Abstract

We propose and characterize a scattering probe for terahertz (THz) near-field microscopy, fabricated from indium, where the scattering efficiency is enhanced by the dipolar resonance supported by the indium probe. The scattering properties of the probe were evaluated experimentally using THz time-domain spectroscopy (TDS), and numerically using the finite-difference time-domain (FDTD) method in order to identify resonant enhancement. Numerical measurements show that the indium probes exhibit enhanced scattering across the THz frequency range due to dipolar resonance, with a fractional bandwidth of 0.65 at 1.24 THz. We experimentally observe the resonant enhancement of the scattered field with a peak at 0.3 THz. To enable practical THz microscopy applications of these resonant probes, we also demonstrate a simple excitation scheme utilizing a THz source with radial polarization, which excites a radial mode along the length of the tip. Strong field confinement at the apex of the tip, as required for THz near-field microscopy, was observed experimentally.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Near-field spectroscopy and tuning of sub-surface modes in plasmonic terahertz resonators

O. Mitrofanov, Y. Todorov, D. Gacemi, A. Mottaghizadeh, C. Sirtori, I. Brener, and J. L. Reno
Opt. Express 26(6) 7437-7450 (2018)

Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips

Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, and P. James Schuck
Opt. Express 21(7) 8166-8176 (2013)

High efficiency plasmonic probe design for parallel near-field optics applications

Guanghao Rui, Weibin Chen, and Qiwen Zhan
Opt. Express 19(6) 5187-5195 (2011)

References

  • View by:
  • |
  • |
  • |

  1. O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).
  2. I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).
  3. R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).
  4. O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).
  5. M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
    [PubMed]
  6. P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
    [PubMed]
  7. F. Blanchard and K. Tanaka, “Improving time and space resolution in electro-optic sampling for near-field terahertz imaging,” Opt. Lett. 41(20), 4645–4648 (2016).
    [PubMed]
  8. A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 086103 (2016).
  9. Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
  10. O. Mitrofanov, L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, “Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging,” Sci. Rep. 7, 44240 (2017).
  11. J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97, 031115 (2010).
  12. H. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66, 163–182 (1944).
  13. L. Novotny and S. J. Stranick, “Near-Field Optical Microscopy and Spectroscopy with Pointed Probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
    [PubMed]
  14. H.-T. Chen, R. Kersting, and G. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
  15. K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).
  16. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
    [PubMed]
  17. V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
  18. P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).
  19. F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
    [PubMed]
  20. M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [PubMed]
  21. S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy,” J. Phys. Chem. Lett. 1, 3427–3432 (2010).
  22. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
    [PubMed]
  23. F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express 19(22), 22268–22279 (2011).
    [PubMed]
  24. M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).
  25. J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
    [PubMed]
  26. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
  27. J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95, 1624–1640 (2007).
  28. R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).
  29. T. Liebig, “openEMS - Open Electromagnetic Field Solver,” General and Theoretical Electrical Engineering (ATE), University of Duisburg-Essen.
  30. While PEC is not a physically accurate model, we found the difference in the peak and bandwidth of the scattering spectrum to be below 1% for PEC and the Drude model.
  31. R. H. Jordan and D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19(7), 427–429 (1994).
    [PubMed]
  32. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).
  33. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).
  34. L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).
  35. M. Navarro-Cía, J. Wu, H. Liu, and O. Mitrofanov, “Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides,” Sci. Rep. 6, 38926 (2016).
    [PubMed]
  36. O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
  37. M. Natrella, O. Mitrofanov, R. Mueckstein, C. Graham, C. C. Renaud, and A. J. Seeds, “Modelling of surface waves on a THz antenna detected by a near-field probe,” Opt. Express 20(14), 16023–16031 (2012).
    [PubMed]
  38. K. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305–307 (2004).
  39. K. Wang, D. M. Mittleman, N. C. van der Valk, and P. C. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85, 2715–2717 (2004).

2017 (2)

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

2016 (6)

F. Blanchard and K. Tanaka, “Improving time and space resolution in electro-optic sampling for near-field terahertz imaging,” Opt. Lett. 41(20), 4645–4648 (2016).
[PubMed]

A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 086103 (2016).

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

M. Navarro-Cía, J. Wu, H. Liu, and O. Mitrofanov, “Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides,” Sci. Rep. 6, 38926 (2016).
[PubMed]

2015 (1)

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

2013 (2)

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

2012 (2)

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

M. Natrella, O. Mitrofanov, R. Mueckstein, C. Graham, C. C. Renaud, and A. J. Seeds, “Modelling of surface waves on a THz antenna detected by a near-field probe,” Opt. Express 20(14), 16023–16031 (2012).
[PubMed]

2011 (2)

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express 19(22), 22268–22279 (2011).
[PubMed]

R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).

2010 (3)

J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97, 031115 (2010).

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy,” J. Phys. Chem. Lett. 1, 3427–3432 (2010).

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

2009 (2)

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).

2008 (2)

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).

2007 (1)

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95, 1624–1640 (2007).

2006 (3)

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).

J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[PubMed]

L. Novotny and S. J. Stranick, “Near-Field Optical Microscopy and Spectroscopy with Pointed Probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[PubMed]

2005 (1)

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).

2004 (3)

K. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305–307 (2004).

K. Wang, D. M. Mittleman, N. C. van der Valk, and P. C. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85, 2715–2717 (2004).

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[PubMed]

2003 (1)

H.-T. Chen, R. Kersting, and G. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).

2000 (1)

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

1994 (1)

1990 (1)

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).

1944 (1)

H. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66, 163–182 (1944).

Adam, A. J. L.

J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97, 031115 (2010).

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Alonso-González, P.

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Amenabar, I.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

Andreani, L. C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Astley, V.

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).

Atkin, J. M.

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy,” J. Phys. Chem. Lett. 1, 3427–3432 (2010).

Awad, M.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).

Barkan, A.

K. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305–307 (2004).

Bek, A.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Berger, C.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

Berndsen, N.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95, 1624–1640 (2007).

Berweger, S.

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy,” J. Phys. Chem. Lett. 1, 3427–3432 (2010).

Bethe, H.

H. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66, 163–182 (1944).

Bhattacharya, A.

A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 086103 (2016).

Blanchard, F.

Brener, I.

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

Candeloro, P.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Cannard, P.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

Casanova, F.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Chakkittakandy, R.

J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97, 031115 (2010).

Chen, H.-T.

H.-T. Chen, R. Kersting, and G. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).

Cho, G.

H.-T. Chen, R. Kersting, and G. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).

Chung Seu, U.-C.

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

Chuvilin, A.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

Das, G.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Davies, A.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

De Angelis, F.

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express 19(22), 22268–22279 (2011).
[PubMed]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

de Heer, W. A.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

Dean, P.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

Deibel, J. A.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95, 1624–1640 (2007).

J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[PubMed]

Di Fabrizio, E.

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express 19(22), 22268–22279 (2011).
[PubMed]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Do, Y.

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

Elissalde, C.

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

Escarra, M.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95, 1624–1640 (2007).

Escarra, M. D.

Fattinger, C.

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).

Federici, J.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

Forcellini, N.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Francardi, M.

Freeman, J.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

Galli, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Gao, Y.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

Giles Davies, A.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

Gómez Rivas, J.

A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 086103 (2016).

Graham, C.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

M. Natrella, O. Mitrofanov, R. Mueckstein, C. Graham, C. C. Renaud, and A. J. Seeds, “Modelling of surface waves on a THz antenna detected by a near-field probe,” Opt. Express 20(14), 16023–16031 (2012).
[PubMed]

R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).

Grischkowsky, D.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).

Hall, D. G.

Han, H.

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

Harel, R.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

Harrington, J. A.

R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).

Hatem, O.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

Hillenbrand, R.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Hone, J.

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Huber, A. J.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Hueso, L. E.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Huth, F.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

Ishibashi, K.

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).

Jeon, T.-I.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).

Jiang, Y.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

Jiang, Z.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

Jordan, R. H.

Kang, H.

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

Kawano, Y.

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).

Keeley, J.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

Keiding, S.

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Kersting, R.

H.-T. Chen, R. Kersting, and G. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).

Ketterson, J. B.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).

Khromova, I.

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

Knab, J. R.

J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97, 031115 (2010).

Koppens, F. H. L.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

Krutokhvostov, R.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

Kundu, I.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

Kurz, H.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).

Kužel, P.

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

Lazzarino, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Lee, G.

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

Li, L.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

Liberale, C.

F. De Angelis, R. P. Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express 19(22), 22268–22279 (2011).
[PubMed]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Lim, M.

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

Linfield, E.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

Linfield, E. H.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

Liu, H.

M. Navarro-Cía, J. Wu, H. Liu, and O. Mitrofanov, “Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides,” Sci. Rep. 6, 38926 (2016).
[PubMed]

Lopatin, S.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

Luan, L.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).

Lundeberg, M. B.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

Maglione, M.

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

Maksymov, I.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Mendis, R.

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).

Mitrofanov, O.

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

M. Navarro-Cía, J. Wu, H. Liu, and O. Mitrofanov, “Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides,” Sci. Rep. 6, 38926 (2016).
[PubMed]

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

M. Natrella, O. Mitrofanov, R. Mueckstein, C. Graham, C. C. Renaud, and A. J. Seeds, “Modelling of surface waves on a THz antenna detected by a near-field probe,” Opt. Express 20(14), 16023–16031 (2012).
[PubMed]

R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

Mittleman, D.

Mittleman, D. M.

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95, 1624–1640 (2007).

K. Wang, D. M. Mittleman, N. C. van der Valk, and P. C. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85, 2715–2717 (2004).

K. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305–307 (2004).

Moodie, D.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

Moon, K.

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

Mounaix, P.

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

Mueckstein, R.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

M. Natrella, O. Mitrofanov, R. Mueckstein, C. Graham, C. C. Renaud, and A. J. Seeds, “Modelling of surface waves on a THz antenna detected by a near-field probe,” Opt. Express 20(14), 16023–16031 (2012).
[PubMed]

R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).

Nagel, M.

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).

Natrella, M.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

M. Natrella, O. Mitrofanov, R. Mueckstein, C. Graham, C. C. Renaud, and A. J. Seeds, “Modelling of surface waves on a THz antenna detected by a near-field probe,” Opt. Express 20(14), 16023–16031 (2012).
[PubMed]

Navarro-Cía, M.

M. Navarro-Cía, J. Wu, H. Liu, and O. Mitrofanov, “Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides,” Sci. Rep. 6, 38926 (2016).
[PubMed]

Nikitin, A. Y.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Novotny, L.

L. Novotny and S. J. Stranick, “Near-Field Optical Microscopy and Spectroscopy with Pointed Probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[PubMed]

Olmon, R. L.

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy,” J. Phys. Chem. Lett. 1, 3427–3432 (2010).

Pan, W.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

Park, K.-S.

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

Patrini, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Pfeiffer, L.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

Planken, P. C.

K. Wang, D. M. Mittleman, N. C. van der Valk, and P. C. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85, 2715–2717 (2004).

Planken, P. C. M.

J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97, 031115 (2010).

Polini, M.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Ponomarev, A.

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

Principi, A.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Raschke, M. B.

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy,” J. Phys. Chem. Lett. 1, 3427–3432 (2010).

Renaud, C.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

Renaud, C. C.

M. Natrella, O. Mitrofanov, R. Mueckstein, C. Graham, C. C. Renaud, and A. J. Seeds, “Modelling of surface waves on a THz antenna detected by a near-field probe,” Opt. Express 20(14), 16023–16031 (2012).
[PubMed]

R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).

Reno, J.

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

Reno, J. L.

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

Robertson, M.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

Schnell, M.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

Seeds, A.

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

Seeds, A. J.

M. Natrella, O. Mitrofanov, R. Mueckstein, C. Graham, C. C. Renaud, and A. J. Seeds, “Modelling of surface waves on a THz antenna detected by a near-field probe,” Opt. Express 20(14), 16023–16031 (2012).
[PubMed]

R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).

Siday, T.

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

Sievert, P. R.

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).

Stockman, M. I.

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[PubMed]

Stranick, S. J.

L. Novotny and S. J. Stranick, “Near-Field Optical Microscopy and Spectroscopy with Pointed Probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[PubMed]

Tan, C.

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

Tanaka, K.

Taniguchi, T.

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Thompson, R.

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

Thompson, R. J.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

van der Valk, N. C.

K. Wang, D. M. Mittleman, N. C. van der Valk, and P. C. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85, 2715–2717 (2004).

van Exter, M.

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).

Vélez, S.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Wang, K.

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95, 1624–1640 (2007).

J. A. Deibel, K. Wang, M. D. Escarra, and D. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[PubMed]

K. Wang, D. M. Mittleman, N. C. van der Valk, and P. C. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85, 2715–2717 (2004).

K. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305–307 (2004).

Watanabe, K.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

West, K.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

Wittborn, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Woessner, A.

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Wu, J.

M. Navarro-Cía, J. Wu, H. Liu, and O. Mitrofanov, “Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides,” Sci. Rep. 6, 38926 (2016).
[PubMed]

Wynn, J.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

Yan, W.

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

Yu, W.

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

Zaccaria, R. P.

Zhang, J.

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).

Annu. Rev. Phys. Chem. (1)

L. Novotny and S. J. Stranick, “Near-Field Optical Microscopy and Spectroscopy with Pointed Probes,” Annu. Rev. Phys. Chem. 57, 303–331 (2006).
[PubMed]

APL Photonics (1)

A. Bhattacharya and J. Gómez Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1, 086103 (2016).

Appl. Phys. Lett. (11)

O. Mitrofanov, W. Yu, R. J. Thompson, Y. Jiang, I. Brener, W. Pan, C. Berger, W. A. de Heer, and Z. Jiang, “Probing terahertz surface plasmon waves in graphene structures,” Appl. Phys. Lett. 103, 111105 (2013).

H.-T. Chen, R. Kersting, and G. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).

K. Moon, Y. Do, M. Lim, G. Lee, H. Kang, K.-S. Park, and H. Han, “Quantitative coherent scattering spectra in apertureless terahertz pulse near-field microscopes,” Appl. Phys. Lett. 101, 011109 (2012).

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).

P. Dean, O. Mitrofanov, J. Keeley, I. Kundu, L. Li, E. H. Linfield, and A. Giles Davies, “Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser,” Appl. Phys. Lett. 108, 091113 (2016).

J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, “Terahertz near-field microspectroscopy,” Appl. Phys. Lett. 97, 031115 (2010).

M. Awad, M. Nagel, and H. Kurz, “Tapered Sommerfeld wire terahertz near-field imaging,” Appl. Phys. Lett. 94, 051107 (2009).

T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).

K. Wang, A. Barkan, and D. M. Mittleman, “Propagation effects in apertureless near-field optical antennas,” Appl. Phys. Lett. 84, 305–307 (2004).

K. Wang, D. M. Mittleman, N. C. van der Valk, and P. C. Planken, “Antenna effects in terahertz apertureless near-field optical microscopy,” Appl. Phys. Lett. 85, 2715–2717 (2004).

IEEE Trans. Terahertz Sci. Technol. (2)

R. Mueckstein, M. Natrella, O. Hatem, J. Freeman, C. Graham, C. Renaud, A. Seeds, E. Linfield, A. Davies, P. Cannard, M. Robertson, D. Moodie, and O. Mitrofanov, “Near-Field Analysis of Terahertz Pulse Generation From Photo-Excited Charge Density Gradients,” IEEE Trans. Terahertz Sci. Technol. 5, 260–267 (2015).

O. Mitrofanov, I. Khromova, T. Siday, R. Thompson, A. Ponomarev, I. Brener, and J. Reno, “Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators,” IEEE Trans. Terahertz Sci. Technol. 6, 382–388 (2016).

J. Infrared Millim. Terahertz Waves (1)

R. Mueckstein, C. Graham, C. C. Renaud, A. J. Seeds, J. A. Harrington, and O. Mitrofanov, “Imaging and Analysis of THz Surface Plasmon Polariton Waves with the Integrated Sub-wavelength Aperture Probe,” J. Infrared Millim. Terahertz Waves 32, 1031 (2011).

J. Phys. Chem. Lett. (1)

S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, “Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy,” J. Phys. Chem. Lett. 1, 3427–3432 (2010).

JOSA B (1)

D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” JOSA B 7, 2006–2015 (1990).

Laser Photonics Rev. (1)

I. Khromova, P. Kužel, I. Brener, J. L. Reno, U.-C. Chung Seu, C. Elissalde, M. Maglione, P. Mounaix, and O. Mitrofanov, “Splitting of magnetic dipole modes in anisotropic TiO2 micro-spheres,” Laser Photonics Rev. 10, 681–687 (2016).

Nano Lett. (2)

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant Antenna Probes for Tip-Enhanced Infrared Near-Field Microscopy,” Nano Lett. 13(3), 1065–1072 (2013).
[PubMed]

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices,” Nano Lett. 8(11), 3766–3770 (2008).
[PubMed]

Nat. Mater. (1)

M. B. Lundeberg, Y. Gao, A. Woessner, C. Tan, P. Alonso-González, K. Watanabe, T. Taniguchi, J. Hone, R. Hillenbrand, and F. H. L. Koppens, “Thermoelectric detection and imaging of propagating graphene plasmons,” Nat. Mater. 16(2), 204–207 (2017).
[PubMed]

Nat. Nanotechnol. (2)

P. Alonso-González, A. Y. Nikitin, Y. Gao, A. Woessner, M. B. Lundeberg, A. Principi, N. Forcellini, W. Yan, S. Vélez, A. J. Huber, K. Watanabe, T. Taniguchi, F. Casanova, L. E. Hueso, M. Polini, J. Hone, F. H. L. Koppens, and R. Hillenbrand, “Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy,” Nat. Nanotechnol. 12(1), 31–35 (2017).
[PubMed]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol. 5(1), 67–72 (2010).
[PubMed]

Nat. Photonics (1)

Y. Kawano and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).

New J. Phys. (1)

L. Luan, P. R. Sievert, and J. B. Ketterson, “Near-field and far-field electric dipole radiation in the vicinity of a planar dielectric half space,” New J. Phys. 8, 264 (2006).

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. (1)

H. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66, 163–182 (1944).

Phys. Rev. Lett. (1)

M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[PubMed]

Proc. IEEE (1)

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95, 1624–1640 (2007).

Sci. Rep. (1)

M. Navarro-Cía, J. Wu, H. Liu, and O. Mitrofanov, “Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides,” Sci. Rep. 6, 38926 (2016).
[PubMed]

Other (4)

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, 2016).

T. Liebig, “openEMS - Open Electromagnetic Field Solver,” General and Theoretical Electrical Engineering (ATE), University of Duisburg-Essen.

While PEC is not a physically accurate model, we found the difference in the peak and bandwidth of the scattering spectrum to be below 1% for PEC and the Drude model.

O. Mitrofanov, L. Viti, E. Dardanis, M. C. Giordano, D. Ercolani, A. Politano, L. Sorba, and M. S. Vitiello, “Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging,” Sci. Rep. 7, 44240 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a-d) Scanning electron microscope (SEM) images of a selection of indium probes. Inset in each is a high-resolution SEM at the apex of the probe. (e) Schematic showing Indium tip and simulation parameters. L is the length of the tip, ra is the radius of the cone apex, rb is the radius of the cone base, θ is the full cone angle and a represents the distance to the detector. (f) Scattering spectrum from a 100 µm long PEC cone with increasing base radius rb in a radial excitation configuration. (g) Scattering spectrum maxima for increasing cone length, with (red symbols) and without (black symbols) the GaAs substrate. (h) Magnitude of the electric field at the cone apex.
Fig. 2
Fig. 2 (a) An illustration of the generation process of radial THz pulses from an InAs wafer. (b) and (c) show the spatial distribution of electric field on a plane 300 μm from the InAs source at t = t1 and t = t2 respectively. (d) A space-time map taken across the dashed line shown in (b).
Fig. 3
Fig. 3 (a) Schematic of the experimental setup. The tip is raster scanned in the x-y plane. The blue arrow shows the polarization of the surface waves excited by the tip on the metallic surface of the probe. A visualization of the probe is inset. (b) The spatial field distribution measured by the aperture probe when ~10 μm from the apex of a ~300 μm long tip. (c) A space time image recorded along the dashed line in (b). (d) is the space-time image shown in Fig. 2(d), cropped to facilitate direct comparison with (c).
Fig. 4
Fig. 4 (a) The waveform with the aperture probe when the apex of a ~250 μm long tip is within 1 μm of the aperture (red line), and the THz emission of InAs (black line), which is magnified 10x for clarity. The Fourier transforms of the time-domain waveforms are inset. Again, the InAs emission is magnified 10x. Both spectra are multiplied by 1/f to account for the filtering properties of the aperture probe. (b) The spatial field distribution of the same tip at the peak of the pulse P1. (c) Approach curve for a ~200 μm long tip. The diamonds show with approximate error, the peak electric field of the THz pulse, measured using the 5 μm aperture probe. The red dashed line is a function, fitted to the experimental results. Inset: apex of the tip, showing the measurement axis (dashed green line).
Fig. 5
Fig. 5 Indium tips in a scattering probe configuration. An aperture probe with a 10 µm aperture is used in (a) to detect THz emission from the InAs source and the scattering from the tip. Waveforms from InAs only (black line), when the tip is present (red line) and the scattered field (blue line) are shown. The scattered field is offset by 1.5 pA on the y-axis for clarity. (b) Fourier transforms of the waveforms shown in (a). The InAs emission spectrum (black line) is multiplied by 1/f to account for the filtering properties of the aperture probe. The green line shows the ratio of the scattered field to the InAs emission. The plot is shaded in areas where the noise level is high. (c) and (d) are the waveforms and spectra when a PCA is used for detection.
Fig. 6
Fig. 6 Scattering waveforms measured with the 10 µm aperture probe. (a) waveforms measured > 1 µm (black line) and < 1 µm (red line) from a metal surface. (b) the difference between the waveforms shown in (a).

Metrics