Abstract

The visualization of the nonlinear absorption, the subsequent relaxation of excited states and the formation of defects enables the investigation of fundamental laser-material-interaction as well as the identification of process windows for micromachining of transparent materials with ultra short pulsed laser radiation. In this work, time resolved pump probe microscopy is applied to analyze the laser-material-interaction and to reduce damage inside the material during front- and rear side ablation of nonstrengthened Corning Gorilla glass. The experiments give an insight into the pulse duration dependence of the absorption zone, the influence of the surface geometry, in-volume damage and the formation of transient visible cracks.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser

Daniel Grossmann, Martin Reininghaus, Christian Kalupka, Malte Kumkar, and Reinhart Poprawe
Opt. Express 24(20) 23221-23231 (2016)

Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses

Mingying Sun, Urs Eppelt, Simone Russ, Claudia Hartmann, Christof Siebert, Jianqiang Zhu, and Wolfgang Schulz
Opt. Express 21(7) 7858-7867 (2013)

Spatio-temporal analysis of glass volume processing using ultrashort laser pulses

K. Bergner, B. Seyfarth, K. A. Lammers, T. Ullsperger, S. Döring, M. Heinrich, M. Kumkar, D. Flamm, A. Tünnermann, and S. Nolte
Appl. Opt. 57(16) 4618-4632 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Nisar, L. Li, and M. A. Sheikh, “Laser glass cutting techniques - a review,” J. Laser Appl. 25, 042010 (2013).
    [Crossref]
  2. M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
    [Crossref]
  3. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001).
    [Crossref]
  4. A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
    [Crossref]
  5. M. Ehrhardt, G. Raciukaitis, P. Gecys, and K. Zimmer, “Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses,” Appl. Phys. A 101, 399–404 (2010).
    [Crossref]
  6. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
    [Crossref] [PubMed]
  7. M. Garcia-Lechuga, J. Solis, and Jan Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
    [Crossref]
  8. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas. 9, 949 (2002).
    [Crossref]
  9. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Science 183, 151–164 (2001).
    [Crossref]
  10. M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
    [Crossref]
  11. S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
    [Crossref]
  12. Q. Sun, H. Jiang, Y. Liu, Z. Wu, H. Yang, and Q. Gong, “Measurement of the collision time of dense electronic plasma induced by a femtosecond laser in fused silica,” Opt. Lett. 30, 320–322 (2005).
    [Crossref] [PubMed]
  13. D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
    [Crossref]
  14. S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express. 24, 17572–17592 (2016).
    [Crossref] [PubMed]
  15. J. Koch, S. Heiroth, T. Lippert, and D. Guenther, “Femtosecond laser ablation: visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65, 943–949 (2010).
    [Crossref]
  16. S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2, 765–772 (2015).
    [Crossref]
  17. D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
    [Crossref] [PubMed]
  18. C. Kalupka, D. Grossmann, and M. Reininghaus, “Evolution of energy deposition during glass cutting with pulsed femtosecond laser radiation,” Appl. Phys. A 123, 376 (2017).
    [Crossref]
  19. K. Bergner, B. Seyfarth, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved microscopy for optimizing in-volume glass processing using ultra short laser pulses,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu4K.1.
  20. M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
    [Crossref]
  21. W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
    [Crossref]
  22. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
    [Crossref]
  23. M. Sakakura, T. Tochio, M. Eida, Y. Shimotsuma, S. Kanehira, M. Nishi, K. Miura, and K. Hirao, “Observation of laser-induced stress waves and mechanism of structural changes inside rock-salt crystals,” Opt. Express 19, 17780–17789 (2011).
    [Crossref] [PubMed]
  24. F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Materials Science and Engineering 75, 1–48 (2014).
    [Crossref]
  25. F. Hendricks, V. V. Matylisky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
    [Crossref]
  26. M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro Nanoeng. 9, 126–131 (2014).
    [Crossref]

2017 (1)

C. Kalupka, D. Grossmann, and M. Reininghaus, “Evolution of energy deposition during glass cutting with pulsed femtosecond laser radiation,” Appl. Phys. A 123, 376 (2017).
[Crossref]

2016 (6)

F. Hendricks, V. V. Matylisky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

M. Garcia-Lechuga, J. Solis, and Jan Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
[Crossref]

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express. 24, 17572–17592 (2016).
[Crossref] [PubMed]

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (3)

F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Materials Science and Engineering 75, 1–48 (2014).
[Crossref]

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro Nanoeng. 9, 126–131 (2014).
[Crossref]

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

2013 (1)

S. Nisar, L. Li, and M. A. Sheikh, “Laser glass cutting techniques - a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

2011 (1)

2010 (2)

J. Koch, S. Heiroth, T. Lippert, and D. Guenther, “Femtosecond laser ablation: visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65, 943–949 (2010).
[Crossref]

M. Ehrhardt, G. Raciukaitis, P. Gecys, and K. Zimmer, “Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses,” Appl. Phys. A 101, 399–404 (2010).
[Crossref]

2008 (1)

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

2006 (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

2005 (1)

2004 (1)

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

2002 (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas. 9, 949 (2002).
[Crossref]

2001 (3)

1996 (1)

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Bachelier, G.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Bauer, L.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Bergner, K.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

K. Bergner, B. Seyfarth, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved microscopy for optimizing in-volume glass processing using ultra short laser pulses,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu4K.1.

Berto, F.

F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Materials Science and Engineering 75, 1–48 (2014).
[Crossref]

Bonse, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Buividas, R.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Demos, S. G.

Domke, M.

F. Hendricks, V. V. Matylisky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Ehrhardt, M.

M. Ehrhardt, G. Raciukaitis, P. Gecys, and K. Zimmer, “Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses,” Appl. Phys. A 101, 399–404 (2010).
[Crossref]

Eida, M.

Eppelt, U.

M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
[Crossref]

Feit, M. D.

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2, 765–772 (2015).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas. 9, 949 (2002).
[Crossref]

Garcia-Lechuga, M.

M. Garcia-Lechuga, J. Solis, and Jan Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

Gawelda, W.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Gecys, P.

M. Ehrhardt, G. Raciukaitis, P. Gecys, and K. Zimmer, “Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses,” Appl. Phys. A 101, 399–404 (2010).
[Crossref]

Gong, Q.

Gottmann, J.

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro Nanoeng. 9, 126–131 (2014).
[Crossref]

Grossmann, D.

C. Kalupka, D. Grossmann, and M. Reininghaus, “Evolution of energy deposition during glass cutting with pulsed femtosecond laser radiation,” Appl. Phys. A 123, 376 (2017).
[Crossref]

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Guenther, D.

J. Koch, S. Heiroth, T. Lippert, and D. Guenther, “Femtosecond laser ablation: visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65, 943–949 (2010).
[Crossref]

Guizard, S.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Hallo, L.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Hartmann, C.

M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Heiroth, S.

J. Koch, S. Heiroth, T. Lippert, and D. Guenther, “Femtosecond laser ablation: visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65, 943–949 (2010).
[Crossref]

Hendricks, F.

F. Hendricks, V. V. Matylisky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Hermans, M.

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro Nanoeng. 9, 126–131 (2014).
[Crossref]

Hirao, K.

Huber, H. P.

F. Hendricks, V. V. Matylisky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express. 24, 17572–17592 (2016).
[Crossref] [PubMed]

Itoh, K.

Jiang, H.

Jiang, Y.

Juodkazis, S.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
[Crossref]

Kaiser, M.

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express. 24, 17572–17592 (2016).
[Crossref] [PubMed]

Kalupka, C.

Kanehira, S.

Kautek, W.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
[Crossref]

Kleiner, J.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Koch, J.

J. Koch, S. Heiroth, T. Lippert, and D. Guenther, “Femtosecond laser ablation: visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65, 943–949 (2010).
[Crossref]

Krausz, F.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
[Crossref]

Krüger, J.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
[Crossref]

Kumkar, M.

D. Grossmann, M. Reininghaus, C. Kalupka, M. Kumkar, and R. Poprawe, “Transverse pump-probe microscopy of moving breakdown, filamentation and self-organized absorption in alkali aluminosilicate glass using ultrashort pulse laser,” Opt. Express 24, 23221–23231 (2016).
[Crossref] [PubMed]

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

K. Bergner, B. Seyfarth, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved microscopy for optimizing in-volume glass processing using ultra short laser pulses,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu4K.1.

Kuroda, D.

Lazzarin, P.

F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Materials Science and Engineering 75, 1–48 (2014).
[Crossref]

Lenzner, M.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
[Crossref]

Li, L.

S. Nisar, L. Li, and M. A. Sheikh, “Laser glass cutting techniques - a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

Li, Y.

Lin, Z.

M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
[Crossref]

Lippert, T.

J. Koch, S. Heiroth, T. Lippert, and D. Guenther, “Femtosecond laser ablation: visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65, 943–949 (2010).
[Crossref]

Liu, Y.

Luther-Davies, B.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas. 9, 949 (2002).
[Crossref]

Malinauskas, M.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Manes, K. R.

Mao, S. S.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Mao, X.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Marcinkevicius, A.

Martin, P.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Matsuo, S.

Matylisky, V. V.

F. Hendricks, V. V. Matylisky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Misawa, H.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

A. Marcinkevicius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett. 26, 277–279 (2001).
[Crossref]

Miura, K.

Miwa, M.

Mizeikis, V.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Negres, R. A.

Nicolai, P.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Nisar, S.

S. Nisar, L. Li, and M. A. Sheikh, “Laser glass cutting techniques - a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

Nishi, M.

Nishii, J.

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Nolte, S.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

K. Bergner, B. Seyfarth, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved microscopy for optimizing in-volume glass processing using ultra short laser pulses,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu4K.1.

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Petite, G.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Poprawe, R.

Puerto, D.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Quere, F.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Raciukaitis, G.

M. Ehrhardt, G. Raciukaitis, P. Gecys, and K. Zimmer, “Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses,” Appl. Phys. A 101, 399–404 (2010).
[Crossref]

Raman, R. N.

Rapp, S.

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express. 24, 17572–17592 (2016).
[Crossref] [PubMed]

Reininghaus, M.

Richardson, K.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Science 183, 151–164 (2001).
[Crossref]

Richardson, M.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Science 183, 151–164 (2001).
[Crossref]

Riedel, F.

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro Nanoeng. 9, 126–131 (2014).
[Crossref]

Rode, A. V.

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas. 9, 949 (2002).
[Crossref]

Rubenchik, A. M.

S. G. Demos, R. A. Negres, R. N. Raman, M. D. Feit, K. R. Manes, and A. M. Rubenchik, “Relaxation dynamics of nanosecond laser superheated material in dielectrics,” Optica 2, 765–772 (2015).
[Crossref]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Russ, S.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Russo, R.E.

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

Sakakura, M.

Sartania, S.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
[Crossref]

Schmidt, M.

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express. 24, 17572–17592 (2016).
[Crossref] [PubMed]

Schulz, W.

M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
[Crossref]

Seyfarth, B.

K. Bergner, B. Seyfarth, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved microscopy for optimizing in-volume glass processing using ultra short laser pulses,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu4K.1.

Shah, L.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Science 183, 151–164 (2001).
[Crossref]

Sheikh, M. A.

S. Nisar, L. Li, and M. A. Sheikh, “Laser glass cutting techniques - a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

Shimotsuma, Y.

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Siegel, J.

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Siegel, Jan

M. Garcia-Lechuga, J. Solis, and Jan Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

Solis, J.

M. Garcia-Lechuga, J. Solis, and Jan Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

Spielmann, C.

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Sun, M.

M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
[Crossref]

Sun, Q.

Tawney, J.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Science 183, 151–164 (2001).
[Crossref]

Tikhonchuk, V. T.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas. 9, 949 (2002).
[Crossref]

Tochio, T.

Tünnermann, A.

K. Bergner, B. Seyfarth, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved microscopy for optimizing in-volume glass processing using ultra short laser pulses,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu4K.1.

Watanabe, M.

Watanabe, W.

Wendel, M.

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

Wu, Z.

Yamada, K.

Yang, H.

Zhu, J.

M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
[Crossref]

Zimmer, K.

M. Ehrhardt, G. Raciukaitis, P. Gecys, and K. Zimmer, “Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses,” Appl. Phys. A 101, 399–404 (2010).
[Crossref]

Zukauskas, A.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Appl. Phys. A (4)

M. Ehrhardt, G. Raciukaitis, P. Gecys, and K. Zimmer, “Laser-induced backside wet etching of fluoride and sapphire using picosecond laser pulses,” Appl. Phys. A 101, 399–404 (2010).
[Crossref]

S. S. Mao, F. Quere, S. Guizard, X. Mao, R.E. Russo, G. Petite, and P. Martin, “Dynamics of femtosecond laser interactions with dielectrics,” Appl. Phys. A 79, 1695–1709 (2004).
[Crossref]

D. Puerto, W. Gawelda, J. Siegel, J. Bonse, G. Bachelier, and J. Solis, “Transient reflectivity and transmission changes during plasma formation and ablation in fused silica induced by femtosecond laser pulses,” Appl. Phys. A 92, 803–808 (2008).
[Crossref]

C. Kalupka, D. Grossmann, and M. Reininghaus, “Evolution of energy deposition during glass cutting with pulsed femtosecond laser radiation,” Appl. Phys. A 123, 376 (2017).
[Crossref]

Appl. Phys. Lett. (2)

W. Kautek, J. Krüger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, “Laser ablation of dielectrics with pulse durations between 20 fs and 3 ps,” Appl. Phys. Lett. 69, 3146 (1996).
[Crossref]

M. Garcia-Lechuga, J. Solis, and Jan Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

Appl. Surf. Science (1)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Science 183, 151–164 (2001).
[Crossref]

J. Laser Appl. (1)

S. Nisar, L. Li, and M. A. Sheikh, “Laser glass cutting techniques - a review,” J. Laser Appl. 25, 042010 (2013).
[Crossref]

J. Laser Micro Nanoeng. (1)

M. Hermans, J. Gottmann, and F. Riedel, “Selective, laser-induced etching of fused silica at high scan-speeds using KOH,” J. Laser Micro Nanoeng. 9, 126–131 (2014).
[Crossref]

Light Sci. Appl. (1)

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light Sci. Appl. 5, e16133 (2016).
[Crossref]

Materials Science and Engineering (1)

F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Materials Science and Engineering 75, 1–48 (2014).
[Crossref]

Opt. Express (2)

Opt. Express. (1)

S. Rapp, M. Kaiser, M. Schmidt, and H. P. Huber, “Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation,” Opt. Express. 24, 17572–17592 (2016).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

M. Sun, U. Eppelt, C. Hartmann, W. Schulz, J. Zhu, and Z. Lin, “Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers,” Opt. Laser Technol. 80, 227–236 (2016).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Plasmas. (1)

E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics,” Phys. Plasmas. 9, 949 (2002).
[Crossref]

Phys. Rev. B (1)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[Crossref]

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248 (1995).
[Crossref] [PubMed]

Proc. SPIE (2)

M. Kumkar, L. Bauer, S. Russ, M. Wendel, J. Kleiner, D. Grossmann, K. Bergner, and S. Nolte, “Comparison of different processes for separation of glass and crystals using ultrashort pulsed lasers,” Proc. SPIE 8972, 897214 (2014).
[Crossref]

F. Hendricks, V. V. Matylisky, M. Domke, and H. P. Huber, “Time-resolved study of femtosecond laser induced micro-modifications inside transparent brittle materials,” Proc. SPIE 9740, 97401A (2016).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (1)

J. Koch, S. Heiroth, T. Lippert, and D. Guenther, “Femtosecond laser ablation: visualization of the aerosol formation process by light scattering and shadowgraphic imaging,” Spectrochim. Acta B At. Spectrosc. 65, 943–949 (2010).
[Crossref]

Other (1)

K. Bergner, B. Seyfarth, M. Kumkar, A. Tünnermann, and S. Nolte, “Time-resolved microscopy for optimizing in-volume glass processing using ultra short laser pulses,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2016), paper ATu4K.1.

Supplementary Material (1)

NameDescription
» Visualization 1       In this movie, shadowgraph images at different delays are presented, where each frame represents one additional deposited pulse. The single pulse energy was chosen to 50 µJ with a pulse duration of 100 fs. The repetition rate was set to 1 Hz and the

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Nonlinear absorption zones for different pulses during an ablation process. The pulse duration was chosen to 100 fs. The beam was focused by a lens with a focal length of 100 mm at a repetition rate of 1 Hz and a focal position on the surface. The pulse energy was set to 50 µJ. The images show the maximum absorption zone at a delay of approximately 10 ps.
Fig. 2
Fig. 2 Comparison of the absorption zones on the sample front and rear side. The repetition rate was set to 1 Hz. Both image parts show experiments with a pulse energy of 50 µJ focused by a lens with 100 mm focal length. The delay was chosen to approximately 10 ps, for visualizing the maximum extent of the absorption zone. In part (a) the pulse duration was set to 5 ps and in part (b) a pulse duration of 100 fs was applied.
Fig. 3
Fig. 3 Damage mechanisms on different timescales for ablation processing. The single pulse energy was chosen to 50 µJ with a pulse duration of 100 fs. The repetition rate was set to 1 Hz and the beam was focused by a lens with a focal length of 100 mm to the sample surface. Part (a) shows three selected frames from the movie in Visualization 1. In this movie, shadowgraph images at different delays are presented, where each frame represents one additional deposited pulse. Part (b) shows an ex-situ microscope image after 200 pulses before and after 10 minutes of etching in an 8 mol/l aqueous KOH solution at 85 °C.
Fig. 4
Fig. 4 Rear side ablation process at different focal positions. The pulse duration was set to 5 ps and a pulse energy of 10 µJ. The beam was focused by a microscope objective with a focal length of 10 mm at a repetition rate of 1 Hz. Part (a) shows the nonlinear absorption of the first deposited pulse with at a delay of 10 ps. Part (b) shows the corresponding modifications and ablation crater after 30 deposited pulses.
Fig. 5
Fig. 5 Detailed crater and absorption evolution of focal position (I) and (II) from Fig. 4. The pulse duration was set to 5 ps. The beam was focused by a microscope objective with 10 mm focal length and a repetition rate of 1 Hz. The pulse energy was set to 10 µJ. Part (a) corresponds to the focal position (I) from Fig. 4. Part (b) shows the focal position (II) from Fig. 4. The delay was chosen to 10 ps for a maximized absorption zone. The final image on the right shows the permanent crater
Fig. 6
Fig. 6 Rear side ablation process with a pulse duration of 5 ps. The applied pulse energy was 20 µJ and the repetition rate was set to 1 Hz. The beam was focused by a lens with a focal length of 100 mm. The images show the nonlinear absorption zone at a delay of 10 ps as well as the permanent crater on the right.

Metrics