Abstract

Semiconductor quantum dots have been on demand for niche optoelectronic applications providing color tenability and possessing high quantum yield and high extinction coefficient. Although the investigation of II-VI have attained a mature level of understanding of the photo physical properties, suppression of the nonradiative decay channels and enhancing the optical properties for III-V material systems still remain a challenge. In this study, we have developed and demonstrated a simple, very fast, and efficient strategy to synthesize the highly luminescent III-V group based In(Zn)P quantum dots (QDs) utilized by the effect of core growth temperature, revealing their emission kinetics and their outstanding application for white light generation. Varying the core growth temperature from 240°C to 90°C, limiting the extent of the precursors involved in the synthesis, and a substantial enhancement of the photoluminescence quantum yield up to 75% is demonstrated. Further modification of the synthesis procedure with optimizing the In:P precursor ratio for the first time up to 88.5 ± 5.5% quantum yield of alloyed core/shell In(Zn)P/ZnS QDs is achieved, in which the whole synthesis process takes only around one hour. In addition, as a demonstration of Cd-free pellets, versatile pellets of green and orange emitting QDs within KCl macrocrystals are prepared. Hybridizing with blue LED, a white light with correlated color temperature of 4597K along with an unprecedentedly high color rendering index of 90 is presented.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly luminescent red emitting CdZnSe/ZnSe quantum dots synthesis and application for quantum dot light emitting diodes

Qin Zhang, Chao Nie, Chun Chang, Chenyang Guo, Xiao Jin, Yuancheng Qin, Feng Li, and Qinghua Li
Opt. Mater. Express 7(11) 3875-3884 (2017)

Quantum dot white LEDs with high luminous efficiency

Sadra Sadeghi, Baskaran Ganesh Kumar, Rustamzhon Melikov, Mohammad Mohammadi Aria, Houman Bahmani Jalali, and Sedat Nizamoglu
Optica 5(7) 793-802 (2018)

Fabrication of warm, high CRI white LED using non-cadmium quantum dots

Woo-Seuk Song, Sun-Hyoung Lee, and Heesun Yang
Opt. Mater. Express 3(9) 1468-1473 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).
  2. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).
  3. I. Robel, V. Subramanian, M. Kuno, and P. V. J. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
    [PubMed]
  4. I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).
  5. E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
    [PubMed]
  6. B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).
  7. X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
    [PubMed]
  8. M. A. Walling, J. A. Novak, and J. R. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
    [PubMed]
  9. S. G. Kwon and T. Hyeon, “Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods,” Small 7(19), 2685–2702 (2011).
    [PubMed]
  10. A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
    [PubMed]
  11. W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).
  12. R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
    [PubMed]
  13. M. D. Tessier, D. Dupont, K. D. Nolf, J. D. Roo, and Z. Hens, “Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots,” Chem. Mater. 27(13), 4893–4898 (2015).
  14. Y. Altıntas, M. Y. Talpur, M. Unlu, and E. Mutlugun, “Highly efficient Cd-free alloyed core/shell quantum dots with optimized precursor concentrations,” J. Phys. Chem. C 120(14), 7885–7892 (2016).
  15. U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In (Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).
  16. J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
    [PubMed]
  17. T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
    [PubMed]
  18. M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).
  19. M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).
  20. M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
    [PubMed]
  21. Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).
  22. J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).
  23. L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
    [PubMed]
  24. Y. Altıntas, M. Y. Talpur, and E. Mutlugün, “Efficient Förster resonance energy transfer donors of In(Zn)P/ZnS quantum dots,” J. Phys. Chem. C 121(5), 3034–3043 (2017).
  25. A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
    [PubMed]
  26. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).
  27. J. R. Lakowicz, “Principles of Fluorescence Spectroscopy,” 3rd Eds.; Springer: US, pp. XXVI, 954 (2007).
  28. F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
    [PubMed]
  29. C. J. Bridge, P. Dawson, and P. D. Buckle, “Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe/CdS solar cells,” J. Appl. Phys. 88(11), 6451–6456 (2000).
  30. C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
    [PubMed]
  31. C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
    [PubMed]
  32. M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).
  33. T. Mishra, R. K. Sahu, S.-H. Lim, L. G. Salamanca-Riba, and S. Bhattacharjee, “Hexadecylamine Capped Silver and Gold Nanoparticles: Comparative Study on Formation and Self- Organization,” Mater. Chem. Phys. 123(2–3), 540–545 (2010).

2017 (2)

Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).

Y. Altıntas, M. Y. Talpur, and E. Mutlugün, “Efficient Förster resonance energy transfer donors of In(Zn)P/ZnS quantum dots,” J. Phys. Chem. C 121(5), 3034–3043 (2017).

2016 (6)

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Y. Altıntas, M. Y. Talpur, M. Unlu, and E. Mutlugun, “Highly efficient Cd-free alloyed core/shell quantum dots with optimized precursor concentrations,” J. Phys. Chem. C 120(14), 7885–7892 (2016).

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[PubMed]

2015 (5)

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

M. D. Tessier, D. Dupont, K. D. Nolf, J. D. Roo, and Z. Hens, “Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots,” Chem. Mater. 27(13), 4893–4898 (2015).

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).

2014 (2)

M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

2012 (4)

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
[PubMed]

2011 (3)

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

S. G. Kwon and T. Hyeon, “Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods,” Small 7(19), 2685–2702 (2011).
[PubMed]

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

2010 (2)

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In (Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).

T. Mishra, R. K. Sahu, S.-H. Lim, L. G. Salamanca-Riba, and S. Bhattacharjee, “Hexadecylamine Capped Silver and Gold Nanoparticles: Comparative Study on Formation and Self- Organization,” Mater. Chem. Phys. 123(2–3), 540–545 (2010).

2009 (2)

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).

M. A. Walling, J. A. Novak, and J. R. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[PubMed]

2008 (2)

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
[PubMed]

2006 (1)

I. Robel, V. Subramanian, M. Kuno, and P. V. J. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[PubMed]

2005 (1)

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[PubMed]

2000 (1)

C. J. Bridge, P. Dawson, and P. D. Buckle, “Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe/CdS solar cells,” J. Appl. Phys. 88(11), 6451–6456 (2000).

1984 (1)

L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).

Adam, M.

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

Afzaal, M.

M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).

Allen, P. M.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Altintas, Y.

Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).

Y. Altıntas, M. Y. Talpur, and E. Mutlugün, “Efficient Förster resonance energy transfer donors of In(Zn)P/ZnS quantum dots,” J. Phys. Chem. C 121(5), 3034–3043 (2017).

Y. Altıntas, M. Y. Talpur, M. Unlu, and E. Mutlugun, “Highly efficient Cd-free alloyed core/shell quantum dots with optimized precursor concentrations,” J. Phys. Chem. C 120(14), 7885–7892 (2016).

Baesjou, P. J.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Banski, M.

M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).

Batentschuk, M.

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

Bauer, C.

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

Bawendi, M. G.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Benad, A.

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

Bhattacharjee, S.

T. Mishra, R. K. Sahu, S.-H. Lim, L. G. Salamanca-Riba, and S. Bhattacharjee, “Hexadecylamine Capped Silver and Gold Nanoparticles: Comparative Study on Formation and Self- Organization,” Mater. Chem. Phys. 123(2–3), 540–545 (2010).

Binks, D. J.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Bisquert, J.

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

Bondino, F.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Bridge, C. J.

C. J. Bridge, P. Dawson, and P. D. Buckle, “Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe/CdS solar cells,” J. Appl. Phys. 88(11), 6451–6456 (2000).

Brien, P. O.

M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).

Brus, L. E.

L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).

Buckle, P. D.

C. J. Bridge, P. Dawson, and P. D. Buckle, “Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe/CdS solar cells,” J. Appl. Phys. 88(11), 6451–6456 (2000).

Cao, H.

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Coskun, Y.

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Dadi, S.

Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).

Dawson, P.

C. J. Bridge, P. Dawson, and P. D. Buckle, “Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe/CdS solar cells,” J. Appl. Phys. 88(11), 6451–6456 (2000).

De Trizio, L.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Demir, H. V.

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

Dubavik, A.

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

Dupont, D.

M. D. Tessier, D. Dupont, K. D. Nolf, J. D. Roo, and Z. Hens, “Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots,” Chem. Mater. 27(13), 4893–4898 (2015).

Eichler, F.

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

Erdem, T.

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Erdem, Z. S.

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

Eroglu, C.

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Espinobarro-Velazquez, D.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Eychmüller, A.

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).

Fabregat-Santiago, F.

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

Flavell, W. R.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Galland, C.

C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
[PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

Gao, X.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[PubMed]

Gaponik, N.

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).

Genc, S.

Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).

Genger, U. R.

M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).

Ghosh, Y.

C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
[PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

Gindele, F.

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

González-Pedro, V.

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

Govorov, A. O.

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

Grabolle, M.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).

Greytak, A. B.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Grozema, F. C.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Guhrenz, C.

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

Guzelturk, B.

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

Haigh, S. J.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Hens, Z.

M. D. Tessier, D. Dupont, K. D. Nolf, J. D. Roo, and Z. Hens, “Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots,” Chem. Mater. 27(13), 4893–4898 (2015).

Hermans, Y.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).

Hernandez Martinez, P. L.

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

Hernandez-Martinez, P. L.

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Hickey, S. G.

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Hod, I.

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

Hoekstra, A. W.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Hollingsworth, J. A.

C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
[PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

Houtepen, A. J.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Htoon, H.

C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
[PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

Huang, L.

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Hyeon, T.

S. G. Kwon and T. Hyeon, “Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods,” Small 7(19), 2685–2702 (2011).
[PubMed]

Jeong, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).

Kaiser, M.

M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).

Kamat, P. V. J.

I. Robel, V. Subramanian, M. Kuno, and P. V. J. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[PubMed]

Kim, S.-W.

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[PubMed]

Klimov, V. I.

C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
[PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

Koole, R.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Kucur, E.

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

Kuno, M.

I. Robel, V. Subramanian, M. Kuno, and P. V. J. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[PubMed]

Kwon, S. G.

S. G. Kwon and T. Hyeon, “Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods,” Small 7(19), 2685–2702 (2011).
[PubMed]

Lee, J.-J.

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[PubMed]

Leontiadou, M. A.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Lesnyak, V.

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).

Lewis, E. A.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Li, C.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Li, L.

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
[PubMed]

Liem, N. Q.

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In (Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).

Lim, S.-H.

T. Mishra, R. K. Sahu, S.-H. Lim, L. G. Salamanca-Riba, and S. Bhattacharjee, “Hexadecylamine Capped Silver and Gold Nanoparticles: Comparative Study on Formation and Self- Organization,” Mater. Chem. Phys. 123(2–3), 540–545 (2010).

Lin, W.

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Lincheneau, C.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).

Liu, W.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Lox, J. F. L.

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

Magnano, E.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Malik, M. A.

M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).

Manna, L.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Marshall, F. F.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[PubMed]

Meerbach, C.

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

Meister, F.

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

Meng, R.

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Mishra, T.

T. Mishra, R. K. Sahu, S.-H. Lim, L. G. Salamanca-Riba, and S. Bhattacharjee, “Hexadecylamine Capped Silver and Gold Nanoparticles: Comparative Study on Formation and Self- Organization,” Mater. Chem. Phys. 123(2–3), 540–545 (2010).

Misiewicz, J.

M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).

Mora-Seró, I.

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

Müller, M.

M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

Mundra, P.

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

Mutlugun, E.

Y. Altıntas, M. Y. Talpur, M. Unlu, and E. Mutlugun, “Highly efficient Cd-free alloyed core/shell quantum dots with optimized precursor concentrations,” J. Phys. Chem. C 120(14), 7885–7892 (2016).

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Mutlugün, E.

Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).

Y. Altıntas, M. Y. Talpur, and E. Mutlugün, “Efficient Förster resonance energy transfer donors of In(Zn)P/ZnS quantum dots,” J. Phys. Chem. C 121(5), 3034–3043 (2017).

Nann, T.

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

Nie, S.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[PubMed]

Niu, Y.

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Nocera, D. G.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Nolf, K. D.

M. D. Tessier, D. Dupont, K. D. Nolf, J. D. Roo, and Z. Hens, “Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots,” Chem. Mater. 27(13), 4893–4898 (2015).

Novak, J. A.

M. A. Walling, J. A. Novak, and J. R. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[PubMed]

O’Brien, P.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Otto, T.

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

Page, R. C.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Panda, S. K.

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Park, J. P.

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[PubMed]

Peng, X.

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Pengpad, A.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Petros, J. A.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[PubMed]

Pietra, F.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Pis, I.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Podhorodecki, A.

M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).

Popovic, Z.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Poppe, J.

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

Prato, M.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Qin, H.

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Radtke, H.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Reiss, P.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In (Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
[PubMed]

Renaud, N.

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Rengers, C.

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

Robel, I.

I. Robel, V. Subramanian, M. Kuno, and P. V. J. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[PubMed]

Roo, J. D.

M. D. Tessier, D. Dupont, K. D. Nolf, J. D. Roo, and Z. Hens, “Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots,” Chem. Mater. 27(13), 4893–4898 (2015).

Sahu, R. K.

T. Mishra, R. K. Sahu, S.-H. Lim, L. G. Salamanca-Riba, and S. Bhattacharjee, “Hexadecylamine Capped Silver and Gold Nanoparticles: Comparative Study on Formation and Self- Organization,” Mater. Chem. Phys. 123(2–3), 540–545 (2010).

Salamanca-Riba, L. G.

T. Mishra, R. K. Sahu, S.-H. Lim, L. G. Salamanca-Riba, and S. Bhattacharjee, “Hexadecylamine Capped Silver and Gold Nanoparticles: Comparative Study on Formation and Self- Organization,” Mater. Chem. Phys. 123(2–3), 540–545 (2010).

Sharma, V. K.

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Shepard, J. R.

M. A. Walling, J. A. Novak, and J. R. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[PubMed]

Simons, J. W.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[PubMed]

Smith, C.

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

Soran-Erdem, Z.

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

Spieles, M.

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).

Stachowski, G. M.

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).

Steinbrück, A.

C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
[PubMed]

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

Subramanian, V.

I. Robel, V. Subramanian, M. Kuno, and P. V. J. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[PubMed]

Sun, H.

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

Sun, X. W.

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

Sykora, M.

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

Tachan, Z.

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

Talpur, M. Y.

Y. Altıntas, M. Y. Talpur, and E. Mutlugün, “Efficient Förster resonance energy transfer donors of In(Zn)P/ZnS quantum dots,” J. Phys. Chem. C 121(5), 3034–3043 (2017).

Y. Altıntas, M. Y. Talpur, M. Unlu, and E. Mutlugun, “Highly efficient Cd-free alloyed core/shell quantum dots with optimized precursor concentrations,” J. Phys. Chem. C 120(14), 7885–7892 (2016).

Tamang, S.

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).

Tessier, M. D.

M. D. Tessier, D. Dupont, K. D. Nolf, J. D. Roo, and Z. Hens, “Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots,” Chem. Mater. 27(13), 4893–4898 (2015).

Thuy, U. T. D.

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In (Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).

Unal, E.

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

Unlu, M.

Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).

Y. Altıntas, M. Y. Talpur, M. Unlu, and E. Mutlugun, “Highly efficient Cd-free alloyed core/shell quantum dots with optimized precursor concentrations,” J. Phys. Chem. C 120(14), 7885–7892 (2016).

Walker, B.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Walling, M. A.

M. A. Walling, J. A. Novak, and J. R. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[PubMed]

Wang, Z.

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

Xiong, Q.

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

Xu, S.

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

Yang, L.

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[PubMed]

Yazici, A. F.

Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).

Young, E. R.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Zaban, A.

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

Zhang, Q.

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

Zhang, Z.

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Zhao, J.

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Ziegler, C.

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

Ziegler, J.

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

ACS Appl. Mater. Interfaces (2)

M. Adam, T. Erdem, G. M. Stachowski, Z. Soran-Erdem, J. F. L. Lox, C. Bauer, J. Poppe, H. V. Demir, N. Gaponik, and A. Eychmüller, “Implementation of high-quality warm-white light-emitting diodes by a model-experimental feedback approach using quantum dot−salt mixed crystals,” ACS Appl. Mater. Interfaces 7(41), 23364–23371 (2015).
[PubMed]

A. Benad, C. Guhrenz, C. Bauer, F. Eichler, M. Adam, C. Ziegler, N. Gaponik, and A. Eychmüller, “Cold flow as versatile approach for stable and highly luminescent quantum dot−salt composites,” ACS Appl. Mater. Interfaces 8(33), 21570–21575 (2016).
[PubMed]

ACS Nano (1)

F. Pietra, L. De Trizio, A. W. Hoekstra, N. Renaud, M. Prato, F. C. Grozema, P. J. Baesjou, R. Koole, L. Manna, and A. J. Houtepen, “Tuning the lattice parameter of InxZnyP for highly luminescent lattice-matched core/shell quantum dots,” ACS Nano 10(4), 4754–4762 (2016).
[PubMed]

Adv. Funct. Mater. (1)

M. Adam, Z. Wang, A. Dubavik, G. M. Stachowski, C. Meerbach, Z. S. Erdem, C. Rengers, H. V. Demir, N. Gaponik, and A. Eychmüller, “Liquid-liquid diffusion-assisted crystallization: A fast and versatile approach toward high quality mixed quantum dot- salt crystals,” Adv. Funct. Mater. 25(18), 2638–2645 (2015).

Adv. Mater. (1)

J. Ziegler, S. Xu, E. Kucur, F. Meister, M. Batentschuk, F. Gindele, and T. Nann, “Silica-coated InP/ZnS nanocrystals as converter material in white LEDs,” Adv. Mater. 20(21), 4068–4073 (2008).

Anal. Chem. (1)

M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, and U. R. Genger, “Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties,”,” Anal. Chem. 81(15), 6285–6294 (2009).

Appl. Phys. Lett. (1)

U. T. D. Thuy, P. Reiss, and N. Q. Liem, “Luminescence properties of In (Zn)P alloy core/ZnS shell quantum dots,” Appl. Phys. Lett. 97(19), 193104 (2010).

Chem. Mater. (4)

M. Müller, M. Kaiser, G. M. Stachowski, U. R. Genger, N. Gaponik, and A. Eychmüller, “Photoluminescence quantum yield and matrix-induced luminescence enhancement of colloidal quantum dots embedded in ionic crystals,” Chem. Mater. 26(10), 3231–3237 (2014).

M. D. Tessier, D. Dupont, K. D. Nolf, J. D. Roo, and Z. Hens, “Economic and size-tunable synthesis of InP/ZnE (E= S, Se) colloidal quantum dots,” Chem. Mater. 27(13), 4893–4898 (2015).

S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, “Chemistry of InP nanocrystal syntheses,” Chem. Mater. 28(8), 2491–2506 (2016).

M. Banski, M. Afzaal, M. A. Malik, A. Podhorodecki, J. Misiewicz, and P. O. Brien, “Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals,” Chem. Mater. 27(11), 3797–3800 (2015).

Chem. Sci. (Camb.) (1)

A. B. Greytak, P. M. Allen, W. Liu, J. Zhao, E. R. Young, Z. Popović, B. Walker, D. G. Nocera, and M. G. Bawendi, “Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions,” Chem. Sci. (Camb.) 3(6), 2028–2034 (2012).
[PubMed]

Curr. Opin. Biotechnol. (1)

X. Gao, L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons, and S. Nie, “In vivo molecular and cellular imaging with quantum dots,” Curr. Opin. Biotechnol. 16(1), 63–72 (2005).
[PubMed]

Int. J. Mol. Sci. (1)

M. A. Walling, J. A. Novak, and J. R. Shepard, “Quantum dots for live cell and in vivo imaging,” Int. J. Mol. Sci. 10(2), 441–491 (2009).
[PubMed]

J. Am. Chem. Soc. (2)

I. Robel, V. Subramanian, M. Kuno, and P. V. J. Kamat, “Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films,” J. Am. Chem. Soc. 128(7), 2385–2393 (2006).
[PubMed]

L. Li and P. Reiss, “One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection,” J. Am. Chem. Soc. 130(35), 11588–11589 (2008).
[PubMed]

J. Appl. Phys. (1)

C. J. Bridge, P. Dawson, and P. D. Buckle, “Photoluminescence spectroscopy and decay time measurements of polycrystalline thin film CdTe/CdS solar cells,” J. Appl. Phys. 88(11), 6451–6456 (2000).

J. Chem. Phys. (1)

L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys. 80(9), 4403–4409 (1984).

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Altıntas, A. F. Yazici, M. Unlu, S. Dadi, S. Genc, and E. Mutlugün, “Excitonic interaction amongst InP/ZnS salt pellets,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 7328–7336 (2017).

J. Phys. Chem. C (2)

Y. Altıntas, M. Y. Talpur, and E. Mutlugün, “Efficient Förster resonance energy transfer donors of In(Zn)P/ZnS quantum dots,” J. Phys. Chem. C 121(5), 3034–3043 (2017).

Y. Altıntas, M. Y. Talpur, M. Unlu, and E. Mutlugun, “Highly efficient Cd-free alloyed core/shell quantum dots with optimized precursor concentrations,” J. Phys. Chem. C 120(14), 7885–7892 (2016).

J. Phys. Chem. Lett. (1)

I. Hod, V. González-Pedro, Z. Tachan, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, and A. Zaban, “Dye versus quantum dots in sensitized solar cells: participation of quantum dot absorber in the recombination process,” J. Phys. Chem. Lett. 2(24), 3032–3035 (2011).

Laser Photonics Rev. (1)

B. Guzelturk, P. L. Hernandez Martinez, Q. Zhang, Q. Xiong, H. Sun, X. W. Sun, A. O. Govorov, and H. V. Demir, “Excitonics of semiconductor quantum dots and wires for lighting and displays,” Laser Photonics Rev. 8(1), 73–93 (2014).

Mater. Chem. Phys. (1)

T. Mishra, R. K. Sahu, S.-H. Lim, L. G. Salamanca-Riba, and S. Bhattacharjee, “Hexadecylamine Capped Silver and Gold Nanoparticles: Comparative Study on Formation and Self- Organization,” Mater. Chem. Phys. 123(2–3), 540–545 (2010).

Nano Lett. (2)

E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, A. Eychmüller, and H. V. Demir, “Large-area (over 50 cm × 50 cm) freestanding films of colloidal InP/ZnS quantum dots,” Nano Lett. 12(8), 3986–3993 (2012).
[PubMed]

T. Otto, M. Müller, P. Mundra, V. Lesnyak, H. V. Demir, N. Gaponik, and A. Eychmüller, “Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity,” Nano Lett. 12(10), 5348–5354 (2012).
[PubMed]

Nano Res. (1)

W. Lin, Y. Niu, R. Meng, L. Huang, H. Cao, Z. Zhang, H. Qin, and X. Peng, “Shell-thickness dependent optical properties of CdSe/CdS core/shell nanocrystals coated with thiol ligands,” Nano Res. 9(1), 260–271 (2016).

Nat. Commun. (1)

C. Galland, Y. Ghosh, A. Steinbrück, J. A. Hollingsworth, H. Htoon, and V. I. Klimov, “Lifetime blinking in nonblinking nanocrystal quantum dots,” Nat. Commun. 3, 908 (2012).
[PubMed]

Nature (1)

C. Galland, Y. Ghosh, A. Steinbrück, M. Sykora, J. A. Hollingsworth, V. I. Klimov, and H. Htoon, “Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots,” Nature 479(7372), 203–207 (2011).
[PubMed]

Sci. Rep. (1)

J. P. Park, J.-J. Lee, and S.-W. Kim, “Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process,” Sci. Rep. 6, 30094 (2016).
[PubMed]

Small (2)

R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, and D. J. Binks, “Near-unity quantum yields from chloride treated CdTe colloidal quantum dots,” Small 11(13), 1548–1554 (2015).
[PubMed]

S. G. Kwon and T. Hyeon, “Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods,” Small 7(19), 2685–2702 (2011).
[PubMed]

Other (1)

J. R. Lakowicz, “Principles of Fluorescence Spectroscopy,” 3rd Eds.; Springer: US, pp. XXVI, 954 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Absorption spectrum of alloyed core/shell In(Zn)P/ZnS QDs at different temperatures. (b) Photoluminescence spectrum of alloyed core/shell In(Zn)P/ZnS QDs at different temperatures. (c) Peak emission wavelength, quantum yield and full width-half maximum for alloyed core/shell In(Zn)P/ZnS QDs as a function of core growth temperature.
Fig. 2
Fig. 2 Time correlated single photon count decays for alloyed core/shell In(Zn)P/ZnS quantum dots as a function of core growth temperature.
Fig. 3
Fig. 3 (a) Absorption, (b) emission spectra of alloyed core In(Zn)P QDs, (c) EDX analysis of alloyed core In(Zn)P QDs which has 90 °C core growth temperature, (d) Photo under daylight for different core growth temperature alloyed core In(Zn)P QDs.
Fig. 4
Fig. 4 (a) Absorption and emission spectra, (b) Photoluminescence excitation spectrum, (c) Time resolved photoluminescence spectrum, (d) Photo (up) under daylight, (down) under UV illumination, (e) High resolution transmission electron microscopy image for record high efficiency of alloyed core/shell In(Zn)P/ZnS QDs.
Fig. 5
Fig. 5 (a) Fourier transform infrared spectra of alloyed core/shell In (Zn)P/ZnS QDs. (b) X-ray diffraction spectrum alloyed core/shell InZnP/ZnS QDs. (c) High resolution transmission electron microscopy image, (d) EDX analysis for record high efficiency of alloyed core/shell InZnP/ZnS QDs.
Fig. 6
Fig. 6 (a) Photograph of powder form of prepared KCl salt blended with green and orange emitting QDs. (b) Prepared pellet under UV exposure. (c) QD pellet hybridized with InGaN blue LED under operation. (d) Electroluminescence emission spectrum of blue LED, (e) Spectra of the QD pellet hybridized with InGaN blue LED under operation.

Tables (3)

Tables Icon

Table 1 Photoluminescence peak emission wavelength, quantum yield, emission full width half maximum value and core growth temperature for cyan, green, yellow, orange and red emitting In(Zn)P/ZnS quantum dots. (The measured quantum yield values vary ± 5%, depending on the excitation wavelength of the QDs)

Tables Icon

Table 2 Photoluminescence decay coefficients and corresponding lifetime values for In(Zn)P/ZnS quantum dots synthesized by varying the core growth temperature.

Tables Icon

Table 3 Amplitudes and corresponding lifetime components calculated for In(Zn)P/ZnS quantum dots, synthesized by Method 2

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q E s =Q E r I s A r n s 2 I r A s n r 2
τ int = i Α i τ i 2 Α i τ i

Metrics