Abstract

Coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy have many potential applications in biology and medicine. Among many variants of the technique itself, the method of single-pulse CARS spectroscopy and microscopy is attractive for its simplicity and quick implementation. Single-pulse CARS microscopy can be performed by shaping the excitation spectrum using a notch filter, yet the resonant signal rides on a large background caused by a non-resonant signal, a background which is usually removed by lock-in detection. Here, we show that the background can be reduced significantly by adding a small chirp to the pulse and can even be made smaller than the resonant signal. In order to enhance the CARS signal and thus the contrast further, double-notch shaping is introduced. The double-notch induces two sets of CARS features shifted by the frequency difference between the two notches, thereby coherently enhancing a particular CARS feature. The experimental results agree well with theoretical simulations. We applied this scheme to perform lock-in free CARS microscopy of bone tissue with enhanced contrast.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping

Ori Katz, Jonathan M. Levitt, Eran Grinvald, and Yaron Silberberg
Opt. Express 18(22) 22693-22701 (2010)

Chirped time-resolved CARS microscopy with square-pulse excitation

Paul Kumar Upputuri, Li Gong, and Haifeng Wang
Opt. Express 22(8) 9611-9626 (2014)

Multiplex CARS imaging with spectral notch shaped laser pulses delivered by optical fibers

Seung Ryeol Oh, Joo Hyun Park, Kyung-Soo Kim, Jae Yong Lee, and Soohyun Kim
Opt. Express 25(25) 32178-32188 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
  2. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [PubMed]
  3. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).
  4. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).
  5. J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
    [PubMed]
  6. D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
    [PubMed]
  7. H. Frostig, O. Katz, A. Natan, and Y. Silberberg, “Single-pulse stimulated Raman scattering spectroscopy,” Opt. Lett. 36(7), 1248–1250 (2011).
    [PubMed]
  8. O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express 18(22), 22693–22701 (2010).
    [PubMed]
  9. S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
    [PubMed]
  10. E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).
  11. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
    [PubMed]
  12. J. Lin, S. Teh, W. Zheng, Z. Wang, and Z. Huang, “Multimodal nonlinear optical microscopic imaging provides new insights into acetowhitening mechanisms in live mammalian cells without labeling,” Biomed. Opt. Express 5(9), 3116–3122 (2014).
    [PubMed]
  13. C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
    [PubMed]
  14. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
    [PubMed]
  15. T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).
  16. I. Rocha-Mendoza, W. Langbein, P. Watson, and P. Borri, “Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses,” Opt. Lett. 34(15), 2258–2260 (2009).
    [PubMed]
  17. D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70, 023415 (2004).
  18. G. L. Turin, “An Introduction to Matched Filters,” IEEE Trans. Inf. Theory 6, 311–329 (1960).
  19. E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).
  20. G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 4(620), 620 (2015).
    [PubMed]

2015 (4)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).

S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
[PubMed]

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 4(620), 620 (2015).
[PubMed]

2014 (1)

2011 (2)

H. Frostig, O. Katz, A. Natan, and Y. Silberberg, “Single-pulse stimulated Raman scattering spectroscopy,” Opt. Lett. 36(7), 1248–1250 (2011).
[PubMed]

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

2010 (1)

2009 (3)

2008 (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).

2004 (3)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70, 023415 (2004).

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

2002 (2)

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).

1969 (1)

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).

1960 (1)

G. L. Turin, “An Introduction to Matched Filters,” IEEE Trans. Inf. Theory 6, 311–329 (1960).

Barzda, V.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Blake, J. A.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Borri, P.

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).

Carriles, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Cheng, J.-X.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).

Cisek, R.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Danielson, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Drexler, W.

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70, 023415 (2004).

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

Enejder, A. M.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).

Field, J. J.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Frostig, H.

Grinvald, E.

Hellerer, T.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).

Hermann, B.

Hinsberg, W. D.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).

Huang, Z.

Jia, Y.

Jones, D.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Kamali, T.

Katz, O.

Kennedy, D. C.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Kumar, S.

Langbein, W.

Lee, S.-Y.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

Leone, S. R.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Levitt, J. M.

Levitte, J. M.

Li, J.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

Liao, C.-S.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

Lin, J.

Lyn, R. K.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Mandair, G. S.

G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 4(620), 620 (2015).
[PubMed]

Moffatt, D. J.

Morris, M. D.

G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 4(620), 620 (2015).
[PubMed]

Muntean, L.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Natan, A.

Oglesbee, R. A.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70, 023415 (2004).

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

Pegoraro, A. F.

Pezacki, J. P.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009).
[PubMed]

Potma, E. O.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Považay, B.

Preusser, J.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Ridsdale, A.

Rocha-Mendoza, I.

Schade, W.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Schafer, D. N.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Sheetz, K. E.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Silberberg, Y.

S. Kumar, T. Kamali, J. M. Levitte, O. Katz, B. Hermann, R. Werkmeister, B. Považay, W. Drexler, A. Unterhuber, and Y. Silberberg, “Single-pulse CARS based multimodal nonlinear optical microscope for bioimaging,” Opt. Express 23(10), 13082–13098 (2015).
[PubMed]

H. Frostig, O. Katz, A. Natan, and Y. Silberberg, “Single-pulse stimulated Raman scattering spectroscopy,” Opt. Lett. 36(7), 1248–1250 (2011).
[PubMed]

O. Katz, J. M. Levitt, E. Grinvald, and Y. Silberberg, “Single-beam coherent Raman spectroscopy and microscopy via spectral notch shaping,” Opt. Express 18(22), 22693–22701 (2010).
[PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70, 023415 (2004).

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[PubMed]

Singaravelu, R.

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Slipchenko, M. N.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

Squier, J. A.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Stolow, A.

Sylvester, A. W.

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Teh, S.

Treacy, E. B.

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).

Turin, G. L.

G. L. Turin, “An Introduction to Matched Filters,” IEEE Trans. Inf. Theory 6, 311–329 (1960).

Unterhuber, A.

Wang, P.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

Wang, Z.

Watson, P.

Werkmeister, R.

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).

Ye, J.

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Zheng, W.

Zumbusch, A.

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 883–909 (2008).

Appl. Phys. Lett. (1)

T. Hellerer, A. M. Enejder, and A. Zumbusch, “Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25–27 (2004).

Biomed. Opt. Express (1)

Bonekey Rep. (1)

G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 4(620), 620 (2015).
[PubMed]

IEEE J. Quantum Electron. (1)

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969).

IEEE Trans. Inf. Theory (1)

G. L. Turin, “An Introduction to Matched Filters,” IEEE Trans. Inf. Theory 6, 311–329 (1960).

J. Phys. Chem. B (1)

E. O. Potma, X. S. Xie, L. Muntean, J. Preusser, D. Jones, J. Ye, S. R. Leone, W. D. Hinsberg, and W. Schade, “Chemical imaging of photoresists with Coherent Anti-Stokes Raman Scattering (CARS) microscopy,” J. Phys. Chem. B 108(4), 1296–1301 (2004).

Light Sci. Appl. (1)

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265–e269 (2015).
[PubMed]

Nat. Chem. Biol. (1)

J. P. Pezacki, J. A. Blake, D. C. Danielson, D. C. Kennedy, R. K. Lyn, and R. Singaravelu, “Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy,” Nat. Chem. Biol. 7(3), 137–145 (2011).
[PubMed]

Nat. Photonics (1)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9, 295–305 (2015).

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

D. Oron, N. Dudovich, and Y. Silberberg, “All-optical processing in coherent nonlinear spectroscopy,” Phys. Rev. A 70, 023415 (2004).

Phys. Rev. Lett. (2)

D. Oron, N. Dudovich, and Y. Silberberg, “Single-Pulse Phase-Contrast Nonlinear Raman Spectroscopy,” Phys. Rev. Lett. 89(27), 273001 (2002).
[PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).

Rev. Sci. Instrum. (1)

R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Time-frequency plots of single-notch CARS, C-CARS and double-notch C-CARS processes. (a) Single-notch CARS excited by a transform-limited (TL) pulse. Shown are the spectrum of the pulse (ellipse with a hole), the long probe pulse (green ellipse) induced by the notch filter, and the band of vibrational frequencies (blue) that can be excited. (b) The single-notch CARS signal with two dip features (shown are two vibrational levels R1 and R2 spaced by ΔωR) induced by a single-notch shaped TL pulse. In this process, the contrast is poor because the whole excitation spectrum contributes to both resonant and NR signals. (c, d) Single-notch C-CARS induced by a chirped pulse. The Raman span is narrower as compared with case a, yet it leads to a higher contrast. (e) Double-notch C-CARS process produced by a chirped pulse shaped with two notches (1 and 2). Here, the two notches are spaced by Δωn. (f) Double-notch C-CARS signal with highest contrast based on coherent addition when ΔωR = Δωn.
Fig. 2
Fig. 2 Simulation results: the ratio of single-notch C-CARS feature’s magnitude at 685 cm−1 of perfluorodecalin to the magnitude of the NR background at the same wavelength as a function of chirp parameter.
Fig. 3
Fig. 3 Experimental setup for single-notch and double-notch C-CARS spectroscopy and microscopy. (a) Diagram of the experimental setup. A femtosecond laser after compressed by a pulse compressor goes through the first notch filter (NF1) once (i) or twice (ii) and then goes to the microscope. CARS and SHG are divided into corresponding PMT (Photomultiplier) for respective imaging. FM: flip mirror. G: gratings, CM: curved mirror, LPF: long-pass filters, SPF: short-pass filters, BPF: band-pass filters, DM: dichroic mirrors, S: sample, C: condenser lens. (b) Notch shaped spectrum of laser pulses and corresponding CARS signals. (i) Single-notch case. (ii) Double-notch case.
Fig. 4
Fig. 4 Experimental results of single-notch C-CARS: enhancement of the ratio between resonant CARS feature and smooth background. (a) 670cm−1 Raman line of chloroform. (b) 685cm−1 Raman line of perfluorodecalin. The solid curves are measurements of the CARS spectrum with the notch filter, NF1, and the dashed curves are background measurements, without NF1. Insets: the Raman lines, resolved by subtracting the measurements without NF1 from the measurements with NF1. The measurements were performed with 15mW average laser power and 1s integration time.
Fig. 5
Fig. 5 Double-notch shaped excitation pulses and the corresponding CARS- and C-CARS spectra of toluene. (a) The measured spectrum of the double-notch shaped excitation pulses. The two notches are located at 759.5nm and 772.5nm, respectively. (b) Two slightly shifted CARS spectra excited by transform-limited pulses shaped with a double-notch. (c) The measured C-CARS output spectrum, for excitation light shaped with a single-notch (blue dashed curve) and a double-notch (red solid curve). The black dotted curve is the NR background obtained by measuring the spectrum without any notch. The spectra were detected by the spectrometer without any background reduction. Note the significant contrast enhancement in comparison with (b).
Fig. 6
Fig. 6 CARS-resolved Raman spectrum and multimodal imaging of bone. (a) The single-notch C-CARS resolved Raman spectrum of bone tissue. (b) The double-notch C-CARS (combined signal of the 960cm−1 and 1080cm−1 lines) image of bone tissue. (c) Simultaneously obtained SHG image. (d) The overlaid image with both of CARS and SHG. The scanned area is 250 μm × 250 μm with 1 μm pixel size and 1ms pixel dwell time. The total imaging time is about 1 minute, and the laser power is <10mW. Scale bar: 50μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε(ω,β)=ε( ω 0 )exp[2 (ω ω 0 ) 2 log2/ Δ TL 2 iϕ(ω,β)]
I | P (3) (ω,β) | 2 = | P R (3) (ω,β)+ P NR (3) (ω,β) | 2 .
P R (3) (ω,β)= 0 dΩ χ R (3) (Ω) A(Ω,β)ε(ωΩ,β) .
χ R (3) = k ( Ω vib Ω)+i Γ vib
A(Ω,β)= 0 d ω ε * ( ω ,β)ε( ω +Ω,β) .
P NR (3) (ω,β)= χ NR (3) 0 dΩA(Ω,β)ε(ωΩ,β) .
χ R,eff (3) (Ω)= k 1 ( Ω vib1 Ω)+i Γ vib1 + k 2 ( Ω vib2 Ω)+i Γ vib2 ,
β m = 4 (Δλ) 2 (d d TL ) 2 (λ/g) 2 c 2 g 2 τ TL 2 [1 (λ/gsinθ) 2 ] 1

Metrics