Abstract

With the help of the clinical application of CLI in tumour and lymph node imaging, Cerenkov luminescence tomography (CLT) has the potential to be used for cancer staging. If staging cancer based on optical image of tumour, node and metastasis, one of the critical issues is multiple-source resolution. Because of the ill-posedness of the inverse problem and the diversity of tumor biological characteristics, the multiple-source resolution is a meaningful but challenge problem. In this paper, based on the compression perception theory, a non-convex sparse regularization algorithm (nCSRA) framework was proposed to improve the capacity of multiple-source resolving. Two typical algorithms (homotopy and iterative shrinkage-thresholding algorithm) were explored to test the performance of nCSRA. In numerical simulations and in vivo imaging experiments, the comparison results showed that the proposed nCSRA framework can significantly enhance the multiple-source resolution capability in aspect of spatial resolution, intensity resolution, and size resolution.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Probability method for Cerenkov luminescence tomography based on conformance error minimization

Xintao Ding, Kun Wang, Biao Jie, Yonglong Luo, Zhenhua Hu, and Jie Tian
Biomed. Opt. Express 5(7) 2091-2112 (2014)

Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation

Zhenhua Hu, Jimin Liang, Weidong Yang, Weiwei Fan, Congye Li, Xiaowei Ma, Xueli Chen, Xiaopeng Ma, Xiangsi Li, Xiaochao Qu, Jing Wang, Feng Cao, and Jie Tian
Opt. Express 18(24) 24441-24450 (2010)

Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization

Hongbo Guo, Jingjing Yu, Xiaowei He, Yuqing Hou, Fang Dong, and Shuling Zhang
Biomed. Opt. Express 6(5) 1648-1664 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
    [Crossref] [PubMed]
  2. A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
    [Crossref] [PubMed]
  3. R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of pet isotopes in biological systems,” PloS One 5(10), e13300 (2010).
    [Crossref] [PubMed]
  4. A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
    [Crossref]
  5. D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
    [Crossref] [PubMed]
  6. R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).
  7. H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
    [Crossref] [PubMed]
  8. C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
    [Crossref] [PubMed]
  9. T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).
  10. J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions,” Molec. Imag. 10(3), 177–186 (2011).
  11. D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
    [Crossref]
  12. A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
    [Crossref]
  13. H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
    [Crossref] [PubMed]
  14. L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
    [Crossref] [PubMed]
  15. M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
    [Crossref]
  16. B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
    [Crossref] [PubMed]
  17. D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
    [Crossref] [PubMed]
  18. C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
    [Crossref] [PubMed]
  19. Z. Hu, M. Liu, Z. Zhang, H. Guo, and J. Tian, “A novel radiopharmaceutical-excited fluorescence tomography of the mice bearing hepatocellular carcinoma,” J. Nucl. Med. 57(2), 1421 (2016).
  20. Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
    [Crossref] [PubMed]
  21. F. Boschi and A. E. Spinelli, “Cerenkov luminescence imaging at a glance,” Curr. Mol. Imag. 3(2), 106–117 (2014).
    [Crossref]
  22. A. Spinelli, M. Marengo, R. Calandrino, A. Sbarbati, and F. Boschi, “a novel multimodal approach to molecular imaging,” Q. J. Nucl. Med. Molec. Imag. 56, 279–289 (2012).
  23. C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science 331(6024), 1559–1564 (2011).
    [Crossref] [PubMed]
  24. F. L. Greene and L. H. Sobin, “The TNM system: our language for cancer care,” J. Surg. Oncol. 80(3), 119–120 (2002).
    [Crossref] [PubMed]
  25. C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
    [Crossref]
  26. Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
    [Crossref] [PubMed]
  27. H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
    [Crossref]
  28. C. Ran, Z. Zhang, J. Hooker, and A. Moore, “In vivo photoactivation without light: use of cherenkov radiation to overcome the penetration limit of light,” Mol. Imaging Biol. 14(2), 156–162 (2012).
    [Crossref]
  29. K. Tanha, A. M. Pashazadeh, and B. W. Pogue, “Review of biomedical čerenkov luminescence imaging applications,” Biomed. Opt. Express 6(8), 3053–3065 (2015).
    [Crossref] [PubMed]
  30. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 346 (2001).
    [Crossref]
  31. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
    [Crossref] [PubMed]
  32. J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).
  33. Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
    [Crossref]
  34. Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).
  35. H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
    [Crossref]
  36. X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
    [Crossref] [PubMed]
  37. A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
    [Crossref] [PubMed]
  38. M. Liu, H. Guo, H. Liu, Z. Zhang, C. Chi, H. Hui, D. Dong, Z. Hu, and J. Tian, “In vivo pentamodal tomographic imaging for small animals,” Biomed. Opt. Express 8(3), 1356–1371 (2017).
    [Crossref] [PubMed]
  39. X. Chen, D. Yang, Q. Zhang, and J. Liang, “L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography,” J. Appl. Phys. 115(18), 184702 (2014).
    [Crossref]
  40. D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901 (2014).
    [Crossref] [PubMed]
  41. H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6(5), 1648–1664 (2015).
    [Crossref] [PubMed]
  42. Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006).
    [Crossref] [PubMed]
  43. C. Leng and J. Tian, “Mathematical method in optical molecular imaging,” Sci. China Inform. Sci. 58(3), 1–13 (2015).
    [Crossref]
  44. J. He, “Homotopy perturbation technique,” Comput. Method. Appl. M. 178(3), 257–262 (1999).
    [Crossref]
  45. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).
    [Crossref]
  46. Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
    [Crossref]

2017 (3)

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
[Crossref]

M. Liu, H. Guo, H. Liu, Z. Zhang, C. Chi, H. Hui, D. Dong, Z. Hu, and J. Tian, “In vivo pentamodal tomographic imaging for small animals,” Biomed. Opt. Express 8(3), 1356–1371 (2017).
[Crossref] [PubMed]

2016 (1)

Z. Hu, M. Liu, Z. Zhang, H. Guo, and J. Tian, “A novel radiopharmaceutical-excited fluorescence tomography of the mice bearing hepatocellular carcinoma,” J. Nucl. Med. 57(2), 1421 (2016).

2015 (8)

C. Leng and J. Tian, “Mathematical method in optical molecular imaging,” Sci. China Inform. Sci. 58(3), 1–13 (2015).
[Crossref]

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6(5), 1648–1664 (2015).
[Crossref] [PubMed]

K. Tanha, A. M. Pashazadeh, and B. W. Pogue, “Review of biomedical čerenkov luminescence imaging applications,” Biomed. Opt. Express 6(8), 3053–3065 (2015).
[Crossref] [PubMed]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

2014 (8)

X. Chen, D. Yang, Q. Zhang, and J. Liang, “L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography,” J. Appl. Phys. 115(18), 184702 (2014).
[Crossref]

D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901 (2014).
[Crossref] [PubMed]

X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
[Crossref] [PubMed]

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

F. Boschi and A. E. Spinelli, “Cerenkov luminescence imaging at a glance,” Curr. Mol. Imag. 3(2), 106–117 (2014).
[Crossref]

2013 (3)

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

2012 (7)

B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
[Crossref] [PubMed]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

C. Ran, Z. Zhang, J. Hooker, and A. Moore, “In vivo photoactivation without light: use of cherenkov radiation to overcome the penetration limit of light,” Mol. Imaging Biol. 14(2), 156–162 (2012).
[Crossref]

A. Spinelli, M. Marengo, R. Calandrino, A. Sbarbati, and F. Boschi, “a novel multimodal approach to molecular imaging,” Q. J. Nucl. Med. Molec. Imag. 56, 279–289 (2012).

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

2011 (4)

C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science 331(6024), 1559–1564 (2011).
[Crossref] [PubMed]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).

J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions,” Molec. Imag. 10(3), 177–186 (2011).

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

2010 (5)

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[Crossref] [PubMed]

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of pet isotopes in biological systems,” PloS One 5(10), e13300 (2010).
[Crossref] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
[Crossref]

2009 (2)

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).
[Crossref]

2006 (1)

2004 (1)

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
[Crossref] [PubMed]

2002 (1)

F. L. Greene and L. H. Sobin, “The TNM system: our language for cancer care,” J. Surg. Oncol. 80(3), 119–120 (2002).
[Crossref] [PubMed]

2001 (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 346 (2001).
[Crossref]

1999 (1)

J. He, “Homotopy perturbation technique,” Comput. Method. Appl. M. 178(3), 257–262 (1999).
[Crossref]

Abou, D. S.

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

Allen, S.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Axelsson, J.

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Bao, C.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

Bartlett, R. M.

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

Beattie, B. J.

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
[Crossref] [PubMed]

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

Beck, A.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).
[Crossref]

Bibic, A.

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Boschi, F.

F. Boschi and A. E. Spinelli, “Cerenkov luminescence imaging at a glance,” Curr. Mol. Imag. 3(2), 106–117 (2014).
[Crossref]

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

A. Spinelli, M. Marengo, R. Calandrino, A. Sbarbati, and F. Boschi, “a novel multimodal approach to molecular imaging,” Q. J. Nucl. Med. Molec. Imag. 56, 279–289 (2012).

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
[Crossref]

Britten, A.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Buchin, M. P.

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Calandrino, R.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

A. Spinelli, M. Marengo, R. Calandrino, A. Sbarbati, and F. Boschi, “a novel multimodal approach to molecular imaging,” Q. J. Nucl. Med. Molec. Imag. 56, 279–289 (2012).

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

Calderan, L.

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
[Crossref]

Cao, F.

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Cao, X.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Cariati, M.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Carpenter, C. M.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Cavedon, C.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

Chaffer, C. L.

C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science 331(6024), 1559–1564 (2011).
[Crossref] [PubMed]

Chen, D.

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

Chen, X.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

X. Chen, D. Yang, Q. Zhang, and J. Liang, “L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography,” J. Appl. Phys. 115(18), 184702 (2014).
[Crossref]

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Cheng, Z.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Cherry, S. R.

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
[Crossref] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Chi, C.

Cong, W.

Cook, G. J.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

D’Ambrosio, D.

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
[Crossref]

Ding, X.

Dong, D.

Dong, F.

Dothager, R. S.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of pet isotopes in biological systems,” PloS One 5(10), e13300 (2010).
[Crossref] [PubMed]

Douek, M.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Fan, D.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Fan, W.

Feng, J.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

Fenzi, A.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

Ferdeghini, M.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

Friedman, O. D.

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Gambhir, S. S.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Germanos, M. S.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Gladstone, D. J.

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Glaser, A. K.

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Goiffon, R. J.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of pet isotopes in biological systems,” PloS One 5(10), e13300 (2010).
[Crossref] [PubMed]

Greene, F. L.

F. L. Greene and L. H. Sobin, “The TNM system: our language for cancer care,” J. Surg. Oncol. 80(3), 119–120 (2002).
[Crossref] [PubMed]

Grimm, J.

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions,” Molec. Imag. 10(3), 177–186 (2011).

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[Crossref] [PubMed]

Grootendorst, M. R.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Guo, H.

M. Liu, H. Guo, H. Liu, Z. Zhang, C. Chi, H. Hui, D. Dong, Z. Hu, and J. Tian, “In vivo pentamodal tomographic imaging for small animals,” Biomed. Opt. Express 8(3), 1356–1371 (2017).
[Crossref] [PubMed]

H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
[Crossref]

Z. Hu, M. Liu, Z. Zhang, H. Guo, and J. Tian, “A novel radiopharmaceutical-excited fluorescence tomography of the mice bearing hepatocellular carcinoma,” J. Nucl. Med. 57(2), 1421 (2016).

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6(5), 1648–1664 (2015).
[Crossref] [PubMed]

Hamed, H.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Harpstrite, S.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of pet isotopes in biological systems,” PloS One 5(10), e13300 (2010).
[Crossref] [PubMed]

He, J.

J. He, “Homotopy perturbation technique,” Comput. Method. Appl. M. 178(3), 257–262 (1999).
[Crossref]

He, X.

H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
[Crossref]

H. Guo, J. Yu, X. He, Y. Hou, F. Dong, and S. Zhang, “Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization,” Biomed. Opt. Express 6(5), 1648–1664 (2015).
[Crossref] [PubMed]

Hemelrijck, M. V.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Hielscher, A. H.

B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
[Crossref] [PubMed]

Hitchcock, W.

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Holland, J. P.

J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions,” Molec. Imag. 10(3), 177–186 (2011).

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[Crossref] [PubMed]

Hooker, J.

C. Ran, Z. Zhang, J. Hooker, and A. Moore, “In vivo photoactivation without light: use of cherenkov radiation to overcome the penetration limit of light,” Mol. Imaging Biol. 14(2), 156–162 (2012).
[Crossref]

Hou, Y.

Hu, H.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Hu, Z.

H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
[Crossref]

M. Liu, H. Guo, H. Liu, Z. Zhang, C. Chi, H. Hui, D. Dong, Z. Hu, and J. Tian, “In vivo pentamodal tomographic imaging for small animals,” Biomed. Opt. Express 8(3), 1356–1371 (2017).
[Crossref] [PubMed]

Z. Hu, M. Liu, Z. Zhang, H. Guo, and J. Tian, “A novel radiopharmaceutical-excited fluorescence tomography of the mice bearing hepatocellular carcinoma,” J. Nucl. Med. 57(2), 1421 (2016).

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
[Crossref] [PubMed]

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Huang, R.

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

Hui, H.

Humm, J. L.

B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
[Crossref] [PubMed]

Ingvar, C.

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Jackson, E.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of pet isotopes in biological systems,” PloS One 5(10), e13300 (2010).
[Crossref] [PubMed]

Jarvis, L. A.

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Jermyn, M.

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Jia, B.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Jiang, H.

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Jiang, M.

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
[Crossref] [PubMed]

Jiang, S.

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Jie, B.

Jin, Z.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

Kang, F.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Knutsson, L.

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Kothari, A.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Kovacs, T.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Kuo, C.

Leng, C.

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

C. Leng and J. Tian, “Mathematical method in optical molecular imaging,” Sci. China Inform. Sci. 58(3), 1–13 (2015).
[Crossref]

Lewis, J. S.

J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions,” Molec. Imag. 10(3), 177–186 (2011).

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[Crossref] [PubMed]

Li, C.

D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901 (2014).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
[Crossref] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Li, H.

Li, S.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Li, X.

Li, Y.

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
[Crossref] [PubMed]

Liang, J.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

X. Chen, D. Yang, Q. Zhang, and J. Liang, “L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography,” J. Appl. Phys. 115(18), 184702 (2014).
[Crossref]

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Lin, Y.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Liu, H.

M. Liu, H. Guo, H. Liu, Z. Zhang, C. Chi, H. Hui, D. Dong, Z. Hu, and J. Tian, “In vivo pentamodal tomographic imaging for small animals,” Biomed. Opt. Express 8(3), 1356–1371 (2017).
[Crossref] [PubMed]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Liu, M.

H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
[Crossref]

M. Liu, H. Guo, H. Liu, Z. Zhang, C. Chi, H. Hui, D. Dong, Z. Hu, and J. Tian, “In vivo pentamodal tomographic imaging for small animals,” Biomed. Opt. Express 8(3), 1356–1371 (2017).
[Crossref] [PubMed]

Z. Hu, M. Liu, Z. Zhang, H. Guo, and J. Tian, “A novel radiopharmaceutical-excited fluorescence tomography of the mice bearing hepatocellular carcinoma,” J. Nucl. Med. 57(2), 1421 (2016).

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Liu, X.

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Liu, Z.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

Luo, J.

Luo, Y.

Lv, Y.

Ma, W.

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

Ma, X.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Madru, R.

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Marengo, M.

A. Spinelli, M. Marengo, R. Calandrino, A. Sbarbati, and F. Boschi, “a novel multimodal approach to molecular imaging,” Q. J. Nucl. Med. Molec. Imag. 56, 279–289 (2012).

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
[Crossref]

Marzola, P.

Mistry, S

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Mitchell, G. S.

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
[Crossref] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Moore, A.

C. Ran, Z. Zhang, J. Hooker, and A. Moore, “In vivo photoactivation without light: use of cherenkov radiation to overcome the penetration limit of light,” Mol. Imaging Biol. 14(2), 156–162 (2012).
[Crossref]

Nie, Y.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Nimmo, F.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Normand, G.

J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions,” Molec. Imag. 10(3), 177–186 (2011).

Ogirala, A.

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

Owen, J.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Pashazadeh, A. M.

Pawa, A.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Pentlow, K. S.

B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
[Crossref] [PubMed]

Pinder, S. E.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Piwnica-Worms, D.

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of pet isotopes in biological systems,” PloS One 5(10), e13300 (2010).
[Crossref] [PubMed]

Pogue, B. W.

K. Tanha, A. M. Pashazadeh, and B. W. Pogue, “Review of biomedical čerenkov luminescence imaging applications,” Biomed. Opt. Express 6(8), 3053–3065 (2015).
[Crossref] [PubMed]

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Pratx, G.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Purushotham, A.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Qin, C.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).

Qu, X.

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Qu, Y.

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

Ramalingam, V.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Ran, C.

C. Ran, Z. Zhang, J. Hooker, and A. Moore, “In vivo photoactivation without light: use of cherenkov radiation to overcome the penetration limit of light,” Mol. Imaging Biol. 14(2), 156–162 (2012).
[Crossref]

Rice, B. W.

Robertson, R.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Ruggiero, A.

J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions,” Molec. Imag. 10(3), 177–186 (2011).

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[Crossref] [PubMed]

Sbarbati, A.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

A. Spinelli, M. Marengo, R. Calandrino, A. Sbarbati, and F. Boschi, “a novel multimodal approach to molecular imaging,” Q. J. Nucl. Med. Molec. Imag. 56, 279–289 (2012).

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
[Crossref]

Schmidtlein, C. R.

B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
[Crossref] [PubMed]

Sethi, S.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Shi, J.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Shi, L.

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

Sibley-Allen, C.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Silva, M. D.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

Sobin, L. H.

F. L. Greene and L. H. Sobin, “The TNM system: our language for cancer care,” J. Surg. Oncol. 80(3), 119–120 (2002).
[Crossref] [PubMed]

Song, T.

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

Spinelli, A.

A. Spinelli, M. Marengo, R. Calandrino, A. Sbarbati, and F. Boschi, “a novel multimodal approach to molecular imaging,” Q. J. Nucl. Med. Molec. Imag. 56, 279–289 (2012).

Spinelli, A. E.

F. Boschi and A. E. Spinelli, “Cerenkov luminescence imaging at a glance,” Curr. Mol. Imag. 3(2), 106–117 (2014).
[Crossref]

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
[Crossref]

Stahlberg, F.

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Strand, S.-E.

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Sun, C.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Sun, Y.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Tanha, K.

Teboulle, M.

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).
[Crossref]

Thorek, D. L.

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
[Crossref] [PubMed]

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

Tian, J.

M. Liu, H. Guo, H. Liu, Z. Zhang, C. Chi, H. Hui, D. Dong, Z. Hu, and J. Tian, “In vivo pentamodal tomographic imaging for small animals,” Biomed. Opt. Express 8(3), 1356–1371 (2017).
[Crossref] [PubMed]

H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
[Crossref]

Z. Hu, M. Liu, Z. Zhang, H. Guo, and J. Tian, “A novel radiopharmaceutical-excited fluorescence tomography of the mice bearing hepatocellular carcinoma,” J. Nucl. Med. 57(2), 1421 (2016).

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

C. Leng and J. Tian, “Mathematical method in optical molecular imaging,” Sci. China Inform. Sci. 58(3), 1–13 (2015).
[Crossref]

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
[Crossref] [PubMed]

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006).
[Crossref] [PubMed]

Tran, T. A.

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Tuch, D. S.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Vyas, K.

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

Wang, F.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Wang, G.

Wang, J.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Wang, K.

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
[Crossref] [PubMed]

Wang, M.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Wang, Z.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

Weinberg, R. A.

C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science 331(6024), 1559–1564 (2011).
[Crossref] [PubMed]

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 346 (2001).
[Crossref]

Wu, K.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Wu, P.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

Xing, L.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

Yang, D.

X. Chen, D. Yang, Q. Zhang, and J. Liang, “L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography,” J. Appl. Phys. 115(18), 184702 (2014).
[Crossref]

Yang, W.

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental cerenkov luminescence tomography of the mouse model with spect imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Y. Lv, J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Opt. Express 14(18), 8211–8223 (2006).
[Crossref] [PubMed]

Yang, X.

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).

Yao, L.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

Yu, J.

Zanzonico, P. B.

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

Zha, J.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

Zhang, Q.

X. Chen, D. Yang, Q. Zhang, and J. Liang, “L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography,” J. Appl. Phys. 115(18), 184702 (2014).
[Crossref]

Zhang, R.

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

Zhang, S.

Zhang, X.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).

Zhang, Z.

H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
[Crossref]

M. Liu, H. Guo, H. Liu, Z. Zhang, C. Chi, H. Hui, D. Dong, Z. Hu, and J. Tian, “In vivo pentamodal tomographic imaging for small animals,” Biomed. Opt. Express 8(3), 1356–1371 (2017).
[Crossref] [PubMed]

Z. Hu, M. Liu, Z. Zhang, H. Guo, and J. Tian, “A novel radiopharmaceutical-excited fluorescence tomography of the mice bearing hepatocellular carcinoma,” J. Nucl. Med. 57(2), 1421 (2016).

C. Ran, Z. Zhang, J. Hooker, and A. Moore, “In vivo photoactivation without light: use of cherenkov radiation to overcome the penetration limit of light,” Mol. Imaging Biol. 14(2), 156–162 (2012).
[Crossref]

Zhao, H.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Zhong, J.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).

Zhong, L.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Zhu, D.

D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901 (2014).
[Crossref] [PubMed]

Zhu, S.

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).

Zhu, Z.

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Zivelonghi, E.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

Am. J. Nucl. Med. Mol. Imag. (1)

R. Madru, T. A. Tran, J. Axelsson, C. Ingvar, A. Bibic, F. Stahlberg, L. Knutsson, and S.-E. Strand, “68Ga-labeled superparamagnetic iron oxide nanoparticles (spions) for multi-modality pet/mr/cherenkov luminescence imaging of sentinel lymph nodes,” Am. J. Nucl. Med. Mol. Imag. 4(1), 60 (2014).

Bioconjugate Chem. (1)

D. Fan, X. Zhang, L. Zhong, X. Liu, Y. Sun, H. Zhao, B. Jia, Z. Liu, Z. Zhu, J. Shi, and F. Wang, “68Ga-labeled 3PRGD2 for dual pet and cerenkov luminescence imaging of orthotopic human glioblastoma,” Bioconjugate Chem. 26(6), 1054–1060 (2015).
[Crossref]

Biomed. Opt. Express (4)

Comput. Method. Appl. M. (1)

J. He, “Homotopy perturbation technique,” Comput. Method. Appl. M. 178(3), 257–262 (1999).
[Crossref]

Curr. Mol. Imag. (1)

F. Boschi and A. E. Spinelli, “Cerenkov luminescence imaging at a glance,” Curr. Mol. Imag. 3(2), 106–117 (2014).
[Crossref]

Eur. Radiol. (1)

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814 (2015).
[Crossref] [PubMed]

IEEE T. Med. Imag. (1)

H. Guo, X. He, M. Liu, Z. Zhang, Z. Hu, and J. Tian, “Weight multispectral reconstruction strategy for enhanced reconstruction accuracy and stability with cerenkov luminescence tomography,” IEEE T. Med. Imag. 36(6), 1337–1346 (2017).
[Crossref]

Int. J. Biomed. Imag. (1)

J. Zhong, C. Qin, X. Yang, S. Zhu, X. Zhang, and J. Tian, “Cerenkov luminescence tomography for in vivo radiopharmaceutical imaging,” Int. J. Biomed. Imag. 2011, 641618 (2011).

Int. J. Radiat. Oncol. Biol. Phys. (1)

L. A. Jarvis, R. Zhang, D. J. Gladstone, S. Jiang, W. Hitchcock, O. D. Friedman, A. K. Glaser, M. Jermyn, and B. W. Pogue, “Cherenkov video imaging allows for the first visualization of radiation therapy in real time,” Int. J. Radiat. Oncol. Biol. Phys. 89(3), 615–622 (2014).
[Crossref] [PubMed]

J. Appl. Phys. (2)

Z. Hu, X. Chen, J. Liang, X. Qu, D. Chen, W. Yang, J. Wang, F. Cao, and J. Tian, “Single photon emission computed tomography-guided cerenkov luminescence tomography,” J. Appl. Phys. 112(2), 024703 (2012).
[Crossref]

X. Chen, D. Yang, Q. Zhang, and J. Liang, “L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography,” J. Appl. Phys. 115(18), 184702 (2014).
[Crossref]

J. Biomed. Opt. (2)

H. Liu, X. Yang, T. Song, C. Bao, L. Shi, Z. Hu, K. Wang, and J. Tian, “Multispectral hybrid cerenkov luminescence tomography based on the finite element spn method,” J. Biomed. Opt. 20(8), 086007 (2015).
[Crossref]

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human cerenkography,” J. Biomed. Opt. 18, 020502 (2013).
[Crossref]

J. Nucl. Med. (6)

D. L. Thorek, D. S. Abou, B. J. Beattie, R. M. Bartlett, R. Huang, P. B. Zanzonico, and J. Grimm, “Positron lymphography: multimodal, high-resolution, dynamic mapping and resection of lymph nodes after intradermal injection of 18F-FDG,” J. Nucl. Med. 53(9), 1438–1445 (2012).
[Crossref] [PubMed]

M. R. Grootendorst, M. Cariati, S. E. Pinder, A. Kothari, M. Douek, T. Kovacs, H. Hamed, A. Pawa, F. Nimmo, J. Owen, V. Ramalingam, S. Sethi, S Mistry, K. Vyas, D. S. Tuch, A. Britten, M. V. Hemelrijck, G. J. Cook, C. Sibley-Allen, S. Allen, and A. Purushotham, “Intraoperative assessment of tumor resection margins in breast-conserving surgery using 18F-FDG cerenkov luminescence imaging: A first-in-human feasibility study,” J. Nucl. Med. 58(6), 891–898 (2017).
[Crossref]

H. Liu, C. M. Carpenter, H. Jiang, G. Pratx, C. Sun, M. P. Buchin, S. S. Gambhir, L. Xing, and Z. Cheng, “Intraoperative imaging of tumors using cerenkov luminescence endoscopy: a feasibility experimental study,” J. Nucl. Med. 53(10), 1579–1584 (2012).
[Crossref] [PubMed]

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: Improved molecular sensitivity with β–emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[Crossref] [PubMed]

Z. Hu, M. Liu, Z. Zhang, H. Guo, and J. Tian, “A novel radiopharmaceutical-excited fluorescence tomography of the mice bearing hepatocellular carcinoma,” J. Nucl. Med. 57(2), 1421 (2016).

J. Surg. Oncol. (1)

F. L. Greene and L. H. Sobin, “The TNM system: our language for cancer care,” J. Surg. Oncol. 80(3), 119–120 (2002).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

C. Qin, J. Feng, S. Zhu, X. Ma, J. Zhong, P. Wu, Z. Jin, and J. Tian, “Recent advances in bioluminescence tomography: methodology and system as well as application,” Laser Photon. Rev. 8(1), 94–114 (2014).
[Crossref]

Med. Phys. (1)

G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys. 31(8), 2289–2299 (2004).
[Crossref] [PubMed]

Mol. Imaging (1)

T. Song, X. Liu, Y. Qu, H. Liu, C. Bao, C. Leng, Z. Hu, K. Wang, and J. Tian, “A novel endoscopic cerenkov luminescence imaging system for intraoperative surgical navigation,” Mol. Imaging 14(8), 443–449 (2015).

Mol. Imaging Biol. (1)

C. Ran, Z. Zhang, J. Hooker, and A. Moore, “In vivo photoactivation without light: use of cherenkov radiation to overcome the penetration limit of light,” Mol. Imaging Biol. 14(2), 156–162 (2012).
[Crossref]

Molec. Imag. (2)

Z. Hu, W. Yang, X. Ma, W. Ma, X. Qu, J. Liang, J. Wang, and J. Tian, “Cerenkov luminescence tomography of aminopeptidase N (APN/CD13) expression in mice bearing HT1080 tumors,” Molec. Imag. 12(3), 173–181 (2013).

J. P. Holland, G. Normand, A. Ruggiero, J. S. Lewis, and J. Grimm, “Intraoperative imaging of positron emission tomographic radiotracers using cerenkov luminescence emissions,” Molec. Imag. 10(3), 177–186 (2011).

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 346 (2001).
[Crossref]

Nat. Commun. (1)

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6, 7560 (2015).
[Crossref]

Nat. Med. (1)

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (3)

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[Crossref] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55, 483–495 (2010).
[Crossref]

D. Zhu and C. Li, “Nonconvex regularizations in fluorescence molecular tomography for sparsity enhancement,” Phys. Med. Biol. 59(12), 2901 (2014).
[Crossref] [PubMed]

PloS One (2)

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified cerenkov luminescence tomography approach,” PloS One 7(5), e37623 (2012).
[Crossref] [PubMed]

R. S. Dothager, R. J. Goiffon, E. Jackson, S. Harpstrite, and D. Piwnica-Worms, “Cerenkov radiation energy transfer (CRET) imaging: a novel method for optical imaging of pet isotopes in biological systems,” PloS One 5(10), e13300 (2010).
[Crossref] [PubMed]

B. J. Beattie, D. L. Thorek, C. R. Schmidtlein, K. S. Pentlow, J. L. Humm, and A. H. Hielscher, “Quantitative modeling of cerenkov light production efficiency from medical radionuclides,” PLoS One 7(2), e31402 (2012).
[Crossref] [PubMed]

Q. J. Nucl. Med. Molec. Imag. (1)

A. Spinelli, M. Marengo, R. Calandrino, A. Sbarbati, and F. Boschi, “a novel multimodal approach to molecular imaging,” Q. J. Nucl. Med. Molec. Imag. 56, 279–289 (2012).

Sci. China Inform. Sci. (1)

C. Leng and J. Tian, “Mathematical method in optical molecular imaging,” Sci. China Inform. Sci. 58(3), 1–13 (2015).
[Crossref]

Science (1)

C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science 331(6024), 1559–1564 (2011).
[Crossref] [PubMed]

SIAM J. Imaging Sci. (1)

A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imaging Sci. 2(1), 183–202 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Numerical simulation settings. (a) The torso section of digital mouse model; (b) The uniform tetrahedral mesh used in the inverse reconstruction problem; (c–g) The real 3D distribution of Cerenkov sources in numerical simulations.

Fig. 2
Fig. 2

Results of the spatial resolution experiments.(a)–(c) The reconstructed Cerenkov sources with different center-to-center separations in 3D view and transverse view. In 3D view, the red areas denote the reconstructed Cerenkov sources. In transverse view, the white circles represent the actual sources in the slice over the centers of the sources at Z = 7mm.

Fig. 3
Fig. 3

Box plot about the comparison of location error. In the 3D view, the red regions denote the reconstructed sources. Red dots and blue square dot mean the location error of every sources and the average location error, respectively.

Fig. 4
Fig. 4

Results of the intensity resolution experiments. (a)–(c) Reconstructed sources by algorithms based on nCSRA and CSRA frameworks with different intensity ratios in 3D view and transverse view. In 3D view, the red areas denote the reconstructed Cerenkov sources. In transverse view, the white circles represent the actual sources in the slice over the centers of the sources at Z = 7mm.

Fig. 5
Fig. 5

Reconstructed intensities of every source and corresponding linear fitted curves. The black square, red circle, blue regular triangle, pink inverted triangle and green rhombus indicate the reconstructed intensities by algorithms based on nCSRA and CSRA frameworks and actual source intensities, respectively; linear fix of intensity values were expressed by indicate color lines and linear functions.

Fig. 6
Fig. 6

Reconstruction results in size resolution experiments. (a)–(b) Reconstructed sources by algorithms based on nCSRA and CSRA frameworks with different size ratios in the 3D view and the transverse view. In 3D view, the red areas denote the reconstructed Cerenkov sources. In transverse view, the white circles represent the actual sources in the slice over the centers of the sources at Z = 7mm

Fig. 7
Fig. 7

Reconstructed source volumes and corresponding linear fitted curves. The black square, red circle, blue regular triangle, pink inverted triangle and green rhombus indicate the reconstructed intensities by algorithms based on nCSRA and CSRA frameworks and actual source volumes, respectively; linear fix of intensity values were expressed by indicate color lines and linear functions.

Fig. 8
Fig. 8

The results of in vivo imaging experiments. (a) White-light image overlaid with Cerenkov luminescence image for every mouse model. (b) Reconstructed Cerenkov luminescence signal fused with CT imaging by nCSRA and CSRA frameworks and real 18F-FDG distribution; (c) Photograph of corresponding resected tumors; (d) Box plot of the comparison results in location error; (e) Semiquantitation comparison results of reconstructed intensities and corresponding linear fitted curves; (f) Comparison results in reconstructed source volumes and corresponding linear fitted curves.

Tables (6)

Tables Icon

Table 1 Optical properties for numerical simulation and in vivo experiments.

Tables Icon

Table 2 Cerenkov source parameters in numerical simulations.

Tables Icon

Table 3 Detailed information on cell injection in tumor model-establishment process.

Tables Icon

Table 4 Quantitative results of the spatial resolution experiments.

Tables Icon

Table 5 Quantitative results of the intensity resolution simulations.

Tables Icon

Table 6 Quantitative results of the size resolution experiments.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

{ ( D ( r ) ) + μ a ( r ) Φ ( r ) = S ( r ) , ( r Ω ) Φ ( r ) + 2 A ( r ) D ( r ) ( v ( r ) D ( r ) ) = 0 , ( r Ω )
M X = Φ
min X 1 2 M X Φ 2 2 + ζ X p p , 0 < P < 1
X p p = i = 1 n | X i | p = i = 1 n | X i | | X i | 1 p
X t + 1 = min X 1 2 M X Φ 2 2 + ζ i = 1 n | X i | | X i t | 1 p
X t + 1 = min X 1 2 M X Φ 2 2 + i = 1 n λ i | X i |
{ min x λ X 1 + 1 2 M X Φ 2 2 + ( 1 ε ) ρ T X ρ = λ s i g n ( X ^ ) M T ( M X ^ Φ )
X = { ( M Γ T M Γ ) 1 ρ Γ o n Γ 0 o t h e r w i s e
{ δ + = min i Γ c ( λ i h i d i , λ i h i d i )   h i = M i T ( M X * Φ ) + ( 1 ε ) ρ i , i Γ C d i = σ ( M i T M X ρ i )  
δ = min i Γ ( X * X * ) +
{ X i t + 1 = shrink ( ( X t + 2 ξ M T ( Φ M X ) ) i , ξ λ i ) ξ < 1 / M T M 2

Metrics