Abstract

The thermal sensing capability of the Tm3+-doped yttrium orthoaluminate nanoperovskite in the infrared range, synthetized by a sol-gel method, was studied. The temperature dependence of the infrared upconverted emission bands located at around 705 nm (3F2,33H6) and 800 nm (3H43H6) of YAP: Tm3+ nanoperovskite under excitation at 1210 nm was analyzed from RT up to 425 K. Calibration of the optical sensor has been made using the fluorescence intensity ratio technique, showing a high sensitivity in the near-infrared compared to other trivalent rare-earth based optical sensors working in the same range. In addition, a second calibration procedure of the YAP: Tm3+ optical sensor was performed by using the FIR technique on the emission band associated to the 3H43H6 transition in the physiological temperature range (293-333 K), showing a very high relative sensitivity compared with other rare-earth based optical temperature sensors working in the physiological range. Moreover, the main advantage compared with other optical sensors is that the excitation source and the upconverted emissions do not overlap, since they lie in different biological windows, thus allowing its potential use as an optical temperature probe in the near-infrared range for biological applications.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical temperature sensing of NaYbF4: Tm3+ @ SiO2 core-shell micro-particles induced by infrared excitation

Xiangfu Wang, Jin Zheng, Yan Xuan, and Xiaohong Yan
Opt. Express 21(18) 21596-21606 (2013)

Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

Near-infrared luminescence of Nd3+ and Tm3+ ions doped ZnO nanocrystals

Yongsheng Liu, Wenqin Luo, Renfu Li, Haomiao Zhu, and Xueyuan Chen
Opt. Express 17(12) 9748-9753 (2009)

References

  • View by:
  • |
  • |
  • |

  1. L. Ferrari, L. Rovati, P. Fabbri, and F. Pilati, “Disposable fluorescence optical pH sensor for near neutral solutions,” Sensors (Basel) 13(1), 484–499 (2012).
    [Crossref] [PubMed]
  2. U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
    [Crossref]
  3. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B Lasers Opt. 88(2), 297–303 (2007).
    [Crossref]
  4. V. K. Rai and S. B. Rai, “Temperature sensing behaviour of the stark sublevels,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
    [Crossref]
  5. D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
    [Crossref] [PubMed]
  6. V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: An example of Pr3+,” Appl. Phys. B Lasers Opt. 87(2), 323–325 (2007).
    [Crossref]
  7. E. Roduner, “Size matters: why nanomaterials are different,” Chem. Soc. Rev. 35(7), 583–592 (2006).
    [Crossref] [PubMed]
  8. A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
    [Crossref]
  9. V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, and M. D. Dramicanin, “Y2O3: Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence,” Ceram. Int. 39(2), 1129–1134 (2013).
    [Crossref]
  10. S. Nagarajan and Y. Zhang, “Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging,” Nanotechnology 22(39), 395101 (2011).
    [Crossref] [PubMed]
  11. U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
    [Crossref] [PubMed]
  12. U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
    [Crossref] [PubMed]
  13. A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
    [Crossref]
  14. R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
    [Crossref]
  15. J. Rodríguez-Carvajal, ““Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B Condens,” Matter. 192, 55–69 (1993).
  16. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
    [Crossref] [PubMed]
  17. W. Xu, J. Chen, P. Wang, Z. Zhang, and W. Cao, “Intense red upconversion luminescence from Tm3+/Yb3+ codoped transparent glass ceramic,” Opt. Lett. 37(2), 205–207 (2012).
    [Crossref] [PubMed]
  18. L. Xing, Y. Xu, R. Wang, W. Xu, and Z. Zhang, “Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal,” Opt. Lett. 39(3), 454–457 (2014).
    [Crossref] [PubMed]
  19. W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem. 173, 250–253 (2012).
    [Crossref]
  20. X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express 21(18), 21596–21606 (2013).
    [Crossref] [PubMed]
  21. C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
    [Crossref]
  22. M. Sobczyk, “Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses,” J. Quant. Spectrosc. Radiat. Transf. 119, 128–136 (2013).
    [Crossref]
  23. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  24. N. Rakov and G. S. Maciel, “Nd3+-Yb3+ doped powder for near-infrared optical temperature sensing,” Opt. Lett. 39(13), 3767–3769 (2014).
    [Crossref] [PubMed]
  25. D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
    [Crossref] [PubMed]
  26. A. F. Pereira, J. F. Silva, A. S. Gouveia-Neto, and C. Jacinto, “1.319um excited thulium doped nanoparticles for subtissue thermal sensing with deep penetration and high contrast imaging,” Sens. Actuators B Chem. 238, 525–531 (2017).
    [Crossref]
  27. N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
    [Crossref] [PubMed]

2017 (1)

A. F. Pereira, J. F. Silva, A. S. Gouveia-Neto, and C. Jacinto, “1.319um excited thulium doped nanoparticles for subtissue thermal sensing with deep penetration and high contrast imaging,” Sens. Actuators B Chem. 238, 525–531 (2017).
[Crossref]

2015 (2)

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
[Crossref]

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

2014 (4)

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

L. Xing, Y. Xu, R. Wang, W. Xu, and Z. Zhang, “Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal,” Opt. Lett. 39(3), 454–457 (2014).
[Crossref] [PubMed]

N. Rakov and G. S. Maciel, “Nd3+-Yb3+ doped powder for near-infrared optical temperature sensing,” Opt. Lett. 39(13), 3767–3769 (2014).
[Crossref] [PubMed]

2013 (5)

X. Wang, J. Zheng, Y. Xuan, and X. Yan, “Optical temperature sensing of NaYbF4: Tm3+@SiO2 core-shell micro-particles induced by infrared excitation,” Opt. Express 21(18), 21596–21606 (2013).
[Crossref] [PubMed]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, and M. D. Dramicanin, “Y2O3: Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence,” Ceram. Int. 39(2), 1129–1134 (2013).
[Crossref]

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

M. Sobczyk, “Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses,” J. Quant. Spectrosc. Radiat. Transf. 119, 128–136 (2013).
[Crossref]

2012 (5)

W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem. 173, 250–253 (2012).
[Crossref]

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

L. Ferrari, L. Rovati, P. Fabbri, and F. Pilati, “Disposable fluorescence optical pH sensor for near neutral solutions,” Sensors (Basel) 13(1), 484–499 (2012).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

W. Xu, J. Chen, P. Wang, Z. Zhang, and W. Cao, “Intense red upconversion luminescence from Tm3+/Yb3+ codoped transparent glass ceramic,” Opt. Lett. 37(2), 205–207 (2012).
[Crossref] [PubMed]

2011 (2)

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

S. Nagarajan and Y. Zhang, “Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging,” Nanotechnology 22(39), 395101 (2011).
[Crossref] [PubMed]

2009 (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

2007 (3)

V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: An example of Pr3+,” Appl. Phys. B Lasers Opt. 87(2), 323–325 (2007).
[Crossref]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B Lasers Opt. 88(2), 297–303 (2007).
[Crossref]

V. K. Rai and S. B. Rai, “Temperature sensing behaviour of the stark sublevels,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
[Crossref]

2006 (1)

E. Roduner, “Size matters: why nanomaterials are different,” Chem. Soc. Rev. 35(7), 583–592 (2006).
[Crossref] [PubMed]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

1997 (1)

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

1993 (1)

J. Rodríguez-Carvajal, ““Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B Condens,” Matter. 192, 55–69 (1993).

Acosta Elias, M.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Bednarkiewicz, A.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Benayas, A.

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Bettinelli, M.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Bovero, E.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Cao, W.

W. Xu, J. Chen, P. Wang, Z. Zhang, and W. Cao, “Intense red upconversion luminescence from Tm3+/Yb3+ codoped transparent glass ceramic,” Opt. Lett. 37(2), 205–207 (2012).
[Crossref] [PubMed]

W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem. 173, 250–253 (2012).
[Crossref]

Capobianco, J. A.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Carrasco, E.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Chambon, B.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Chen, F.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Chen, J.

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Conti, G.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

del Carmen Iglesias de la Cruz, M.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Del Rosal, B.

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Descroix, E.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Dong, N. N.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Doury, J.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Dramicanin, M. D.

V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, and M. D. Dramicanin, “Y2O3: Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence,” Ceram. Int. 39(2), 1129–1134 (2013).
[Crossref]

Fabbri, P.

L. Ferrari, L. Rovati, P. Fabbri, and F. Pilati, “Disposable fluorescence optical pH sensor for near neutral solutions,” Sensors (Basel) 13(1), 484–499 (2012).
[Crossref] [PubMed]

Farge, P.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Ferrari, L.

L. Ferrari, L. Rovati, P. Fabbri, and F. Pilati, “Disposable fluorescence optical pH sensor for near neutral solutions,” Sensors (Basel) 13(1), 484–499 (2012).
[Crossref] [PubMed]

Ferreira Silva, W.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Gao, X.

W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem. 173, 250–253 (2012).
[Crossref]

García Solé, J. A.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Garnier, N.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Gouveia-Neto, A. S.

A. F. Pereira, J. F. Silva, A. S. Gouveia-Neto, and C. Jacinto, “1.319um excited thulium doped nanoparticles for subtissue thermal sensing with deep penetration and high contrast imaging,” Sens. Actuators B Chem. 238, 525–531 (2017).
[Crossref]

Guedes, I.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Guillet, H.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Hirata, G. A.

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Iglesias-de la Cruz, M. C.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Jacinto, C.

A. F. Pereira, J. F. Silva, A. S. Gouveia-Neto, and C. Jacinto, “1.319um excited thulium doped nanoparticles for subtissue thermal sensing with deep penetration and high contrast imaging,” Sens. Actuators B Chem. 238, 525–531 (2017).
[Crossref]

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Jacinto da Silva, C.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Jaque, D.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
[Crossref]

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Jayasankar, C. K.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
[Crossref]

Juarranz, A.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Kumar, K. K.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
[Crossref]

Kumar, K. U.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
[Crossref]

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Laporte, P.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Lavín, V.

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

León-Luis, S. F.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
[Crossref]

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Lojpur, V.

V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, and M. D. Dramicanin, “Y2O3: Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence,” Ceram. Int. 39(2), 1129–1134 (2013).
[Crossref]

Maciel, G. S.

Maestro, L. M.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Mancic, L.

V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, and M. D. Dramicanin, “Y2O3: Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence,” Ceram. Int. 39(2), 1129–1134 (2013).
[Crossref]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Mareschal, J.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Martín, K. K.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
[Crossref]

Martín, L. L.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
[Crossref]

Martínez Maestro, L.

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Milosevic, O.

V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, and M. D. Dramicanin, “Y2O3: Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence,” Ceram. Int. 39(2), 1129–1134 (2013).
[Crossref]

Moncorgé, R.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Muñoz-Santiuste, J. E.

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Nagarajan, S.

S. Nagarajan and Y. Zhang, “Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging,” Nanotechnology 22(39), 395101 (2011).
[Crossref] [PubMed]

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Nikolic, M.

V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, and M. D. Dramicanin, “Y2O3: Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence,” Ceram. Int. 39(2), 1129–1134 (2013).
[Crossref]

Nyk, M.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Pedroni, M.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Pelenc, D.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Pereira, A. F.

A. F. Pereira, J. F. Silva, A. S. Gouveia-Neto, and C. Jacinto, “1.319um excited thulium doped nanoparticles for subtissue thermal sensing with deep penetration and high contrast imaging,” Sens. Actuators B Chem. 238, 525–531 (2017).
[Crossref]

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
[Crossref]

Pérez-Delgado, A.

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Pérez-Rodríguez, C.

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
[Crossref]

Piccinelli, F.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Pilati, F.

L. Ferrari, L. Rovati, P. Fabbri, and F. Pilati, “Disposable fluorescence optical pH sensor for near neutral solutions,” Sensors (Basel) 13(1), 484–499 (2012).
[Crossref] [PubMed]

Rai, S. B.

V. K. Rai and S. B. Rai, “Temperature sensing behaviour of the stark sublevels,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
[Crossref]

V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: An example of Pr3+,” Appl. Phys. B Lasers Opt. 87(2), 323–325 (2007).
[Crossref]

Rai, V. K.

V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: An example of Pr3+,” Appl. Phys. B Lasers Opt. 87(2), 323–325 (2007).
[Crossref]

V. K. Rai and S. B. Rai, “Temperature sensing behaviour of the stark sublevels,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
[Crossref]

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B Lasers Opt. 88(2), 297–303 (2007).
[Crossref]

Rakov, N.

Ramírez-Hernández, J. E.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Rivoire, J. Y.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Rocha, U.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Rodríguez-Carvajal, J.

J. Rodríguez-Carvajal, ““Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B Condens,” Matter. 192, 55–69 (1993).

Rodríguez-Mendoza, U. R.

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

Roduner, E.

E. Roduner, “Size matters: why nanomaterials are different,” Chem. Soc. Rev. 35(7), 583–592 (2006).
[Crossref] [PubMed]

Rovati, L.

L. Ferrari, L. Rovati, P. Fabbri, and F. Pilati, “Disposable fluorescence optical pH sensor for near neutral solutions,” Sensors (Basel) 13(1), 484–499 (2012).
[Crossref] [PubMed]

Roy, S.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Samoc, M.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Santacruz-Gómez, K.

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Santos, W. Q.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
[Crossref]

Sanz-Rodriguez, F.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Sanz-Rodríguez, F.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Sbarbati, A.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Silva, J. F.

A. F. Pereira, J. F. Silva, A. S. Gouveia-Neto, and C. Jacinto, “1.319um excited thulium doped nanoparticles for subtissue thermal sensing with deep penetration and high contrast imaging,” Sens. Actuators B Chem. 238, 525–531 (2017).
[Crossref]

Silva, W. F.

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
[Crossref]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Sobczyk, M.

M. Sobczyk, “Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses,” J. Quant. Spectrosc. Radiat. Transf. 119, 128–136 (2013).
[Crossref]

Solé, J. G.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Speghini, A.

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Strek, W.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

van Veggel, F. C. J. M.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

Vetrone, F.

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Villa, I.

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

Wang, P.

Wang, R.

Wang, X.

Wawrzynczyk, D.

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Xing, L.

Xu, W.

Xu, Y.

Xuan, Y.

Yan, X.

Zhang, Y.

S. Nagarajan and Y. Zhang, “Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging,” Nanotechnology 22(39), 395101 (2011).
[Crossref] [PubMed]

Zhang, Z.

Zheng, J.

Zheng, L.

W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem. 173, 250–253 (2012).
[Crossref]

ACS Nano (2)

U. Rocha, C. Jacinto da Silva, W. Ferreira Silva, I. Guedes, A. Benayas, L. Martínez Maestro, M. Acosta Elias, E. Bovero, F. C. J. M. van Veggel, J. A. García Solé, and D. Jaque, “Subtissue thermal sensing based on neodymium-doped LaF3 nanoparticles,” ACS Nano 7(2), 1188–1199 (2013).
[Crossref] [PubMed]

N. N. Dong, M. Pedroni, F. Piccinelli, G. Conti, A. Sbarbati, J. E. Ramírez-Hernández, L. M. Maestro, M. C. Iglesias-de la Cruz, F. Sanz-Rodriguez, A. Juarranz, F. Chen, F. Vetrone, J. A. Capobianco, J. G. Solé, M. Bettinelli, D. Jaque, and A. Speghini, “NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging,” ACS Nano 5(11), 8665–8671 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

A. Benayas, B. Del Rosal, A. Pérez-Delgado, K. Santacruz-Gómez, D. Jaque, G. A. Hirata, and F. Vetrone, “Nd:YAG Near-Infrared Luminescent Nanothermometers,” Adv. Opt. Mater. 3(5), 687–694 (2015).
[Crossref]

Appl. Phys. B Lasers Opt. (2)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B Lasers Opt. 88(2), 297–303 (2007).
[Crossref]

V. K. Rai and S. B. Rai, “A comparative study of FIR and FL based temperature sensing schemes: An example of Pr3+,” Appl. Phys. B Lasers Opt. 87(2), 323–325 (2007).
[Crossref]

Ceram. Int. (1)

V. Lojpur, M. Nikolic, L. Mancic, O. Milosevic, and M. D. Dramicanin, “Y2O3: Yb,Tm and Y2O3:Yb,Ho powders for low-temperature thermometry based on up-conversion fluorescence,” Ceram. Int. 39(2), 1129–1134 (2013).
[Crossref]

Chem. Soc. Rev. (1)

E. Roduner, “Size matters: why nanomaterials are different,” Chem. Soc. Rev. 35(7), 583–592 (2006).
[Crossref] [PubMed]

J. Appl. Phys. (2)

U. R. Rodríguez-Mendoza, S. F. León-Luis, J. E. Muñoz-Santiuste, D. Jaque, and V. Lavín, “Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor,” J. Appl. Phys. 113(21), 213517 (2013).
[Crossref]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. Sobczyk, “Temperature-dependent luminescence and temperature-stimulated NIR-to-VIS up-conversion in Nd3+-doped La2O3-Na2O-ZnO-TeO2 glasses,” J. Quant. Spectrosc. Radiat. Transf. 119, 128–136 (2013).
[Crossref]

Matter. (1)

J. Rodríguez-Carvajal, ““Recent advances in magnetic structure determination by neutron powder diffraction,” Phys. B Condens,” Matter. 192, 55–69 (1993).

Nanoscale (2)

D. Jaque and F. Vetrone, “Luminescence nanothermometry,” Nanoscale 4(15), 4301–4326 (2012).
[Crossref] [PubMed]

D. Wawrzynczyk, A. Bednarkiewicz, M. Nyk, W. Strek, and M. Samoc, “Neodymium(III) doped fluoride nanoparticles as non-contact optical temperature sensors,” Nanoscale 4(22), 6959–6961 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

S. Nagarajan and Y. Zhang, “Upconversion fluorescent nanoparticles as a potential tool for in-depth imaging,” Nanotechnology 22(39), 395101 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, “Nd doped crystals for medical laser applications,” Opt. Mater. 8(1-2), 109–119 (1997).
[Crossref]

Sens. Actuators B Chem. (4)

C. Pérez-Rodríguez, L. L. Martín, S. F. León-Luis, K. K. Martín, K. K. Kumar, and C. K. Jayasankar, “Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique,” Sens. Actuators B Chem. 195, 324–331 (2014).
[Crossref]

W. Xu, X. Gao, L. Zheng, Z. Zhang, and W. Cao, “An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic,” Sens. Actuators B Chem. 173, 250–253 (2012).
[Crossref]

A. F. Pereira, K. U. Kumar, W. F. Silva, W. Q. Santos, D. Jaque, and C. Jacinto, “Yb3+/Tm3+ co-doped NaNbO3 nanocrystals as three-photon-excited luminescent nanothermometers,” Sens. Actuators B Chem. 213, 65–71 (2015).
[Crossref]

A. F. Pereira, J. F. Silva, A. S. Gouveia-Neto, and C. Jacinto, “1.319um excited thulium doped nanoparticles for subtissue thermal sensing with deep penetration and high contrast imaging,” Sens. Actuators B Chem. 238, 525–531 (2017).
[Crossref]

Sensors (Basel) (1)

L. Ferrari, L. Rovati, P. Fabbri, and F. Pilati, “Disposable fluorescence optical pH sensor for near neutral solutions,” Sensors (Basel) 13(1), 484–499 (2012).
[Crossref] [PubMed]

Small (1)

U. Rocha, K. U. Kumar, C. Jacinto, I. Villa, F. Sanz-Rodríguez, M. del Carmen Iglesias de la Cruz, A. Juarranz, E. Carrasco, F. C. J. M. van Veggel, E. Bovero, J. G. Solé, and D. Jaque, “Neodymium-doped LaF(3) nanoparticles for fluorescence bioimaging in the second biological window,” Small 10(6), 1141–1154 (2014).
[Crossref] [PubMed]

Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. (1)

V. K. Rai and S. B. Rai, “Temperature sensing behaviour of the stark sublevels,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 68(5), 1406–1409 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simplified diagram for three levels particularized to Tm3+ ion. ∆E is the energy gap between the two excited levels (E2 and E3), gi is the degeneracy of the i-th-level and ω ij R is the spontaneous emission rate between the i-th and j-th levels.
Fig. 2
Fig. 2 XRD pattern of the YAP: Tm3+ nanoperovskite. The unit cell and the Bragg positions (red ticks) allowed for the space group Pnma are also depicted.
Fig. 3
Fig. 3 Typical TEM image of YAP: Tm3+ nanoperovskite.
Fig. 4
Fig. 4 YAP: Tm3+ nanoperovskite DLS scattering spectra performed before and after (inset) sonication.
Fig. 5
Fig. 5 Temperature evolution of upconversion emission spectra of YAP: Tm3+ nanoperovskite from 294 up to 425 K exciting at 1210 nm. Transitions are also indicated. Emission band associated to 3F2,33H6 has been magnified ten times for a better observation.
Fig. 6
Fig. 6 Experimental intensity area ratio and relative sensitivity of the YAP: Tm3+ of 3F2,33H6 and 3H43H6 transitions obtained exciting at 1210 nm. The experimental values were fitted to a single exponential function. The fit curve (red line) of the experimental intensity ratio is also shown.
Fig. 7
Fig. 7 Temperature upconversion emission spectra of YAP: Tm3+ nanoperovskite from 294 up to 325 K exciting at 1210 nm.
Fig. 8
Fig. 8 Experimental intensity area ratio and relative sensitivity of the YAP: Tm3+ Stark levels centered at 776.42 and 821.50 nm associated to the 3H43H6 transition. The experimental values were fitted to a single exponential function. The fit curve (red line) of the experimental intensity ratio is also shown.

Tables (3)

Tables Icon

Table 1 Cell Parameters and Reliability Factors Obtained From Fitting of XRD Pattern for YAP: Tm3+

Tables Icon

Table 2 Thermal Relative Sensitivity Values of Different RE3+-based Temperature Optical Sensors.

Tables Icon

Table 3 Thermal Relative Sensitivity Values of Different RE3+-based Temperature Optical Sensors Working in the NIR and Physiological Rangea

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R= I 31 I 21 = ω 31 R g 3 h ν 3 ω 21 R g 2 h ν 2 e ΔE k B T =C e ΔE k B T
S=| dR dT |=R( ΔE k B T 2 )
S REL = 1 R | dR dT |=( ΔE k B T 2 )
D= 0.89λ βCosθ

Metrics