Abstract

Irradiating intercalated nanorings by optical vortices ignites a charge flow that emits coherent trains of high harmonic bursts with frequencies and time structures that are controllable by the topological charge of the driving vortex beam. Similar to synchrotron radiation, the polarization of emitted harmonics is also selectable by tuning to the appropriate emission angle with respect to the ring plane. The nonequilibrium orbital magnetic moment triggered in a ring tunnels quantum mechanically to smaller and larger rings leading respectively to high and low-frequency harmonic generation. The frequencies of the emitted harmonics are tunable by simply changing the waist and/or the winding number of the optical vortex, without the need to increase the pulse intensity which can lead to material damage. These findings follow from full-fledged quantum dynamic simulations for realistic material and laser parameters. The proposed setup is non-destructive as only short vortex pulses of moderate intensities are needed, and it offers a versatile tool for nanoscale optical and spectroscopic applications such as local, single beam pump-probe experiments.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical phased array radiating optical vortex with manipulated topological charges

Xiaoliang Ma, Mingbo Pu, Xiong Li, Cheng Huang, Wenbo Pan, Bo Zhao, Jianhua Cui, and Xiangang Luo
Opt. Express 23(4) 4873-4879 (2015)

Conservation of orbital angular momentum for high harmonic generation of fractional vortex beams

Shasha Li, Baifei Shen, Xiaomei Zhang, Zhigang Bu, and Weifeng Gong
Opt. Express 26(18) 23460-23470 (2018)

Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals

Keren Shemer, Noa Voloch-Bloch, Asia Shapira, Ana Libster, Irit Juwiler, and Ady Arie
Opt. Lett. 38(24) 5470-5473 (2013)

References

  • View by:
  • |
  • |
  • |

  1. There is no strict cut-off on the harmonic frequencies is our case: (a) mOAM is in principle unlimited (mOAM = 300 have been demonstrated); (b) smaller rings lead to higher frequencies. Decorating or structuring the rings, e.g. using split rings delivers yet higher order harmonic generations. It is also worth mentioning that our scheme can be driven by linear or circular polarized pulses. The emitted harmonics have a well defined helicity depending on the emission angle, as demonstrated explicitly by our numerical simulations.
  2. P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
    [Crossref] [PubMed]
  3. M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
    [Crossref] [PubMed]
  4. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
    [Crossref]
  5. H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
    [Crossref]
  6. M. Weinelt, “Time-resolved two-photon photoemission from metal surfaces,” J. Phys. Condens. Matter 14, R1099–R1141 (2002).
    [Crossref]
  7. P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
    [Crossref]
  8. L. Rosenfeld, “On the energy-momentum tensor,” Mém. Acad. Roy. Belg. 18, 1–30 (1940).
  9. F. Belinfante, “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields,” Physica 7, 449–474 (1940).
    [Crossref]
  10. C. C. Tannoudji, J. D. Roc, and G. Grynberg, Atoms and Photons, Introduction to Quantum Electrodynamics (Wiley, New York, 1989).
  11. D. E. Soper, Classical Field Theory (Dover, 2008).
  12. L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  13. M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
    [Crossref]
  14. M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [Crossref]
  15. H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [Crossref] [PubMed]
  16. N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [Crossref] [PubMed]
  17. M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
    [Crossref]
  18. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (CRC Press, 2003).
    [Crossref]
  19. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
    [Crossref]
  20. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref] [PubMed]
  21. J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
    [Crossref]
  22. R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
    [Crossref]
  23. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Phot. 5, 343–348 (2011).
    [Crossref]
  24. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30, 1953–1955 (2005).
    [Crossref] [PubMed]
  25. M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17, 22791–22799 (2009).
    [Crossref]
  26. J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011).
    [Crossref]
  27. D. L. Andrews, Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, 2011).
  28. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
    [Crossref]
  29. H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
    [Crossref]
  30. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Phot. 2, 501–505 (2008).
    [Crossref]
  31. S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
    [Crossref] [PubMed]
  32. L. Allen, “Introduction to the atoms and angular momentum of light special issue,” J. Opt. B Quantum Semiclassical. Opt. 4, S1–S6 (2002).
    [Crossref]
  33. S. Barreiro and J. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett. 90, 133001 (2003).
    [Crossref] [PubMed]
  34. M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
    [Crossref]
  35. L. D. Romero, D. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B Quantum and Semiclass. Opt. 4, S66–S72 (2002).
    [Crossref]
  36. S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A 61, 033401 (2000).
    [Crossref]
  37. F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A 71, 055401 (2005).
    [Crossref]
  38. J. Wätzel, Y. Pavlyukh, A. Schäffer, and J. Berakdar, “Optical vortex driven charge current loop and optomagnetism in fullerenes,” Carbon 99, 439–443 (2016).
    [Crossref]
  39. K. Helmerson and W. D. Phillips, “Rotating atoms with light,” in Twisted Photons: Applications of Light with Orbital Angular Momentum, 1st ed. (Wiley, 2011), pp. 213–235 .
    [Crossref]
  40. J. Wätzel and J. Berakdar, “Centrifugal photovoltaic and photogalvanic effects driven by structured light,” Sci. Rep. 6, 21475 (2016).
    [Crossref] [PubMed]
  41. L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
    [Crossref]
  42. V. Kravtsov and V. Yudson, “Direct current in mesoscopic rings induced by high-frequency electromagnetic field,” Phys. Rev. Lett. 70, 210–213 (1993).
    [Crossref] [PubMed]
  43. O. Chalaev and V. E. Kravtsov, “Aharonov-bohm magnetization of mesoscopic rings caused by inelastic relaxation,” Phys. Rev. Lett. 89, 176601 (2002).
    [Crossref] [PubMed]
  44. A. Matos-Abiague and J. Berakdar, “Field-free charge polarization of mesoscopic rings,” Phys. Rev. B 70, 195338 (2004).
    [Crossref]
  45. A. Matos-Abiague and J. Berakdar, “Ultrafast build-up of polarization in mesoscopic rings,” EPL 69, 277–283 (2004).
    [Crossref]
  46. Y. V. Pershin and C. Piermarocchi, “Laser-controlled local magnetic field with semiconductor quantum rings,” Phys. Rev. B 72, 245331 (2005).
    [Crossref]
  47. A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94, 166801 (2005).
    [Crossref] [PubMed]
  48. A. Moskalenko, A. Matos-Abiague, and J. Berakdar, “Revivals, collapses, and magnetic-pulse generation in quantum rings,” Phys. Rev. B 74, 161303 (2006).
    [Crossref]
  49. A. Moskalenko and J. Berakdar, “Polarized light bursts from kicked quantum rings,” Phys. Rev. A 78, 051804 (2008).
    [Crossref]
  50. N. Hinsche, A. Moskalenko, and J. Berakdar, “High-order harmonic generation by a driven mesoscopic ring with a localized impurity,” Phys. Rev. A 79, 023822 (2009).
    [Crossref]
  51. I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for mg-porphyrin,” J. Am. Chem. Soc. 128, 7043–7049 (2006).
    [Crossref] [PubMed]
  52. I. Barth and J. Manz, “Electric ring currents in atomic orbitals and magnetic fields induced by short intense circularly polarized π laser pulses,” Phys. Rev. A 75, 012510 (2007).
    [Crossref]
  53. A. O’neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
    [Crossref]
  54. K. Gahagan and G. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
    [Crossref] [PubMed]
  55. M. Babiker, W. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett. 73, 1239–1242 (1994).
    [Crossref] [PubMed]
  56. D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University, 2012).
    [Crossref]
  57. J. Eberly and K. Wodkiewicz, “The time-dependent physical spectrum of light,” JOSA 67, 1252–1261 (1977).
    [Crossref]
  58. M. Raymer, J. Cooper, H. Carmichael, M. Beck, and D. Smithey, “Ultrafast measurement of optical-field statistics by dc-balanced homodyne detection,” J. Opt. Soc. Am. B 12, 1801–1812 (1995).
    [Crossref]
  59. A. S. Moskalenko, Z.-G. Zhu, and J. Berakdar, “Charge and spin dynamics driven by ultrashort extreme broadband pulses: a theory perspective,” Phys. Rep. 672, 1–82 (2017).
    [Crossref]
  60. P. Pietiläinen, V. Halonen, and T. Chakraborty, “Electron correlations in quantum ring and dot systems,” Physica B: Condens. Matter 212, 256–260 (1995).
    [Crossref]
  61. J. R. Zurita-Sánchez and L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. i. electric quadrupole enhancement,” J. Opt. Soc. Am. B 19, 1355–1362 (2002).
    [Crossref]
  62. W. Tan and J. Inkson, “Electron states in a two-dimensional ring-an exactly soluble model,” Semicond. Sci. Technol. 11, 1635–1641 (1996).
    [Crossref]
  63. Y. Imry, Introduction to Mesoscopic Physics, 2nd ed. (Oxford University, 2002).
  64. C. Presilla and J. Sjöstrand, “Nonlinear resonant tunneling in systems coupled to quantum reservoirs,” Phys. Rev. B 55, 9310–9313 (1997).
    [Crossref]
  65. T. Chakraborty and P. Pietiläinen, “Electron-electron interaction and the persistent current in a quantum ring,” Phys. Rev. B 50, 8460–8468 (1994).
    [Crossref]
  66. J. D. Jackson, Classical electrodynamics (Wiley, 1999).
  67. E. Courtens and A. Szöke, “Time and spectral resolution in resonance scattering and resonance fluorescence,” Phys. Rev. A 15, 1588–1603 (1977).
    [Crossref]
  68. B. Renaud, R. Whitley, and C. Stroud, “Nonstationary two-level resonance fluorescence,” J. Phys. B: At. Mol. Phys. 10, 19–35 (1977).
    [Crossref]
  69. K.-H. Brenner and K. Wodkiewicz, “The time-dependent physical spectrum of light and the wigner distribution function,” Opt. Commun. 43, 103–106 (1982).
    [Crossref]
  70. L. D. Landau and E. M. Lifshitz, “The classical theory of fields: Volume 2 (course of theoretical physics series),” (2000).
  71. W. H. McMaster, “Polarization and the stokes parameters,” Am. J. Phys. 22, 351–362 (1954).
    [Crossref]
  72. C. K. Chui, An Introduction to Wavelets (Elsevier, 2016).
  73. I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992).
    [Crossref]
  74. S. De Luca and E. Fiordilino, “Wavelet temporal profile of high-order harmonics emitted by a two-level atom in the presence of a laser pulse,” J. Phys. B At. Mol. Opt. Phys. 29, 3277–3292 (1996).
    [Crossref]
  75. J. M. Ziman, Principles of the Theory of Solids (Cambridge University, 1972).
    [Crossref]
  76. M. Grundmann, O. Stier, and D. Bimberg, “Inas/gaas pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
    [Crossref]
  77. B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
    [Crossref]
  78. M. Jabir, N. A. Chaitanya, A. Aadhi, and G. Samanta, “Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
    [Crossref]
  79. J. Wätzel, I. Barth, and J. Berakdar, “Ultrafast optically induced resonant and non-resonant current generation in atoms and nanostructures: role of the photons orbital angular momentum,” J. Mod. Opt. 64, 10–11 (2017).
    [Crossref]

2017 (3)

L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
[Crossref]

A. S. Moskalenko, Z.-G. Zhu, and J. Berakdar, “Charge and spin dynamics driven by ultrashort extreme broadband pulses: a theory perspective,” Phys. Rep. 672, 1–82 (2017).
[Crossref]

J. Wätzel, I. Barth, and J. Berakdar, “Ultrafast optically induced resonant and non-resonant current generation in atoms and nanostructures: role of the photons orbital angular momentum,” J. Mod. Opt. 64, 10–11 (2017).
[Crossref]

2016 (3)

M. Jabir, N. A. Chaitanya, A. Aadhi, and G. Samanta, “Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

J. Wätzel, Y. Pavlyukh, A. Schäffer, and J. Berakdar, “Optical vortex driven charge current loop and optomagnetism in fullerenes,” Carbon 99, 439–443 (2016).
[Crossref]

J. Wätzel and J. Berakdar, “Centrifugal photovoltaic and photogalvanic effects driven by structured light,” Sci. Rep. 6, 21475 (2016).
[Crossref] [PubMed]

2011 (2)

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Phot. 5, 343–348 (2011).
[Crossref]

2009 (2)

M. Woerdemann, C. Alpmann, and C. Denz, “Self-pumped phase conjugation of light beams carrying orbital angular momentum,” Opt. Express 17, 22791–22799 (2009).
[Crossref]

N. Hinsche, A. Moskalenko, and J. Berakdar, “High-order harmonic generation by a driven mesoscopic ring with a localized impurity,” Phys. Rev. A 79, 023822 (2009).
[Crossref]

2008 (3)

A. Moskalenko and J. Berakdar, “Polarized light bursts from kicked quantum rings,” Phys. Rev. A 78, 051804 (2008).
[Crossref]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Phot. 2, 501–505 (2008).
[Crossref]

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

2007 (3)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[Crossref]

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref] [PubMed]

I. Barth and J. Manz, “Electric ring currents in atomic orbitals and magnetic fields induced by short intense circularly polarized π laser pulses,” Phys. Rev. A 75, 012510 (2007).
[Crossref]

2006 (2)

A. Moskalenko, A. Matos-Abiague, and J. Berakdar, “Revivals, collapses, and magnetic-pulse generation in quantum rings,” Phys. Rev. B 74, 161303 (2006).
[Crossref]

I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for mg-porphyrin,” J. Am. Chem. Soc. 128, 7043–7049 (2006).
[Crossref] [PubMed]

2005 (5)

Y. V. Pershin and C. Piermarocchi, “Laser-controlled local magnetic field with semiconductor quantum rings,” Phys. Rev. B 72, 245331 (2005).
[Crossref]

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94, 166801 (2005).
[Crossref] [PubMed]

G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
[Crossref]

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30, 1953–1955 (2005).
[Crossref] [PubMed]

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A 71, 055401 (2005).
[Crossref]

2004 (3)

P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
[Crossref]

A. Matos-Abiague and J. Berakdar, “Field-free charge polarization of mesoscopic rings,” Phys. Rev. B 70, 195338 (2004).
[Crossref]

A. Matos-Abiague and J. Berakdar, “Ultrafast build-up of polarization in mesoscopic rings,” EPL 69, 277–283 (2004).
[Crossref]

2003 (1)

S. Barreiro and J. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett. 90, 133001 (2003).
[Crossref] [PubMed]

2002 (6)

L. Allen, “Introduction to the atoms and angular momentum of light special issue,” J. Opt. B Quantum Semiclassical. Opt. 4, S1–S6 (2002).
[Crossref]

O. Chalaev and V. E. Kravtsov, “Aharonov-bohm magnetization of mesoscopic rings caused by inelastic relaxation,” Phys. Rev. Lett. 89, 176601 (2002).
[Crossref] [PubMed]

L. D. Romero, D. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B Quantum and Semiclass. Opt. 4, S66–S72 (2002).
[Crossref]

M. Weinelt, “Time-resolved two-photon photoemission from metal surfaces,” J. Phys. Condens. Matter 14, R1099–R1141 (2002).
[Crossref]

A. O’neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

J. R. Zurita-Sánchez and L. Novotny, “Multipolar interband absorption in a semiconductor quantum dot. i. electric quadrupole enhancement,” J. Opt. Soc. Am. B 19, 1355–1362 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

2000 (2)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A 61, 033401 (2000).
[Crossref]

1998 (1)

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

1997 (4)

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

C. Presilla and J. Sjöstrand, “Nonlinear resonant tunneling in systems coupled to quantum reservoirs,” Phys. Rev. B 55, 9310–9313 (1997).
[Crossref]

1996 (4)

S. De Luca and E. Fiordilino, “Wavelet temporal profile of high-order harmonics emitted by a two-level atom in the presence of a laser pulse,” J. Phys. B At. Mol. Opt. Phys. 29, 3277–3292 (1996).
[Crossref]

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

W. Tan and J. Inkson, “Electron states in a two-dimensional ring-an exactly soluble model,” Semicond. Sci. Technol. 11, 1635–1641 (1996).
[Crossref]

K. Gahagan and G. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996).
[Crossref] [PubMed]

1995 (5)

P. Pietiläinen, V. Halonen, and T. Chakraborty, “Electron correlations in quantum ring and dot systems,” Physica B: Condens. Matter 212, 256–260 (1995).
[Crossref]

M. Raymer, J. Cooper, H. Carmichael, M. Beck, and D. Smithey, “Ultrafast measurement of optical-field statistics by dc-balanced homodyne detection,” J. Opt. Soc. Am. B 12, 1801–1812 (1995).
[Crossref]

M. Grundmann, O. Stier, and D. Bimberg, “Inas/gaas pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[Crossref]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

1994 (4)

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

T. Chakraborty and P. Pietiläinen, “Electron-electron interaction and the persistent current in a quantum ring,” Phys. Rev. B 50, 8460–8468 (1994).
[Crossref]

M. Babiker, W. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett. 73, 1239–1242 (1994).
[Crossref] [PubMed]

1993 (3)

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

V. Kravtsov and V. Yudson, “Direct current in mesoscopic rings induced by high-frequency electromagnetic field,” Phys. Rev. Lett. 70, 210–213 (1993).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

1982 (1)

K.-H. Brenner and K. Wodkiewicz, “The time-dependent physical spectrum of light and the wigner distribution function,” Opt. Commun. 43, 103–106 (1982).
[Crossref]

1977 (3)

E. Courtens and A. Szöke, “Time and spectral resolution in resonance scattering and resonance fluorescence,” Phys. Rev. A 15, 1588–1603 (1977).
[Crossref]

B. Renaud, R. Whitley, and C. Stroud, “Nonstationary two-level resonance fluorescence,” J. Phys. B: At. Mol. Phys. 10, 19–35 (1977).
[Crossref]

J. Eberly and K. Wodkiewicz, “The time-dependent physical spectrum of light,” JOSA 67, 1252–1261 (1977).
[Crossref]

1954 (1)

W. H. McMaster, “Polarization and the stokes parameters,” Am. J. Phys. 22, 351–362 (1954).
[Crossref]

1940 (2)

L. Rosenfeld, “On the energy-momentum tensor,” Mém. Acad. Roy. Belg. 18, 1–30 (1940).

F. Belinfante, “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields,” Physica 7, 449–474 (1940).
[Crossref]

Aadhi, A.

M. Jabir, N. A. Chaitanya, A. Aadhi, and G. Samanta, “Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Al-Awfi, S.

S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A 61, 033401 (2000).
[Crossref]

Allen, L.

L. Allen, “Introduction to the atoms and angular momentum of light special issue,” J. Opt. B Quantum Semiclassical. Opt. 4, S1–S6 (2002).
[Crossref]

A. O’neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

M. Babiker, W. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett. 73, 1239–1242 (1994).
[Crossref] [PubMed]

M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (CRC Press, 2003).
[Crossref]

Alpmann, C.

Andrews, D.

L. D. Romero, D. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B Quantum and Semiclass. Opt. 4, S66–S72 (2002).
[Crossref]

Andrews, D. L.

D. L. Andrews, Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, 2011).

D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University, 2012).
[Crossref]

Araoka, F.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A 71, 055401 (2005).
[Crossref]

Babiker, M.

L. D. Romero, D. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B Quantum and Semiclass. Opt. 4, S66–S72 (2002).
[Crossref]

S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A 61, 033401 (2000).
[Crossref]

M. Babiker, W. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett. 73, 1239–1242 (1994).
[Crossref] [PubMed]

D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University, 2012).
[Crossref]

Balcou, P.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

Barnett, S. M.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (CRC Press, 2003).
[Crossref]

Barreiro, J. T.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

Barreiro, S.

S. Barreiro and J. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett. 90, 133001 (2003).
[Crossref] [PubMed]

Barth, I.

J. Wätzel, I. Barth, and J. Berakdar, “Ultrafast optically induced resonant and non-resonant current generation in atoms and nanostructures: role of the photons orbital angular momentum,” J. Mod. Opt. 64, 10–11 (2017).
[Crossref]

I. Barth and J. Manz, “Electric ring currents in atomic orbitals and magnetic fields induced by short intense circularly polarized π laser pulses,” Phys. Rev. A 75, 012510 (2007).
[Crossref]

I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for mg-porphyrin,” J. Am. Chem. Soc. 128, 7043–7049 (2006).
[Crossref] [PubMed]

Beck, M.

Beijersbergen, M.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Belinfante, F.

F. Belinfante, “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields,” Physica 7, 449–474 (1940).
[Crossref]

Berakdar, J.

A. S. Moskalenko, Z.-G. Zhu, and J. Berakdar, “Charge and spin dynamics driven by ultrashort extreme broadband pulses: a theory perspective,” Phys. Rep. 672, 1–82 (2017).
[Crossref]

J. Wätzel, I. Barth, and J. Berakdar, “Ultrafast optically induced resonant and non-resonant current generation in atoms and nanostructures: role of the photons orbital angular momentum,” J. Mod. Opt. 64, 10–11 (2017).
[Crossref]

J. Wätzel, Y. Pavlyukh, A. Schäffer, and J. Berakdar, “Optical vortex driven charge current loop and optomagnetism in fullerenes,” Carbon 99, 439–443 (2016).
[Crossref]

J. Wätzel and J. Berakdar, “Centrifugal photovoltaic and photogalvanic effects driven by structured light,” Sci. Rep. 6, 21475 (2016).
[Crossref] [PubMed]

N. Hinsche, A. Moskalenko, and J. Berakdar, “High-order harmonic generation by a driven mesoscopic ring with a localized impurity,” Phys. Rev. A 79, 023822 (2009).
[Crossref]

A. Moskalenko and J. Berakdar, “Polarized light bursts from kicked quantum rings,” Phys. Rev. A 78, 051804 (2008).
[Crossref]

A. Moskalenko, A. Matos-Abiague, and J. Berakdar, “Revivals, collapses, and magnetic-pulse generation in quantum rings,” Phys. Rev. B 74, 161303 (2006).
[Crossref]

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94, 166801 (2005).
[Crossref] [PubMed]

A. Matos-Abiague and J. Berakdar, “Ultrafast build-up of polarization in mesoscopic rings,” EPL 69, 277–283 (2004).
[Crossref]

A. Matos-Abiague and J. Berakdar, “Field-free charge polarization of mesoscopic rings,” Phys. Rev. B 70, 195338 (2004).
[Crossref]

Berndt, R.

P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
[Crossref]

Bernet, S.

Bimberg, D.

M. Grundmann, O. Stier, and D. Bimberg, “Inas/gaas pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[Crossref]

Bischoff, L.

L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Phot. 5, 343–348 (2011).
[Crossref]

Boyd, R. W.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
[Crossref]

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Brenner, K.-H.

K.-H. Brenner and K. Wodkiewicz, “The time-dependent physical spectrum of light and the wigner distribution function,” Opt. Commun. 43, 103–106 (1982).
[Crossref]

Bruchhaus, L.

L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
[Crossref]

Carmichael, H.

Chaitanya, N. A.

M. Jabir, N. A. Chaitanya, A. Aadhi, and G. Samanta, “Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Chakraborty, T.

P. Pietiläinen, V. Halonen, and T. Chakraborty, “Electron correlations in quantum ring and dot systems,” Physica B: Condens. Matter 212, 256–260 (1995).
[Crossref]

T. Chakraborty and P. Pietiläinen, “Electron-electron interaction and the persistent current in a quantum ring,” Phys. Rev. B 50, 8460–8468 (1994).
[Crossref]

Chalaev, O.

O. Chalaev and V. E. Kravtsov, “Aharonov-bohm magnetization of mesoscopic rings caused by inelastic relaxation,” Phys. Rev. Lett. 89, 176601 (2002).
[Crossref] [PubMed]

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Phot. 2, 501–505 (2008).
[Crossref]

Chui, C. K.

C. K. Chui, An Introduction to Wavelets (Elsevier, 2016).

Chulkov, E.

P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
[Crossref]

Clays, K.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A 71, 055401 (2005).
[Crossref]

Coerwinkel, R.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Cooper, J.

Corkum, P. B.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

Courtens, E.

E. Courtens and A. Szöke, “Time and spectral resolution in resonance scattering and resonance fluorescence,” Phys. Rev. A 15, 1588–1603 (1977).
[Crossref]

Daubechies, I.

I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992).
[Crossref]

De Luca, S.

S. De Luca and E. Fiordilino, “Wavelet temporal profile of high-order harmonics emitted by a two-level atom in the presence of a laser pulse,” J. Phys. B At. Mol. Opt. Phys. 29, 3277–3292 (1996).
[Crossref]

Denz, C.

Dholakia, K.

Dür, M.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Eberly, J.

J. Eberly and K. Wodkiewicz, “The time-dependent physical spectrum of light,” JOSA 67, 1252–1261 (1977).
[Crossref]

Echenique, P.

P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
[Crossref]

Fauster, T.

P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
[Crossref]

Fiordilino, E.

S. De Luca and E. Fiordilino, “Wavelet temporal profile of high-order harmonics emitted by a two-level atom in the presence of a laser pulse,” J. Phys. B At. Mol. Opt. Phys. 29, 3277–3292 (1996).
[Crossref]

Foo, G.

Friese, M.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Fürhapter, S.

Gahagan, K.

Gauthier, D. J.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
[Crossref]

Gierak, J.

L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
[Crossref]

Goldmann, A.

P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
[Crossref]

Goodnick, S.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Gornik, E.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Gorshkov, V.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Grundmann, M.

M. Grundmann, O. Stier, and D. Bimberg, “Inas/gaas pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[Crossref]

Grynberg, G.

C. C. Tannoudji, J. D. Roc, and G. Grynberg, Atoms and Photons, Introduction to Quantum Electrodynamics (Wiley, New York, 1989).

Halonen, V.

P. Pietiläinen, V. Halonen, and T. Chakraborty, “Electron correlations in quantum ring and dot systems,” Physica B: Condens. Matter 212, 256–260 (1995).
[Crossref]

He, H.

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

Heckenberg, N.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Heiss, W.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Hell, S. W.

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref] [PubMed]

Helm, M.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Helmerson, K.

K. Helmerson and W. D. Phillips, “Rotating atoms with light,” in Twisted Photons: Applications of Light with Orbital Angular Momentum, 1st ed. (Wiley, 2011), pp. 213–235 .
[Crossref]

Hinsche, N.

N. Hinsche, A. Moskalenko, and J. Berakdar, “High-order harmonic generation by a driven mesoscopic ring with a localized impurity,” Phys. Rev. A 79, 023822 (2009).
[Crossref]

Höfer, U.

P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
[Crossref]

Hövel, H.

L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
[Crossref]

Imry, Y.

Y. Imry, Introduction to Mesoscopic Physics, 2nd ed. (Oxford University, 2002).

Inkson, J.

W. Tan and J. Inkson, “Electron states in a two-dimensional ring-an exactly soluble model,” Semicond. Sci. Technol. 11, 1635–1641 (1996).
[Crossref]

Ivanov, M. Y.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

Jabir, M.

M. Jabir, N. A. Chaitanya, A. Aadhi, and G. Samanta, “Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical electrodynamics (Wiley, 1999).

Jesacher, A.

Jha, A.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
[Crossref]

Krausz, F.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Kravtsov, V.

V. Kravtsov and V. Yudson, “Direct current in mesoscopic rings induced by high-frequency electromagnetic field,” Phys. Rev. Lett. 70, 210–213 (1993).
[Crossref] [PubMed]

Kravtsov, V. E.

O. Chalaev and V. E. Kravtsov, “Aharonov-bohm magnetization of mesoscopic rings caused by inelastic relaxation,” Phys. Rev. Lett. 89, 176601 (2002).
[Crossref] [PubMed]

Kristensen, M.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

Kruck, P.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Kwiat, P. G.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

L’Huillier, A.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, “The classical theory of fields: Volume 2 (course of theoretical physics series),” (2000).

Langerak, C.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Lewenstein, M.

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, “The classical theory of fields: Volume 2 (course of theoretical physics series),” (2000).

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Phot. 2, 501–505 (2008).
[Crossref]

MacVicar, I.

A. O’neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Malik, M.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
[Crossref]

Malos, J.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Manz, J.

I. Barth and J. Manz, “Electric ring currents in atomic orbitals and magnetic fields induced by short intense circularly polarized π laser pulses,” Phys. Rev. A 75, 012510 (2007).
[Crossref]

I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for mg-porphyrin,” J. Am. Chem. Soc. 128, 7043–7049 (2006).
[Crossref] [PubMed]

Matos-Abiague, A.

A. Moskalenko, A. Matos-Abiague, and J. Berakdar, “Revivals, collapses, and magnetic-pulse generation in quantum rings,” Phys. Rev. B 74, 161303 (2006).
[Crossref]

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94, 166801 (2005).
[Crossref] [PubMed]

A. Matos-Abiague and J. Berakdar, “Field-free charge polarization of mesoscopic rings,” Phys. Rev. B 70, 195338 (2004).
[Crossref]

A. Matos-Abiague and J. Berakdar, “Ultrafast build-up of polarization in mesoscopic rings,” EPL 69, 277–283 (2004).
[Crossref]

Mazarov, P.

L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
[Crossref]

McMaster, W. H.

W. H. McMaster, “Polarization and the stokes parameters,” Am. J. Phys. 22, 351–362 (1954).
[Crossref]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[Crossref]

Moskalenko, A.

N. Hinsche, A. Moskalenko, and J. Berakdar, “High-order harmonic generation by a driven mesoscopic ring with a localized impurity,” Phys. Rev. A 79, 023822 (2009).
[Crossref]

A. Moskalenko and J. Berakdar, “Polarized light bursts from kicked quantum rings,” Phys. Rev. A 78, 051804 (2008).
[Crossref]

A. Moskalenko, A. Matos-Abiague, and J. Berakdar, “Revivals, collapses, and magnetic-pulse generation in quantum rings,” Phys. Rev. B 74, 161303 (2006).
[Crossref]

Moskalenko, A. S.

A. S. Moskalenko, Z.-G. Zhu, and J. Berakdar, “Charge and spin dynamics driven by ultrashort extreme broadband pulses: a theory perspective,” Phys. Rep. 672, 1–82 (2017).
[Crossref]

Murdin, B.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Nieminen, T.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Novotny, L.

O’neil, A.

A. O’neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

O’Sullivan, C.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
[Crossref]

Ogawa, S.

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Phot. 5, 343–348 (2011).
[Crossref]

A. O’neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

N. Simpson, K. Dholakia, L. Allen, and M. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
[Crossref] [PubMed]

Padgett, M. J.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (CRC Press, 2003).
[Crossref]

Palacios, D. M.

Pavlyukh, Y.

J. Wätzel, Y. Pavlyukh, A. Schäffer, and J. Berakdar, “Optical vortex driven charge current loop and optomagnetism in fullerenes,” Carbon 99, 439–443 (2016).
[Crossref]

Pershin, Y. V.

Y. V. Pershin and C. Piermarocchi, “Laser-controlled local magnetic field with semiconductor quantum rings,” Phys. Rev. B 72, 245331 (2005).
[Crossref]

Persoons, A.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A 71, 055401 (2005).
[Crossref]

Petek, H.

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

Phillips, W. D.

K. Helmerson and W. D. Phillips, “Rotating atoms with light,” in Twisted Photons: Applications of Light with Orbital Angular Momentum, 1st ed. (Wiley, 2011), pp. 213–235 .
[Crossref]

Piermarocchi, C.

Y. V. Pershin and C. Piermarocchi, “Laser-controlled local magnetic field with semiconductor quantum rings,” Phys. Rev. B 72, 245331 (2005).
[Crossref]

Pietiläinen, P.

P. Pietiläinen, V. Halonen, and T. Chakraborty, “Electron correlations in quantum ring and dot systems,” Physica B: Condens. Matter 212, 256–260 (1995).
[Crossref]

T. Chakraborty and P. Pietiläinen, “Electron-electron interaction and the persistent current in a quantum ring,” Phys. Rev. B 50, 8460–8468 (1994).
[Crossref]

Power, W.

M. Babiker, W. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett. 73, 1239–1242 (1994).
[Crossref] [PubMed]

Presilla, C.

C. Presilla and J. Sjöstrand, “Nonlinear resonant tunneling in systems coupled to quantum reservoirs,” Phys. Rev. B 55, 9310–9313 (1997).
[Crossref]

Raymer, M.

Renaud, B.

B. Renaud, R. Whitley, and C. Stroud, “Nonstationary two-level resonance fluorescence,” J. Phys. B: At. Mol. Phys. 10, 19–35 (1977).
[Crossref]

Ritsch-Marte, M.

Roc, J. D.

C. C. Tannoudji, J. D. Roc, and G. Grynberg, Atoms and Photons, Introduction to Quantum Electrodynamics (Wiley, New York, 1989).

Rodenburg, B.

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
[Crossref]

Romero, L. D.

L. D. Romero, D. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B Quantum and Semiclass. Opt. 4, S66–S72 (2002).
[Crossref]

Rosenfeld, L.

L. Rosenfeld, “On the energy-momentum tensor,” Mém. Acad. Roy. Belg. 18, 1–30 (1940).

Rosskopf, V.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Rubinsztein-Dunlop, H.

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

Samanta, G.

M. Jabir, N. A. Chaitanya, A. Aadhi, and G. Samanta, “Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Schäffer, A.

J. Wätzel, Y. Pavlyukh, A. Schäffer, and J. Berakdar, “Optical vortex driven charge current loop and optomagnetism in fullerenes,” Carbon 99, 439–443 (2016).
[Crossref]

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Phot. 2, 501–505 (2008).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Phot. 2, 501–505 (2008).
[Crossref]

Shigeta, Y.

I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for mg-porphyrin,” J. Am. Chem. Soc. 128, 7043–7049 (2006).
[Crossref] [PubMed]

Simpson, N.

Sjöstrand, J.

C. Presilla and J. Sjöstrand, “Nonlinear resonant tunneling in systems coupled to quantum reservoirs,” Phys. Rev. B 55, 9310–9313 (1997).
[Crossref]

Smithey, D.

Soper, D. E.

D. E. Soper, Classical Field Theory (Dover, 2008).

Soskin, M.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Spreeuw, R.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Stier, O.

M. Grundmann, O. Stier, and D. Bimberg, “Inas/gaas pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[Crossref]

Strasser, G.

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Stroud, C.

B. Renaud, R. Whitley, and C. Stroud, “Nonstationary two-level resonance fluorescence,” J. Phys. B: At. Mol. Phys. 10, 19–35 (1977).
[Crossref]

Swartzlander, G.

Swartzlander, G. A.

Szöke, A.

E. Courtens and A. Szöke, “Time and spectral resolution in resonance scattering and resonance fluorescence,” Phys. Rev. A 15, 1588–1603 (1977).
[Crossref]

Tabosa, J.

S. Barreiro and J. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett. 90, 133001 (2003).
[Crossref] [PubMed]

Tan, W.

W. Tan and J. Inkson, “Electron states in a two-dimensional ring-an exactly soluble model,” Semicond. Sci. Technol. 11, 1635–1641 (1996).
[Crossref]

Tannoudji, C. C.

C. C. Tannoudji, J. D. Roc, and G. Grynberg, Atoms and Photons, Introduction to Quantum Electrodynamics (Wiley, New York, 1989).

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[Crossref]

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[Crossref]

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011).
[Crossref]

Van der Veen, H.

M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

Vasnetsov, M.

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Verbiest, T.

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A 71, 055401 (2005).
[Crossref]

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Phot. 2, 501–505 (2008).
[Crossref]

Wätzel, J.

J. Wätzel, I. Barth, and J. Berakdar, “Ultrafast optically induced resonant and non-resonant current generation in atoms and nanostructures: role of the photons orbital angular momentum,” J. Mod. Opt. 64, 10–11 (2017).
[Crossref]

J. Wätzel, Y. Pavlyukh, A. Schäffer, and J. Berakdar, “Optical vortex driven charge current loop and optomagnetism in fullerenes,” Carbon 99, 439–443 (2016).
[Crossref]

J. Wätzel and J. Berakdar, “Centrifugal photovoltaic and photogalvanic effects driven by structured light,” Sci. Rep. 6, 21475 (2016).
[Crossref] [PubMed]

Wei, T.-C.

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Weinelt, M.

M. Weinelt, “Time-resolved two-photon photoemission from metal surfaces,” J. Phys. Condens. Matter 14, R1099–R1141 (2002).
[Crossref]

Whitley, R.

B. Renaud, R. Whitley, and C. Stroud, “Nonstationary two-level resonance fluorescence,” J. Phys. B: At. Mol. Phys. 10, 19–35 (1977).
[Crossref]

Wieck, A.

L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
[Crossref]

Wodkiewicz, K.

K.-H. Brenner and K. Wodkiewicz, “The time-dependent physical spectrum of light and the wigner distribution function,” Opt. Commun. 43, 103–106 (1982).
[Crossref]

J. Eberly and K. Wodkiewicz, “The time-dependent physical spectrum of light,” JOSA 67, 1252–1261 (1977).
[Crossref]

Woerdemann, M.

Woerdman, J.

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Yagi, K.

I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for mg-porphyrin,” J. Am. Chem. Soc. 128, 7043–7049 (2006).
[Crossref] [PubMed]

Yudson, V.

V. Kravtsov and V. Yudson, “Direct current in mesoscopic rings induced by high-frequency electromagnetic field,” Phys. Rev. Lett. 70, 210–213 (1993).
[Crossref] [PubMed]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Zhu, Z.-G.

A. S. Moskalenko, Z.-G. Zhu, and J. Berakdar, “Charge and spin dynamics driven by ultrashort extreme broadband pulses: a theory perspective,” Phys. Rep. 672, 1–82 (2017).
[Crossref]

Ziman, J. M.

J. M. Ziman, Principles of the Theory of Solids (Cambridge University, 1972).
[Crossref]

Zurita-Sánchez, J. R.

Am. J. Phys. (1)

W. H. McMaster, “Polarization and the stokes parameters,” Am. J. Phys. 22, 351–362 (1954).
[Crossref]

Appl. Phys. Rev. (1)

L. Bruchhaus, P. Mazarov, L. Bischoff, J. Gierak, A. Wieck, and H. Hövel, “Comparison of technologies for nano device prototyping with a special focus on ion beams: A review,” Appl. Phys. Rev. 4, 011302 (2017).
[Crossref]

Carbon (1)

J. Wätzel, Y. Pavlyukh, A. Schäffer, and J. Berakdar, “Optical vortex driven charge current loop and optomagnetism in fullerenes,” Carbon 99, 439–443 (2016).
[Crossref]

EPL (1)

A. Matos-Abiague and J. Berakdar, “Ultrafast build-up of polarization in mesoscopic rings,” EPL 69, 277–283 (2004).
[Crossref]

J. Am. Chem. Soc. (1)

I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a few cycle circularly polarized laser pulse: quantum model simulations for mg-porphyrin,” J. Am. Chem. Soc. 128, 7043–7049 (2006).
[Crossref] [PubMed]

J. Mod. Opt. (2)

H. He, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995).
[Crossref]

J. Wätzel, I. Barth, and J. Berakdar, “Ultrafast optically induced resonant and non-resonant current generation in atoms and nanostructures: role of the photons orbital angular momentum,” J. Mod. Opt. 64, 10–11 (2017).
[Crossref]

J. Opt. B Quantum and Semiclass. Opt. (1)

L. D. Romero, D. Andrews, and M. Babiker, “A quantum electrodynamics framework for the nonlinear optics of twisted beams,” J. Opt. B Quantum and Semiclass. Opt. 4, S66–S72 (2002).
[Crossref]

J. Opt. B Quantum Semiclassical. Opt. (1)

L. Allen, “Introduction to the atoms and angular momentum of light special issue,” J. Opt. B Quantum Semiclassical. Opt. 4, S1–S6 (2002).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. B At. Mol. Opt. Phys. (1)

S. De Luca and E. Fiordilino, “Wavelet temporal profile of high-order harmonics emitted by a two-level atom in the presence of a laser pulse,” J. Phys. B At. Mol. Opt. Phys. 29, 3277–3292 (1996).
[Crossref]

J. Phys. B: At. Mol. Phys. (1)

B. Renaud, R. Whitley, and C. Stroud, “Nonstationary two-level resonance fluorescence,” J. Phys. B: At. Mol. Phys. 10, 19–35 (1977).
[Crossref]

J. Phys. Condens. Matter (1)

M. Weinelt, “Time-resolved two-photon photoemission from metal surfaces,” J. Phys. Condens. Matter 14, R1099–R1141 (2002).
[Crossref]

JOSA (1)

J. Eberly and K. Wodkiewicz, “The time-dependent physical spectrum of light,” JOSA 67, 1252–1261 (1977).
[Crossref]

Mém. Acad. Roy. Belg. (1)

L. Rosenfeld, “On the energy-momentum tensor,” Mém. Acad. Roy. Belg. 18, 1–30 (1940).

Nat. Phot. (2)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Phot. 2, 501–505 (2008).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Phot. 5, 343–348 (2011).
[Crossref]

Nat. Phys. (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007).
[Crossref]

J. T. Barreiro, T.-C. Wei, and P. G. Kwiat, “Beating the channel capacity limit for linear photonic superdense coding,” Nat. Phys. 4, 282–286 (2008).
[Crossref]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Opt. Commun. (3)

M. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993).
[Crossref]

M. Beijersbergen, R. Coerwinkel, M. Kristensen, and J. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[Crossref]

K.-H. Brenner and K. Wodkiewicz, “The time-dependent physical spectrum of light and the wigner distribution function,” Opt. Commun. 43, 103–106 (1982).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rep. (1)

A. S. Moskalenko, Z.-G. Zhu, and J. Berakdar, “Charge and spin dynamics driven by ultrashort extreme broadband pulses: a theory perspective,” Phys. Rep. 672, 1–82 (2017).
[Crossref]

Phys. Rev. A (9)

E. Courtens and A. Szöke, “Time and spectral resolution in resonance scattering and resonance fluorescence,” Phys. Rev. A 15, 1588–1603 (1977).
[Crossref]

I. Barth and J. Manz, “Electric ring currents in atomic orbitals and magnetic fields induced by short intense circularly polarized π laser pulses,” Phys. Rev. A 75, 012510 (2007).
[Crossref]

A. Moskalenko and J. Berakdar, “Polarized light bursts from kicked quantum rings,” Phys. Rev. A 78, 051804 (2008).
[Crossref]

N. Hinsche, A. Moskalenko, and J. Berakdar, “High-order harmonic generation by a driven mesoscopic ring with a localized impurity,” Phys. Rev. A 79, 023822 (2009).
[Crossref]

M. Soskin, V. Gorshkov, M. Vasnetsov, J. Malos, and N. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A 56, 4064–4075 (1997).
[Crossref]

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, “Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).
[Crossref] [PubMed]

S. Al-Awfi and M. Babiker, “Atomic motion in hollow submicron circular cylinders,” Phys. Rev. A 61, 033401 (2000).
[Crossref]

F. Araoka, T. Verbiest, K. Clays, and A. Persoons, “Interactions of twisted light with chiral molecules: An experimental investigation,” Phys. Rev. A 71, 055401 (2005).
[Crossref]

Phys. Rev. B (6)

A. Moskalenko, A. Matos-Abiague, and J. Berakdar, “Revivals, collapses, and magnetic-pulse generation in quantum rings,” Phys. Rev. B 74, 161303 (2006).
[Crossref]

Y. V. Pershin and C. Piermarocchi, “Laser-controlled local magnetic field with semiconductor quantum rings,” Phys. Rev. B 72, 245331 (2005).
[Crossref]

A. Matos-Abiague and J. Berakdar, “Field-free charge polarization of mesoscopic rings,” Phys. Rev. B 70, 195338 (2004).
[Crossref]

M. Grundmann, O. Stier, and D. Bimberg, “Inas/gaas pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure,” Phys. Rev. B 52, 11969–11981 (1995).
[Crossref]

C. Presilla and J. Sjöstrand, “Nonlinear resonant tunneling in systems coupled to quantum reservoirs,” Phys. Rev. B 55, 9310–9313 (1997).
[Crossref]

T. Chakraborty and P. Pietiläinen, “Electron-electron interaction and the persistent current in a quantum ring,” Phys. Rev. B 50, 8460–8468 (1994).
[Crossref]

Phys. Rev. Lett. (8)

A. Matos-Abiague and J. Berakdar, “Photoinduced charge currents in mesoscopic rings,” Phys. Rev. Lett. 94, 166801 (2005).
[Crossref] [PubMed]

V. Kravtsov and V. Yudson, “Direct current in mesoscopic rings induced by high-frequency electromagnetic field,” Phys. Rev. Lett. 70, 210–213 (1993).
[Crossref] [PubMed]

O. Chalaev and V. E. Kravtsov, “Aharonov-bohm magnetization of mesoscopic rings caused by inelastic relaxation,” Phys. Rev. Lett. 89, 176601 (2002).
[Crossref] [PubMed]

M. Babiker, W. Power, and L. Allen, “Light-induced torque on moving atoms,” Phys. Rev. Lett. 73, 1239–1242 (1994).
[Crossref] [PubMed]

A. O’neil, I. MacVicar, L. Allen, and M. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002).
[Crossref]

S. Barreiro and J. Tabosa, “Generation of light carrying orbital angular momentum via induced coherence grating in cold atoms,” Phys. Rev. Lett. 90, 133001 (2003).
[Crossref] [PubMed]

P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).
[Crossref] [PubMed]

H. He, M. Friese, N. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref] [PubMed]

Physica (1)

F. Belinfante, “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields,” Physica 7, 449–474 (1940).
[Crossref]

Physica B: Condens. Matter (1)

P. Pietiläinen, V. Halonen, and T. Chakraborty, “Electron correlations in quantum ring and dot systems,” Physica B: Condens. Matter 212, 256–260 (1995).
[Crossref]

Proc. SPIE (1)

R. W. Boyd, A. Jha, M. Malik, C. O’Sullivan, B. Rodenburg, and D. J. Gauthier, “Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon,” Proc. SPIE 7948, 79480L (2011).
[Crossref]

Prog. Surf. Sci. (1)

H. Petek and S. Ogawa, “Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals,” Prog. Surf. Sci. 56, 239–310 (1997).
[Crossref]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of nonlinear optics,” Rev. Mod. Phys. 72, 545–591 (2000).
[Crossref]

Sci. Rep. (2)

M. Jabir, N. A. Chaitanya, A. Aadhi, and G. Samanta, “Generation of “perfect” vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

J. Wätzel and J. Berakdar, “Centrifugal photovoltaic and photogalvanic effects driven by structured light,” Sci. Rep. 6, 21475 (2016).
[Crossref] [PubMed]

Science (1)

S. W. Hell, “Far-field optical nanoscopy,” Science 316, 1153–1158 (2007).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

W. Tan and J. Inkson, “Electron states in a two-dimensional ring-an exactly soluble model,” Semicond. Sci. Technol. 11, 1635–1641 (1996).
[Crossref]

Superlattices Microstruct. (1)

B. Murdin, C. Langerak, M. Helm, P. Kruck, W. Heiss, V. Rosskopf, G. Strasser, E. Gornik, M. Dür, S. Goodnick, and et al., “Time resolved studies of intersubband relaxation in GaAs/AlGaAs quantum wells below the optical phonon energy using a free electron laser,” Superlattices Microstruct. 19, 17–24 (1996).
[Crossref]

Surf. Sci. Rep. (1)

P. Echenique, R. Berndt, E. Chulkov, T. Fauster, A. Goldmann, and U. Höfer, “Decay of electronic excitations at metal surfaces,” Surf. Sci. Rep. 52, 219–317 (2004).
[Crossref]

Other (14)

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (CRC Press, 2003).
[Crossref]

There is no strict cut-off on the harmonic frequencies is our case: (a) mOAM is in principle unlimited (mOAM = 300 have been demonstrated); (b) smaller rings lead to higher frequencies. Decorating or structuring the rings, e.g. using split rings delivers yet higher order harmonic generations. It is also worth mentioning that our scheme can be driven by linear or circular polarized pulses. The emitted harmonics have a well defined helicity depending on the emission angle, as demonstrated explicitly by our numerical simulations.

C. C. Tannoudji, J. D. Roc, and G. Grynberg, Atoms and Photons, Introduction to Quantum Electrodynamics (Wiley, New York, 1989).

D. E. Soper, Classical Field Theory (Dover, 2008).

J. P. Torres and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum (John Wiley & Sons, 2011).
[Crossref]

D. L. Andrews, Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, 2011).

J. M. Ziman, Principles of the Theory of Solids (Cambridge University, 1972).
[Crossref]

C. K. Chui, An Introduction to Wavelets (Elsevier, 2016).

I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992).
[Crossref]

Y. Imry, Introduction to Mesoscopic Physics, 2nd ed. (Oxford University, 2002).

J. D. Jackson, Classical electrodynamics (Wiley, 1999).

L. D. Landau and E. M. Lifshitz, “The classical theory of fields: Volume 2 (course of theoretical physics series),” (2000).

K. Helmerson and W. D. Phillips, “Rotating atoms with light,” in Twisted Photons: Applications of Light with Orbital Angular Momentum, 1st ed. (Wiley, 2011), pp. 213–235 .
[Crossref]

D. L. Andrews and M. Babiker, The Angular Momentum of Light (Cambridge University, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematics of the considered setup. A focused optical vortex beam transfers orbital angular momentum to a quantum ring with an amount related to the topological charge mOAM of the vortex triggering so a charge current loop around the ring. In the proposed setup the OAM laser pulse is linearly polarized and propagates perpendicular to the rings plane. The intensity profile for four pulses is shown with the light orbital angular momentum being signaled by the arrows on the light intensity donuts. The photoexcited current tunnels then successively to neighboring intercalated rings. The so generated non-equilibrium circulating charge distributions emit pulses of photons with specific frequencies and delayed by roughly the inter-ring tunneling and rise-up times. In general, the emitted harmonics spectrum is angular dependent. The emitted radiation perpendicular to the ring plane is circularly polarized (the polarization state is not explicitly shown in the schematics), while in the rings plane the radiation is linearly polarized. Their frequencies can be tuned by the topological charge of the optical vortex at a fixed laser frequency and intensity. Changing the waist of the vortex focuses the beam onto a ring with a desired radius and allows for up or down conversion of the laser frequency.
Fig. 2
Fig. 2 (a) Energy spectrum of the quantum ring and transition scheme in dependence on the topological charge of the applied optical vortex beam. The fermi energy EF is marked by the dashed horizontal line. The red curve illustrates the spectral width of the employed two-cycle pulse. (b) The initial density of the occupied states (t = 0) corresponding to the ring structure. (c) snapshot of the excited population ρ̃(t) during the interaction with an optical vortex pulse with a topological charge mOAM = 2.
Fig. 3
Fig. 3 (a) Time dependent emission spectrum for a two cycle optical vortex beam with a photon energy ħωx = 2.5 meV. The topological charge of the OAM laser pulse is mOAM = 2. (b) the same as in (a) for a topological charge mOAM = 4. (c) the same as in (a) for a topological charge mOAM = 6.
Fig. 4
Fig. 4 Individual time-dependent emission spectra for the rings with (a) radius ρ1 = 150 nm, (b) ρ2 = 115 nm and (c) ρ3 = 85 nm. The largest ring is irradiated by a focussed optical vortex beam with a topological charge mOAM = 4. The spectra are normalized to the global maximal value. Therefore, the brightest color identifies the maximal intensity of the emission of the considered multiple ring-system. The total spectrum of the whole multiple-ring structure is shown in panel (d). The spectrum in panel (e) shows the emission characteristics for a linearly polarized Gaussian beam with the number of photons as for the vortex beam.
Fig. 5
Fig. 5 (a) Total emission spectrum of the multiple-ring structure. The smallest ring is irradiated by the optical vortex pulse with mOAM = 4. (b) The emission signal at the converged frequency ω/2π = 0.6 THz and a propagation time of 9 ps in dependence on the intensity of the applied optical vortex pulse.
Fig. 6
Fig. 6 (a) Characteristic electronic spectrum for the largest ring of the whole multiple-ring structure with ρ1 = 150 nm. The red curve illustrates the irradiating optical vortex beam with a duration of 1.5 optical cycles and a topological charge mOAM = 10. (b) Specific time-dependent emission spectrum of the largest ring. (c) Specific time-dependent emission spectrum of the smallest ring with ρ3 = 85 nm.
Fig. 7
Fig. 7 Illustration of tunneling dynamics by plots of the charge carrier density at different propagation times. The parameters of the nanostructure are the same as in Fig. 4. The topological charge of the optical vortex, which is focussed on the largest ring, is mOAM = 4.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

i t Ψ n 0 , m 0 ( x , y , t ) = [ 2 2 m * ( x 2 + y 2 ) + i e 2 m * ( 2 A ( x , y , t ) + A ( x , y , t ) ) + e 2 2 m * A ( x , y , t ) 2 + V ( x , y ) ] Ψ n 0 , m 0 ( x , y , t )
A ( ρ , φ , t ) = Re { ^ A 0 f m OAM p ( ρ ) Ω ( t ) e i ( m OAM φ ω x t ) } ,
f m OAM p ( ρ ) = C | m OAM | p L p | m OAM | ( 2 ρ w 0 ) | m OAM | e ρ 2 w 0 2 .
E n 0 , m 0 = ( n 0 + 1 2 + 1 2 m 0 2 + 2 m * a 1 2 ) ω 0 m * 4 ω 0 2 ρ 0 2
V ( ρ ) = 1 2 m * min [ ω 1 2 ( ρ ρ 1 ) 2 , ω 2 2 ( ρ ρ 2 ) 2 , ω 3 2 ( ρ ρ 3 ) 2 , , ω N 2 ( ρ ρ N ) 2 , ] ,
E ( + ) ( t ) = ( E ( ) ( t ) ) * = 1 2 π d ω E ˜ ( ω ) Θ ( ω ) e i ω t
d 2 I α d ω d Ω = 8 3 c 0 r 2 d t d t G ( t t ) G ( t t ) e i ω ( t t ) ( n α E ( + ) ( t ) ) ( n α * E ( ) ( t ) ) .
E ¯ ( + ) ( ω , t ) = ( E ¯ ( ) ( ω , t ) ) * = d t E ( + ) ( t ) G ( t t ) e i ω t
d 2 I α d ω d Ω = 8 3 c 0 r 2 ( n α E ¯ ( + ) ( ω , t ) ) ( n α * E ¯ ( ) ( ω , t ) )
E ( r , t ) = 1 4 π 0 c 2 r { n × [ n × μ ¨ ( t t d ) ] + 1 6 c n × D ¨ ( t t d ) + 1 c n × m ¨ ( t t d ) } ,
S 1 ( 2 , 3 ) ( ω , t , Ω ) = d 2 I x ( 45 ° , + ) d ω d Ω d 2 I y ( 45 ° , ) d ω d Ω
S 0 ( ω , t , Ω ) = d 2 I x d ω d Ω + d 2 I y d ω d Ω .
S 1 z ( ω , t ) = 1 6 π 2 0 c 3 ( | μ ¨ x ( + ) ( ω , t ) | 2 | μ ¨ y ( + ) ( ω , t ) | 2 )
S 2 z ( ω , t ) = 1 6 π 2 0 c 3 Re { μ ¨ x ( ) ( ω , t ) μ ¨ y ( + ) ( ω , t ) + μ ¨ x ( + ) ( ω , t ) μ ¨ y ( ) ( ω , t ) }
S 3 z ( ω , t ) = 1 6 π 2 0 c 3 Im { μ ¨ x ( ) ( ω , t ) μ ¨ y ( + ) ( ω , t ) μ ¨ x ( + ) ( ω , t ) μ ¨ y ( ) ( ω , t ) } .
S 0 z ( ω , t ) = 1 6 π 2 0 c 3 ( | μ ¨ x ( + ) ( ω , t ) | 2 + | μ ¨ y ( + ) ( ω , t ) | 2 ) .
ρ ˜ ( t ) = n 0 , m 0 f n 0 , m 0 ( t ) | Ψ n 0 , m 0 ( x , y , t ) | 2 .
f n 0 , m 0 t = f n 0 , m 0 ( t ) f n 0 , m 0 0 ( E F ) τ rel
0 2 π d φ e i m 0 φ cos φ e i m OAM φ e i m 0 φ ,
A ( ρ , φ , t ) = Re { ^ A 0 e ( ρ ρ r ) 2 w 0 2 Ω ( t ) e i ( m OAM φ ω x t ) }
μ x i ( t ) = n 0 , m 0 0 2 π d φ ρ i Δ ρ i / 2 ρ i + Δ ρ i / 2 d ρ ρ 2 cos φ | Ψ n 0 , m 0 ( ρ , φ , t ) | 2
μ y i ( t ) = n 0 , m 0 0 2 π d φ ρ i Δ ρ i / 2 ρ i + Δ ρ i / 2 d ρ ρ 2 sin φ | Ψ n 0 , m 0 ( ρ , φ , t ) | 2 .

Metrics