebavi, A. Monteville, O. Le Goffic, D. Landais, D. Mechin, D. Tregoat, B. Cadier, T. Robin, D. Milanese, and T. Durrant, “Concentration dependence and self-similarity of photodarkening losses induced in Yb-doped fibers by comparable excitation,” Opt. Express 19(20), 19340–19345 (2011).
[PubMed]

K. E. Mattsson, “Photo darkening of rare earth doped silica,” Opt. Express 19(21), 19797–19812 (2011).
[PubMed]

L. Li, W. Xu, L. Zheng, F. Qin, Y. Zhou, Z. Liang, Z. Zhang, and W. Cao, “Valley-to-peak intensity ratio thermometry based on the red upconversion emission of Er3+,” Opt. Express 24(12), 13244–13249 (2016).
[PubMed]

X. Chai, J. Li, X. Wang, Y. Li, and X. Yao, “Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ codoped ZnWO4,” Opt. Express 24, 22438–22447 (2016).
[PubMed]

R. Wang, X. Zhang, Z. Zhang, H. Zhong, Y. Chen, E. Zhao, S. Vasilescu, and L. Liu, “Modified FIR thermometry for surface temperature sensing by using high power laser,” Opt. Express 25(2), 848–856 (2017).
[PubMed]

Q. Shao, L. Ouyang, L. Jin, and J. Jiang, “Multifunctional nanoheater based on NaGdF4:Yb3+,Er3+ upconversion nanoparticles,” Opt. Express 23, 30057–30066 (2015).
[PubMed]

Opt. Lett. (2)

Opt. Mater. (4)

Z. Songqiang, L. Chengren, L. Zhongfan, L. Shufeng, and S. Changlie, “Thermal effect on upconversion in Er3+/Yb3+ co-doped silicate glass,” Opt. Mater. 30, 513–516 (2007).

P. Manasa and C. K. Jayasankar, “Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses,” Opt. Mater. 62, 139–145 (2016).

R. Wang, X. Zhang, F. Liu, Y. Chen, and L. Liu, “Concentration effects on the FIR technique for temperature sensing,” Opt. Mater. 43, 18–24 (2015).

M. Bettinelli, A. Speghini, and M. G. Brik, “Spectroscopic studies of emission and absorption properties of 38PbO-62SiO2:Nd3+ glass,” Opt. Mater. 32, 1592–1596 (2010).

Opt. Mater. Express (5)

Opto-Electron. Rev. (1)

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Erbium-doped lead silicate glass for near-infrared emission and temperature-dependent up-conversion applications,” Opto-Electron. Rev. 25, 238–241 (2017).

Phys. Chem. Chem. Phys. (1)

Z. Zhang, C. Guo, H. Suo, X. Zhao, N. Zhang, and T. Li, “Thermometry and up-conversion luminescence of Yb3+-Er3+ co-doped Na2Ln2Ti3O10 (Ln = Gd, La) phosphors,” Phys. Chem. Chem. Phys. 18(28), 18828–18834 (2016).
[PubMed]

Phys. Rev. B (1)

S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, and L. Pusztai, “Lead silicate glasses: binary network-former glasses with large amounts of free volume,” Phys. Rev. B 82, 134209 (2010).

Sens. Actuators A Phys. (1)

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Er3+/Yb3+ co-doped lead germanate glasses for up-conversion luminescence temperature sensors,” Sens. Actuators A Phys. 252, 54–58 (2016).

Sens. Actuators B Chem. (3)

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, I. R. Martín, K. Kiran Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).

W. A. Pisarski, J. Janek, J. Pisarska, R. Lisiecki, and W. Ryba-Romanowski, “Influence of temperature on up-conversion luminescence in Er3+/Yb3+ doubly doped lead-free fluorogermanate glasses for optical sensing,” Sens. Actuators B Chem. 253, 85–91 (2017).

B. S. Cao, Y. Y. He, Z. Q. Feng, Y. S. Li, and B. Dong, “Optical temperature sensing behavior of enhanced green upconversion emissions from Er-MoYb2Ti2O7 nanophosphor,” Sens. Actuators B Chem. 159, 8–11 (2011).

Sensors (Basel) (1)

C. Li, B. Dong, C. Ming, and M. Lei, “Application to temperature sensor based on green up-conversion of Er3+ doped silicate glass,” Sensors (Basel) 7(11), 2652–2659 (2007).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Up-conversion emission in 0.5Er-2.5Yb lead silicate glass varying with temperature.
Fig. 2
Fig. 2 Up-conversion emission in 0.25Er-1.25Yb lead silicate glass varying with temperature.
Fig. 3
Fig. 3 Up-conversion emission in 0.1Er-0.5Yb lead silicate glass varying with temperature.
Fig. 4
Fig. 4 The integrated emission intensity ratio R/G (Er3+) varying with temperature.
Fig. 5
Fig. 5 Energy level diagram for Er3+/Yb3+ co-doped lead silicate glass.
Fig. 6
Fig. 6 Fluorescence intensity ratio (R) as a function of inverse temperature.
Fig. 7
Fig. 7 Temperature sensitivities S for Er3+/Yb3+ co-doped lead silicate glasses. The results are compared to glass sample singly doped with Er3+.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R= I H I S =Cexp( ΔE kT )
C= g H σ H ω H g S σ S ω S
S= dR dT =R( ΔE k T 2 )

Metrics