Abstract

We present the design of broadband guided-mode resonant reflectors consisting of a grating layer with quasi-equilateral grating profiles and a homogeneous layer made of silicon on glass. Using the coordinate-transformation-based differential method of Chandezon (the C method) to determine the optimized base angles of the grating and thickness of the homogeneous layer, we arrive at example reflector designs for TM polarization. We quantify the effects of deviation of the parameters, simulate the inner magnetic field distribution at resonance wavelengths, and compute the tolerance in the incident angle of the optimized broadband reflector. For broadband structures with different thicknesses of the homogeneous layer, the base angles of the triangles are all close to 60°. The optimized reflector has reflectance of R0 > 99% across a 567 nm bandwidth in the 1432-1999 nm wavelength range with fractional bandwidth of Δλ/λcenter ≈33.3%. Base angles play a critical role in determining the reflection bandwidth and the quasi-equilateral triangle profile is found to be the optimal configuration. This model can be used to design broadband guided-mode resonant reflectors operating in different spectral bands and guide the fabrication of these devices with diamond-tip based grating ruling engines.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-contrast gratings for integrated optoelectronics

Connie J. Chang-Hasnain and Weijian Yang
Adv. Opt. Photon. 4(3) 379-440 (2012)

Properties of two-dimensional resonant reflectors with zero-contrast gratings

Mehrdad Shokooh-Saremi and Robert Magnusson
Opt. Lett. 39(24) 6958-6961 (2014)

Polarization-independent high-index contrast grating and its fabrication tolerances

Kazuhiro Ikeda, Kazuma Takeuchi, Kentaro Takayose, Il-Sug Chung, Jesper Mørk, and Hitoshi Kawaguchi
Appl. Opt. 52(5) 1049-1053 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).
  2. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).
  3. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
  4. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [PubMed]
  5. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [PubMed]
  6. D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
    [PubMed]
  7. S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt. 45(22), 5740–5747 (2006).
    [PubMed]
  8. Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45, 1883–1885 (2006).
  9. C.-L. Hsu, Y.-C. Liu, C.-M. Wang, M.-L. Wu, Y.-L. Tsai, Y.-H. Chou, C.-C. Lee, and J.-Y. Chang, “Bulk-micromachined optical filter based on guided-mode resonance in silicon-nitride membrane,” J. Lightwave Technol. 24, 1922–1928 (2006).
  10. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [PubMed]
  11. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
  12. P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).
  13. C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).
  14. C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).
  15. T. Khaleque, M. J. Uddin, and R. Magnusson, “Design and fabrication of broadband guided-mode resonant reflectors in TE polarization,” Opt. Express 22(10), 12349–12358 (2014).
    [PubMed]
  16. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).
  17. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [PubMed]
  18. M. Shokooh-Saremi and R. Magnusson, “Wideband leaky-mode resonance reflectors: Influence of grating profile and sublayers,” Opt. Express 16(22), 18249–18263 (2008).
    [PubMed]
  19. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008).
    [PubMed]
  20. H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photonics Technol. Lett. 22, 203–205 (2010).
  21. C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).
  22. H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).
  23. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
    [PubMed]
  24. W. Yu, M. Ye, and Y. S. Yi, “Impacts of tapered sidewall profile on subwavelength grating wideband reflectors,” J. Nanophotonics 9, 093058 (2015).
  25. X. Y. Wenxi and Y. Yi, “Impacts of tapered sidewall profiles with high aspect ratio on subwavelength grating structure,” IEEE Photonics Technol. Lett. 27, 1437–1440 (2015).
  26. X. Li, H. Yu, X. Qi, S. Feng, J. Cui, and S. Zhang, Jirigalantu, andY. Tang, “300 mm ruling engine producing gratings and echelles under interferometric control in China,” Appl. Opt. 54, 1819–1826 (2015).
  27. C. Yang, X. Li, H. Yu, H. Yu, J. Zhu, S. Zhang, and J. Gao, “Practical method study on correcting yaw error of 500 mm grating blank carriage in real time,” Appl. Opt. 54, 4084–4088 (2015).
  28. JirigalantuX. Li, S. Zhang, X. Mi, and J. Gao, BayanheshigX. Qi and Y. Tang, “Ruling of echelles and gratings with a diamond tool by the torque equilibrium method,” Appl. Opt. 55, 8082–8088 (2016).
  29. S. Zhang, X. Mi, and Q. Zhang, JirigalantuS. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).
  30. J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11, 235–241 (1980).
  31. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated grating: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
  32. L. Li, J. Chandezon, G. Granet, and J. P. Plumey, “Rigorous and efficient grating-analysis method made easy for optical engineers,” Appl. Opt. 38(2), 304–313 (1999).
    [PubMed]

2017 (1)

S. Zhang, X. Mi, and Q. Zhang, JirigalantuS. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).

S. Zhang, X. Mi, and Q. Zhang, JirigalantuS. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).

2016 (1)

2015 (4)

2014 (2)

2013 (2)

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

2012 (1)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).

2010 (1)

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photonics Technol. Lett. 22, 203–205 (2010).

2009 (1)

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).

2008 (3)

2007 (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).

2006 (4)

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45, 1883–1885 (2006).

C.-L. Hsu, Y.-C. Liu, C.-M. Wang, M.-L. Wu, Y.-L. Tsai, Y.-H. Chou, C.-C. Lee, and J.-Y. Chang, “Bulk-micromachined optical filter based on guided-mode resonance in silicon-nitride membrane,” J. Lightwave Technol. 24, 1922–1928 (2006).

S. Boonruang, A. Greenwell, and M. G. Moharam, “Multiline two-dimensional guided-mode resonant filters,” Appl. Opt. 45(22), 5740–5747 (2006).
[PubMed]

2004 (4)

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[PubMed]

Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
[PubMed]

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
[PubMed]

1999 (1)

1993 (1)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).

1985 (2)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).

1982 (1)

1980 (1)

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11, 235–241 (1980).

Andreani, L. C.

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
[PubMed]

Boonruang, S.

Chandezon, J.

Chang, J.-Y.

Chang-Hasnain, C. J.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).

Chase, C.

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).

Cheben, P.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).

Chou, Y.-H.

Cornet, G.

Cui, J.

Delâge, A.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).

Deng, Y.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).

Ding, Y.

Dupuis, M. T.

Feng, S.

S. Zhang, X. Mi, and Q. Zhang, JirigalantuS. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).

X. Li, H. Yu, X. Qi, S. Feng, J. Cui, and S. Zhang, Jirigalantu, andY. Tang, “300 mm ruling engine producing gratings and echelles under interferometric control in China,” Appl. Opt. 54, 1819–1826 (2015).

Gao, D.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photonics Technol. Lett. 22, 203–205 (2010).

Gao, J.

Gao, Y.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

Gerace, D.

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
[PubMed]

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).

Granet, G.

Greenwell, A.

Hane, K.

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45, 1883–1885 (2006).

He, X.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

Hou, J.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photonics Technol. Lett. 22, 203–205 (2010).

Hsu, C.-L.

Huang, L.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

Huang, M. C. Y.

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).

Janz, S.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).

Kanamori, Y.

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45, 1883–1885 (2006).

Khaleque, T.

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45, 1883–1885 (2006).

Lamontagne, B.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).

Lee, C.-C.

Li, L.

Li, S.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

Li, X.

Lin, S. D.

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).

Liu, Y.-C.

Luo, N.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

Magnusson, R.

Mashev, L.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).

Maystre, D.

J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated grating: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11, 235–241 (1980).

Mi, X.

S. Zhang, X. Mi, and Q. Zhang, JirigalantuS. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).

JirigalantuX. Li, S. Zhang, X. Mi, and J. Gao, BayanheshigX. Qi and Y. Tang, “Ruling of echelles and gratings with a diamond tool by the torque equilibrium method,” Appl. Opt. 55, 8082–8088 (2016).

Mo, W.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photonics Technol. Lett. 22, 203–205 (2010).

Moharam, M. G.

Neureuther, A. R.

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).

Plumey, J. P.

Popov, E.

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).

Qi, X.

Raoult, G.

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11, 235–241 (1980).

Shokooh-Saremi, M.

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).

Sychugov, V. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).

Tanev, S.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).

Tang, Y.

Tishchenko, A. V.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).

Tsai, Y.-L.

Uddin, M. J.

Wang, C. C.

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).

Wang, C.-M.

Wang, S. S.

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[PubMed]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).

Wenxi, X. Y.

X. Y. Wenxi and Y. Yi, “Impacts of tapered sidewall profiles with high aspect ratio on subwavelength grating structure,” IEEE Photonics Technol. Lett. 27, 1437–1440 (2015).

Wu, H.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photonics Technol. Lett. 22, 203–205 (2010).

Wu, M.-L.

Xiao, Y.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

Xu, D.-X.

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).

Yang, C.

Yang, W.

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).

Ye, M.

W. Yu, M. Ye, and Y. S. Yi, “Impacts of tapered sidewall profile on subwavelength grating wideband reflectors,” J. Nanophotonics 9, 093058 (2015).

Yi, Y.

X. Y. Wenxi and Y. Yi, “Impacts of tapered sidewall profiles with high aspect ratio on subwavelength grating structure,” IEEE Photonics Technol. Lett. 27, 1437–1440 (2015).

Yi, Y. S.

W. Yu, M. Ye, and Y. S. Yi, “Impacts of tapered sidewall profile on subwavelength grating wideband reflectors,” J. Nanophotonics 9, 093058 (2015).

Yu, H.

Yu, W.

W. Yu, M. Ye, and Y. S. Yi, “Impacts of tapered sidewall profile on subwavelength grating wideband reflectors,” J. Nanophotonics 9, 093058 (2015).

Zhang, C.

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

Zhang, Q.

S. Zhang, X. Mi, and Q. Zhang, JirigalantuS. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).

Zhang, S.

Zhou, Y.

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).

Zhou, Z.

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photonics Technol. Lett. 22, 203–205 (2010).

Zhu, J.

Adv. Opt. Photonics (1)

C. J. Chang-Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4, 379–440 (2012).

Appl. Opt. (6)

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).

IEEE J. Sel. Top. Quantum Electron. (1)

C. J. Chang-Hasnain, Y. Zhou, M. C. Y. Huang, and C. Chase, “High-contrast grating VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 869 (2009).

IEEE Photonics Technol. Lett. (4)

P. Cheben, S. Janz, D.-X. Xu, B. Lamontagne, A. Delâge, and S. Tanev, “A broad-band waveguide grating coupler with a subwavelength grating mirror,” IEEE Photonics Technol. Lett. 18, 13–15 (2006).

H. Wu, J. Hou, W. Mo, D. Gao, and Z. Zhou, “A multilayer-based high-performance multisubpart profile grating reflector,” IEEE Photonics Technol. Lett. 22, 203–205 (2010).

X. Y. Wenxi and Y. Yi, “Impacts of tapered sidewall profiles with high aspect ratio on subwavelength grating structure,” IEEE Photonics Technol. Lett. 27, 1437–1440 (2015).

C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Technol. Lett. 16, 518–520 (2004).

J. Appl. Phys. (1)

C. C. Wang and S. D. Lin, “Resonant cavity-enhanced quantum-dot infrared photodetectors with sub-wavelength grating mirror,” J. Appl. Phys. 113, 213108 (2013).

J. Lightwave Technol. (1)

J. Nanophotonics (1)

W. Yu, M. Ye, and Y. S. Yi, “Impacts of tapered sidewall profile on subwavelength grating wideband reflectors,” J. Nanophotonics 9, 093058 (2015).

J. Opt. (2)

J. Chandezon, D. Maystre, and G. Raoult, “A new theoretical method for diffraction gratings and its numerical application,” J. Opt. 11, 235–241 (1980).

H. Wu, L. Huang, Y. Xiao, C. Zhang, S. Li, N. Luo, X. He, and Y. Gao, “A wideband reflector realized by a subwavelength multi-subpart profile grating structure,” J. Opt. 15, 035703 (2013).

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (1)

Y. Kanamori, T. Kitani, and K. Hane, “Guided-mode resonant grating filter fabricated on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 45, 1883–1885 (2006).

Nat. Photonics (1)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).

Opt. Commun. (2)

L. Mashev and E. Popov, “Zero order anomaly of dielectric coated gratings,” Opt. Commun. 55, 377–380 (1985).

S. Zhang, X. Mi, and Q. Zhang, JirigalantuS. Feng, H. Yu, and X. Qi, “Groove shape characteristics of echelle gratings with high diffraction efficiency,” Opt. Commun. 387, 401–404 (2017).

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
[PubMed]

Sov. J. Quantum Electron. (1)

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15, 886–887 (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic model of broadband GMR reflectors with symmetric triangular grating profiles. (a) Zero-contrast grating structure with Δn = 0. (b) High-contrast grating structure with Δn > 0. The structures are made of a high index layer with n on a glass substrate with ns = 1.48 and the cover index is nc = 1 for incidence in air. I represents the incident plane wave, R denotes reflectance, and T labels the transmittance.

Fig. 2
Fig. 2

Reflectance map R0 (λ, α) drawn versus wavelength and base angle of the structure with triangle groove profiles for Λ = 850 nm, nc = 1, and ns = 1.48. (a)-(c) with n = 2.5, (d)-(f) with n = 3 and (g)-(i) with n = 3.48 for three homogenous-layer thicknesses dh = 0 μm, 0.5 μm, and 1 μm separately.

Fig. 3
Fig. 3

The optimized reflectance map R0 (λ, dh) drawn versus wavelength and thickness for period Λ = 850 nm. (a) α = β = 59°, nc = 1, n = 3, and ns = 1.48; (b) α = β = 58°, nc = 1, n = 3.48, and ns = 1.48.

Fig. 4
Fig. 4

Reflectance and transmittance spectra on (a) linear and (b) logarithmic scales comparing ZCGs and HCGs. The results are for TM polarization with Λ = 850nm, α = β = 58°, nc = 1, n = 3.48, and ns = 1.48.

Fig. 5
Fig. 5

Refractive index and internal magnetic field distributions in the ZCG structure and surrounding media at the resonance wavelengths for Λ = 850 nm, dh = 540 nm, α = β = 58°, and n = 3.48. (a) Refractive index; (b) λ = 1.440 μm; (c) λ = 1.465 μm; (d) λ = 1.694 μm; (e) λ = 1.721 μm; (f) λ = 1.952 μm. The scale bar measures the amplitude of the magnetic field.

Fig. 6
Fig. 6

(a) Angular sensitivity of the optimized broadband reflector. (b) Comparison of reflection spectra for normal (θ = 0°) and oblique (θ = + 5°) incidence.

Fig. 7
Fig. 7

Reflectance map R0(λ, φ) drawn versus wavelength and polarization angle for the optimized structure with Λ = 850 nm, α = β = 58°, nc = 1, n = 3.48, and ns = 1.48. φ = 0° corresponds to TM polarization and φ = 90° to TE polarization.

Metrics