Abstract

We present the design, fabrication, and characterization of cascaded side-coupled Silicon-on-Insulator (SOI) photonic crystal (PhC) nanobeam cavities for simultaneous measurement of refractive index (RI) and temperature. Due to the different mode distribution in air-mode cavity and dielectric-mode cavity, the two types of PhC nanobeam cavities have quite different sensitivities towards the changes of ambient RI and temperature. We demonstrated the feasibility to obtain RI and temperature simultaneously with a single measurement, obtaining a RI sensitivity of 254.6 nm/RIU (refractive index unit) and a temperature sensitivity of 30.1 pm/°C for air-mode cavity, while a RI sensitivity of 105.5 nm/RIU and a temperature sensitivity of 56.4 pm/°C for dielectric-mode cavity.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous measurement of refractive index and temperature using a dual polarization ring

Penghao Liu and Yaocheng Shi
Appl. Opt. 55(13) 3537-3541 (2016)

High sensitivity temperature sensor based on cascaded silicon photonic crystal nanobeam cavities

Yuguang Zhang, Penghao Liu, Senlin Zhang, Weixi Liu, Jingye Chen, and Yaocheng Shi
Opt. Express 24(20) 23037-23043 (2016)

Simultaneous sensing of refractive index and temperature based on a three-cavity-coupling photonic crystal sensor

Zheng Wang, ZhongYuan Fu, FuJun Sun, Chao Wang, Jian Zhou, and HuiPing Tian
Opt. Express 27(19) 26471-26482 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, “Fiber Bragg grating temperature sensor with controllable sensitivity,” Appl. Opt. 38(13), 2752–2754 (1999).
    [PubMed]
  2. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [PubMed]
  3. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37(1), 67–69 (2012).
    [PubMed]
  4. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
  5. J. J. Zhang, Q. Z. Sun, R. B. Liang, W. H. Jia, X. L. Li, J. H. Wo, D. M. Liu, and P. P. Shum, “Microfiber Fabry-Perot Interferometer for Dual-Parameter Sensing,” J. Lightwave Technol. 31(10), 1608–1615 (2013).
  6. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [PubMed]
  7. H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
    [PubMed]
  8. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
    [PubMed]
  9. S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
    [PubMed]
  10. R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367 (2006).
  11. H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
    [PubMed]
  12. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
  13. T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).
  14. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
    [PubMed]
  15. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [PubMed]
  16. N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [PubMed]
  17. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [PubMed]
  18. Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).
  19. P. Xu, K. Yao, J. Zheng, X. Guan, and Y. Shi, “Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing,” Opt. Express 21(22), 26908–26913 (2013).
    [PubMed]
  20. D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).
  21. D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
    [PubMed]
  22. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [PubMed]
  23. Lumerical Solutions, Inc., http://www.lumerical.com .
  24. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [PubMed]
  25. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [PubMed]
  26. A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).
  27. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [PubMed]
  28. D. R. Lyde, ed., Handbook of Chemistry and Physics (CRC, 1997–1998).
  29. D. J. J. Hu, J. L. Lim, M. Jiang, Y. Wang, F. Luan, P. P. Shum, H. Wei, and W. Tong, “Long period grating cascaded to photonic crystal fiber modal interferometer for simultaneous measurement of temperature and refractive index,” Opt. Lett. 37(12), 2283–2285 (2012).
    [PubMed]
  30. Y. N. Zhang, Y. Zhao, and H. F. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

2015 (3)

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Y. N. Zhang, Y. Zhao, and H. F. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

D. Yang, H. Tian, and Y. Ji, “High-Q and high-sensitivity width-modulated photonic crystal single nanobeam air-mode cavity for refractive index sensing,” Appl. Opt. 54(1), 1–5 (2015).
[PubMed]

2014 (2)

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[PubMed]

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

2013 (2)

2012 (2)

2011 (1)

2010 (2)

2009 (3)

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[PubMed]

2008 (5)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[PubMed]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[PubMed]

L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
[PubMed]

2007 (2)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

N. Skivesen, A. Tetu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[PubMed]

2006 (2)

R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367 (2006).

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).

2004 (2)

2003 (1)

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).

1999 (1)

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[PubMed]

Baets, R.

Bang, O.

Beumer, T. A. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Bienstman, P.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[PubMed]

Bogaerts, W.

Borel, P. I.

Borisov, S. M.

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[PubMed]

Byun, J. O.

Chao, C. Y.

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).

Chen, Q. Y.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

Choi, H. Y.

Chow, E.

Chryssis, A. N.

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).

Claes, T.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).

Cui, Y.

Dagenais, M.

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).

Daw, R.

R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367 (2006).

De Vos, K.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).

Dumon, P.

Fan, X.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[PubMed]

Finkelstein, J.

R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367 (2006).

Frandsen, L. H.

Girolami, G.

Girones Molera, J.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).

Greve, J.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Grot, A.

Guan, X.

Guo, L. J.

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Han, S. B.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Han, X.

Heideman, R. G.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Hu, D. J. J.

Hu, H. F.

Y. N. Zhang, Y. Zhao, and H. F. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[PubMed]

Ji, Y.

Ji, Y. F.

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Jia, W. H.

Jian, X.

Jiang, M.

Jung, J.

Kanger, J. S.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Kim, N. S.

Kita, S.

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Kjems, J.

Kristensen, M.

Lambeck, P. V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Lee, B.

Lee, B. H.

Lee, S. M.

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).

Li, X. L.

Liang, F.

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Liang, R.

Liang, R. B.

Lim, J. L.

Liu, D.

Liu, D. M.

Liu, P. H.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Loncar, M.

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[PubMed]

Lu, P.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

Luan, F.

Luo, H.

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Men, L. Q.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

Mirkarimi, L. W.

Morthier, G.

Mudhana, G.

Nam, H.

Paek, U. C.

Park, K. S.

Quan, Q.

Quan, Q. M.

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Rindorf, L.

Saini, S. S.

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).

Schacht, E.

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Shi, Y.

Shi, Y. C.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Shum, P. P.

Sigalas, M.

Skivesen, N.

Sooley, K.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

Subramaniam, V.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Sun, Q.

Sun, Q. Z.

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[PubMed]

Taillaert, D.

Teng, J.

Tetu, A.

Tian, H.

Tian, H. P.

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Tong, W.

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

van Hövell, S. W. F. M.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Wang, C.

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Wang, G.

Wang, Y.

Wei, H.

White, I. M.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[PubMed]

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[PubMed]

Wijn, R. R.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Wink, T.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Wo, J.

Wo, J. H.

Wolfbeis, O. S.

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[PubMed]

Xu, P.

Xu, Z.

Yang, D.

Yang, D. Q.

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Yao, K.

Ymeti, A.

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Zhang, H.

Zhang, J. J.

Zhang, L.

Zhang, S. L.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Zhang, Y. G.

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

Zhang, Y. N.

Y. N. Zhang, Y. Zhao, and H. F. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Zhao, M.

Zhao, Y.

Y. N. Zhang, Y. Zhao, and H. F. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

Zheng, J.

Zhu, H.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[PubMed]

Zourob, M.

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[PubMed]

Analyst (Lond.) (1)

H. Zhu, I. M. White, J. D. Suter, M. Zourob, and X. Fan, “Opto-fluidic micro-ring resonator for sensitive label-free viral detection,” Analyst (Lond.) 133(3), 356–360 (2008).
[PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).

D. Q. Yang, S. Kita, F. Liang, C. Wang, H. P. Tian, Y. F. Ji, M. Loncar, and Q. M. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” Appl. Phys. Lett. 105(6), 063118 (2014).

Chem. Rev. (1)

S. M. Borisov and O. S. Wolfbeis, “Optical biosensors,” Chem. Rev. 108(2), 423–461 (2008).
[PubMed]

IEEE Photonics J. (2)

Y. G. Zhang, S. B. Han, S. L. Zhang, P. H. Liu, and Y. C. Shi, “High-Q and High-Sensitivity Photonic Crystal Cavity Sensor,” IEEE Photonics J. 7(5), 1–6 (2015).

T. Claes, J. Girones Molera, K. De Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator,” IEEE Photonics J. 1(3), 197–204 (2009).

IEEE Photonics Technol. Lett. (1)

A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais, “Increased sensitivity and parametric discrimination using higher order modes of etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 18(1), 178–180 (2006).

J. Lightwave Technol. (1)

Nano Lett. (1)

A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a young interferometer sensor,” Nano Lett. 7(2), 394–397 (2007).
[PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale 2(9), 1544–1559 (2010).
[PubMed]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[PubMed]

Nature (1)

R. Daw and J. Finkelstein, “Lab on a chip,” Nature 442(7101), 367 (2006).

Opt. Express (6)

Opt. Lett. (6)

Sensor Actuat. Biol. Chem. (1)

Y. N. Zhang, Y. Zhao, and H. F. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sensor Actuat. Biol. Chem. 216, 563–571 (2015).

Other (2)

D. R. Lyde, ed., Handbook of Chemistry and Physics (CRC, 1997–1998).

Lumerical Solutions, Inc., http://www.lumerical.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The schematic of the proposed cascaded side-coupled PhC nanobeam cavities. (b) The band diagram of the PhC air-mode nanobeam cavity with Wend1 = 500 nm (black line) and Wcenter1 = 700 nm (red line), the blue circle indicates the resonant frequency. (c) The band diagram of the PhC dielectric -mode nanobeam cavity with Rend2 = 80 nm (black line) and Rcenter2 = 125 nm (red line), the blue circle indicates the resonant frequency
Fig. 2
Fig. 2 The electric field distribution (top view) taken at the center of the silicon core layer. (a) PhC air-mode nanobeam cavity (cav1); (b) PhC dielectric-mode nanobeam cavity (cav2). (c) & (d) The simulated resonant wavelength shifts and Q factors of the two PhC nanobeam cavities vary with different background RI (at constant room temperature T = 17°C). (e) & (f) The simulated resonant wavelength shifts and Q factors of the two PhC nanobeam cavities vary with different ambient temperature (in deionized water, n = 1.33).
Fig. 3
Fig. 3 (a) Optical microscopy image of the dual parameter sensor. (b) The zoomed in scanning electron microscope (SEM) image of the PhC air-mode nanobeam cavity. (c) The zoomed in scanning electron microscope (SEM) image of the PhC dielectric-mode nanobeam cavity.
Fig. 4
Fig. 4 (a) Measured normalized spectrum of the dual parameter sensor when immerged into DI water. The zoomed in view are measured transmission of the resonance of air-mode (b) and dielectric-mode (c) The black dots are the experimental data and the red lines show the Lorentz fit.
Fig. 5
Fig. 5 (a) Normalized transmission spectrum of the PhC air-mode nanobeam cavity immersed into glucose solutions of different mass concentrations (ranging from 0% to 16%, at the temperature of 17°C). (b) Normalized transmission spectrum of the PhC dielectric-mode nanobeam cavity immersed into glucose solutions of different mass concentrations (ranging from 0% to 16%, at the temperature of 17°C). (c). The extracted resonant wavelength shifts of the dual parameter sensor with different ambient refractive indices.
Fig. 6
Fig. 6 (a) Normalized transmission spectrum of the PhC air-mode nanobeam cavity (cav1) immersed into DI water at different temperature (17°C, 21°C, 27°C, 33°C and 39°C). (b) Normalized transmission spectrum of the PhC dielectric-mode nanobeam cavity (cav2) immersed into DI water at different temperature (17°C, 21°C, 27°C, 33°C and 39°C). (c). The extracted resonant wavelength shifts of the dual parameter sensor with different temperature.

Tables (3)

Tables Icon

Table 1 The geometric parameters of the PhC air-mode nanobeam cavity(cav1) and the PhC dielectric -mode nanobeam cavity(cav2)

Tables Icon

Table 2 Simultaneous Measurement of Refractive Index and Temperature Using the cascaded side-coupled Phc nanobeam cavities

Tables Icon

Table 3 The sensitivities of state-of-the-art photonics base RI and temperature sensors

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M n , T =   [ S n , c a v 1 S T , c a v 1 S n , c a v 2 S T , c a v 2 ] .
[ Δ R I Δ T ] = [ 257 nm / RIU 30.1   pm / ° C 106 nm / RIU 56.4   pm / ° C ] 1 × [ Δ λ c a v 1 Δ λ c a v 2 ] .

Metrics