Abstract

In numerous applications, Fourier-domain optical coherence tomography (FD-OCT) suffers from a limited imaging depth due to signal roll-off, a limited focal range, and autocorrelation noise. Here, we propose a parallel full-field FD-OCT imaging method that uses a swept laser source and an area camera in combination with an off-axis reference, which is incident on the camera at a small angle. As in digital off-axis holography, this angle separates autocorrelation signals and the complex conjugated mirror image from the actual signal in Fourier space. We demonstrate that by reconstructing the signal term only, this approach enables full-range imaging, i.e., it increases the imaging depth by a factor of two, and removes autocorrelation artifacts. The previously demonstrated techniques of inverse scattering and holoscopy can then numerically extend the focal range without loss of lateral resolution or imaging sensitivity. The resulting, significantly enhanced measurement depth is demonstrated by imaging a porcine eye over its entire depth, including cornea, lens, and retina. Finally, the feasibility of in vivo measurements is demonstrated by imaging the living human retina.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited]

Clara Pfäffle, Hendrik Spahr, Dierck Hillmann, Helge Sudkamp, Gesa Franke, Peter Koch, and Gereon Hüttmann
Biomed. Opt. Express 8(3) 1499-1511 (2017)

Common approach for compensation of axial motion artifacts in swept-source OCT and dispersion in Fourier-domain OCT

Dierck Hillmann, Tim Bonin, Christian Lührs, Gesa Franke, Martin Hagen-Eggert, Peter Koch, and Gereon Hüttmann
Opt. Express 20(6) 6761-6776 (2012)

In vivo imaging of the rodent eye with swept source/Fourier domain OCT

Jonathan J. Liu, Ireneusz Grulkowski, Martin F. Kraus, Benjamin Potsaid, Chen D. Lu, Bernhard Baumann, Jay S. Duker, Joachim Hornegger, and James G. Fujimoto
Biomed. Opt. Express 4(2) 351-363 (2013)

References

  • View by:
  • |
  • |
  • |

  1. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourierdomain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
    [Crossref] [PubMed]
  2. German Standard DIN EN 60825, Sicherheit von Laser-Einrichtungen – Teil 1: Klassifizierung von Anlagen, Anforderungen und Benutzer-Richtlinien (2008).
  3. F. C. Delori, R. H. Webb, and D. H. Sliney, “Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices,” J. Opt. Soc. Am. A 24, 1250–1265 (2007).
    [Crossref]
  4. B. Považay, A. Unterhuber, B. Hermann, H. Sattmann, H. Arthaber, and W. Drexler, “Full-field time-encoded frequency-domain optical coherence tomography,” Opt. Express 14, 7661–7669 (2006).
    [Crossref]
  5. T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432–3434 (2010).
    [Crossref] [PubMed]
  6. H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
    [Crossref] [PubMed]
  7. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
    [Crossref] [PubMed]
  8. D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
    [Crossref] [PubMed]
  9. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
    [Crossref] [PubMed]
  10. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [Crossref]
  11. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
    [Crossref] [PubMed]
  12. Y. Mao, S. Sherif, C. Flueraru, and S. Chang, “3×3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography,” Appl. Opt. 47, 2004–2010 (2008).
    [Crossref] [PubMed]
  13. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 17, 7–24 (2009).
    [Crossref] [PubMed]
  14. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123–1128 (1962).
    [Crossref]
  15. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
    [Crossref]
  16. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  17. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).
  18. D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
    [Crossref]
  19. D. J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source interferometric imaging at up to 1 MHz,” Opt. Lett. 39, 5333–5336 (2014).
    [Crossref]
  20. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
    [Crossref] [PubMed]
  21. D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
    [Crossref]
  22. B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
    [Crossref] [PubMed]
  23. D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
    [Crossref] [PubMed]
  24. D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20, 21247–21263 (2012).
    [Crossref] [PubMed]
  25. G. L. Franke, D. Hillmann, T. Claußen, C. Lührs, P. Koch, and G. Hüttmann, “High resolution holoscopy,” Proc. SPIE 8213, 821324 (2012).
    [Crossref]
  26. D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
    [Crossref]
  27. N. Pavillon, C. S. Seelamantula, J. Kühn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Appl. Opt. 48, H186–H195 (2009).
    [Crossref] [PubMed]
  28. J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  29. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).
    [Crossref] [PubMed]
  30. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49, 2014–2021 (2010).
    [Crossref] [PubMed]
  31. Euopean Standard DIN EN ISO 15004-2, Ophthalmic Instruments – Fundamental Requirements and Test Methods – Part 2: Light Hazard Protection (2007).

2016 (2)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (1)

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

2012 (4)

2011 (2)

D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
[Crossref]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (2)

2008 (3)

2007 (3)

2006 (2)

2002 (2)

1962 (1)

Aoki, G.

Arthaber, H.

Baumann, B.

Baumann, S. O.

Bonin, T.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
[Crossref]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432–3434 (2010).
[Crossref] [PubMed]

Boppart, S. A.

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

Cable, A.

Cable, A. E.

Carney, P. S.

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

Chang, S.

Chen, Y.

Claußen, T.

G. L. Franke, D. Hillmann, T. Claußen, C. Lührs, P. Koch, and G. Hüttmann, “High resolution holoscopy,” Proc. SPIE 8213, 821324 (2012).
[Crossref]

Davis, B. J.

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[Crossref] [PubMed]

Delori, F. C.

Depeursinge, C.

Drexler, W.

Duker, J. S.

Endo, T.

Fechtig, D. J.

Fercher, A. F.

Ferguson, R. A.

Flueraru, C.

Franke, G.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20, 21247–21263 (2012).
[Crossref] [PubMed]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432–3434 (2010).
[Crossref] [PubMed]

Franke, G. L.

G. L. Franke, D. Hillmann, T. Claußen, C. Lührs, P. Koch, and G. Hüttmann, “High resolution holoscopy,” Proc. SPIE 8213, 821324 (2012).
[Crossref]

Fujimoto, J. G.

Goodman, J.

J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Gorczynska, I.

Götzinger, E.

Grajciar, B.

Grimwood, A.

Grulkowski, I.

Hagen-Eggert, M.

Hain, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

Hart, C.

Hermann, B.

Hillmann, D.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20, 21247–21263 (2012).
[Crossref] [PubMed]

G. L. Franke, D. Hillmann, T. Claußen, C. Lührs, P. Koch, and G. Hüttmann, “High resolution holoscopy,” Proc. SPIE 8213, 821324 (2012).
[Crossref]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
[Crossref]

Hinkel, L.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

Hitzenberger, C. K.

Hofer, B.

Hüttmann, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20, 21247–21263 (2012).
[Crossref] [PubMed]

G. L. Franke, D. Hillmann, T. Claußen, C. Lührs, P. Koch, and G. Hüttmann, “High resolution holoscopy,” Proc. SPIE 8213, 821324 (2012).
[Crossref]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
[Crossref]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432–3434 (2010).
[Crossref] [PubMed]

Itoh, M.

Jayaraman, V.

Jiang, J.

Jueptner, W.

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Jüptner, W.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[Crossref]

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).

Koch, P.

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20, 21247–21263 (2012).
[Crossref] [PubMed]

G. L. Franke, D. Hillmann, T. Claußen, C. Lührs, P. Koch, and G. Hüttmann, “High resolution holoscopy,” Proc. SPIE 8213, 821324 (2012).
[Crossref]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
[Crossref]

T. Bonin, G. Franke, M. Hagen-Eggert, P. Koch, and G. Hüttmann, “In vivo Fourier-domain full-field OCT of the human retina with 1.5 million A-lines/s,” Opt. Lett. 35, 3432–3434 (2010).
[Crossref] [PubMed]

Konegger, T.

Kowalczyk, A.

Kühn, J.

Leitgeb, R.

Leitgeb, R. A.

Leith, E. N.

Litschauer, M.

Liu, J. J.

Lu, C. D.

Lührs, C.

D. Hillmann, G. Franke, C. Lührs, P. Koch, and G. Hüttmann, “Efficient holoscopy image reconstruction,” Opt. Express 20, 21247–21263 (2012).
[Crossref] [PubMed]

G. L. Franke, D. Hillmann, T. Claußen, C. Lührs, P. Koch, and G. Hüttmann, “High resolution holoscopy,” Proc. SPIE 8213, 821324 (2012).
[Crossref]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, and G. Hüttmann, “Holoscopy—holographic optical coherence tomography,” Opt. Lett. 36, 2390–2392 (2011).
[Crossref] [PubMed]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
[Crossref]

Makita, S.

Mao, Y.

Marks, D. L.

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

Matz, G.

Pavillon, N.

Pfäffle, C.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

Pircher, M.

Potsaid, B.

Považay, B.

Ralston, T. S.

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[Crossref] [PubMed]

D. L. Marks, T. S. Ralston, S. A. Boppart, and P. S. Carney, “Inverse scattering for frequency-scanned full-field optical coherence tomography,” J. Opt. Soc. Am. A 24, 1034–1041 (2007).
[Crossref]

Sattmann, H.

Schlanitz, F.

Schmidt-Erfurth, U.

Schmoll, T.

Schnars, U.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[Crossref]

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

Schütze, C.

Seelamantula, C. S.

Sherif, S.

Sliney, D. H.

Spahr, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

Srinivasan, V. J.

Sudkamp, H.

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

H. Spahr, D. Hillmann, C. Hain, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography,” Opt. Lett. 40, 4771–4774 (2015).
[Crossref] [PubMed]

Tomlins, P. H.

Unser, M.

Unterhuber, A.

Upatnieks, J.

Vogel, A.

D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
[Crossref]

Webb, R. H.

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

Wojtkowski, M.

Woolliams, P. D.

Yasuno, Y.

Yatagai, T.

Appl. Opt. (4)

Biomed. Opt. Express (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Meas. Sci. Technol. (1)

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Hillmann, H. Spahr, C. Pfäffle, H. Sudkamp, G. Franke, and G. Hüttmann, “In vivo optical imaging of physiological responses to photostimulation in human photoreceptors,” Proc. Natl. Acad. Sci. U.S.A. 113, 13138–13143 (2016).
[Crossref] [PubMed]

Proc. SPIE (3)

D. Hillmann, G. Franke, L. Hinkel, T. Bonin, P. Koch, and G. Hüttmann, “Off-axis full-field swept-source optical coherence tomography using holographic refocusing,” Proc. SPIE 8571, 857104 (2013).
[Crossref]

G. L. Franke, D. Hillmann, T. Claußen, C. Lührs, P. Koch, and G. Hüttmann, “High resolution holoscopy,” Proc. SPIE 8213, 821324 (2012).
[Crossref]

D. Hillmann, C. Lührs, T. Bonin, P. Koch, A. Vogel, and G. Hüttmann, “Holoscopy: holographic optical coherence tomography,” Proc. SPIE 8091, 80911H (2011).
[Crossref]

Sci. Rep. (1)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6, 35209 (2016).
[Crossref] [PubMed]

Sensors (1)

B. J. Davis, D. L. Marks, T. S. Ralston, P. S. Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy: Computed imaging for scanned coherent microscopy,” Sensors 8, 3903–3931 (2008).
[Crossref] [PubMed]

SPIE Reviews (1)

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Reviews 1, 018005 (2010).

Other (4)

German Standard DIN EN 60825, Sicherheit von Laser-Einrichtungen – Teil 1: Klassifizierung von Anlagen, Anforderungen und Benutzer-Richtlinien (2008).

U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).

J. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).

Euopean Standard DIN EN ISO 15004-2, Ophthalmic Instruments – Fundamental Requirements and Test Methods – Part 2: Light Hazard Protection (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

DC, autocorrelation, and cross-correlation (signal and conjugate signal) terms in Fourier-domain OCT [18]. a) A-scan of an infrared viewing card. b) Fringe pattern in the intensity pattern on the camera introduced by the off-axis reference beam. c) Fourier transform of the interference pattern. The aperture is directly visible in the Fourier transform. d) Three-dimensional Fourier transform of the data cube obtained by acquiring the interference pattern of scotch tape placed in the image plane at 1024 equispaced wavenumbers, as recorded for FF-SS-OCT. The spatial frequencies are shown at their correct depth. All four terms are visible and can be separated by choosing the adequate region in Fourier space.

Fig. 2
Fig. 2

Reduction of the imaging bandwidth by off-axis recording. For a complete suppression of coherent autocorrelation noise, signal terms have to be shifted by three times their bandwidth K. Shifting in x- or y-direction reduces the usable signal bandwidth by a factor of four compared to on-axis recording. By shifting at 45°, usable bandwidth is only decreased by a factor of 3 2 / 2 + 1 3.1.

Fig. 3
Fig. 3

Mach-Zehnder type interferometer used for off-axis FF-SS-OCT and holoscopy [18]. Light emitted by a swept laser source was split into sample and reference arm by a fiber coupler. The sample was illuminated by a collimated beam and the backscattered light was imaged onto the camera. The reference illuminated the camera under a sufficient angle to separate the image from autocorrelation noise. For in vivo measurements the objective lens was replaced by the lens of the eye.

Fig. 4
Fig. 4

B-scans taken from data cubes of scotch tape recorded with full-field swept-source OCT. a) Without rejection of the autocorrelation signal major artifacts are visible. Both, the image and the conjugated image are visible. b, c) Reconstruction after removal of the DC and autocorrelation terms by filtering in the Fourier space. Coherent noise is significantly reduced. No conjugated image is visible. The full depth range above and below the zero delay can be used. d) Artifact-free full-range imaging allows to position the zero optical delay line within the scotch tape; negative and positive path length differences are resolved. Insets show schematically filtering (red line) in the Fourier plane. Parts of (a), (c), and (d) where first published in Ref. [18], pictograms were added.

Fig. 5
Fig. 5

In vivo retinal images acquired with OCT. a) Macula imaged with on-axis FF-SS-OCT. b) Volume rendering of the dataset shown in f. c, d) Off-axis FF-SS-OCT images of the macula; unaveraged single slice and average of ten lateral B-scans, respectively. e, f) Off-axis FF-SS-OCT images of retinal periphery; unaveraged single slice and average of 10 lateral B-Scans, respectively. g) Macular region of human retina imaged by FF-SS-OCT in comparison to scanning OCT. Layers of the retina visible in FF-SS-OCT. NFL = nerve fiber layer, GCL = ganglioncell layer, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer, ELM= external limiting membrane, IS = photoreceptor inner segments, IS/OS = photoreceptor inner and outer segment junction, OS = photoreceptor outer segments, RPE = retinal pigment epithelium.

Fig. 6
Fig. 6

Signal-to-noise ratio for different α for a fixed full well capacity of N = 16 000 electrons. A tenfold radiant flux on the sample will increase the SNR by 10 dB for low NO and low α. For small values of α the SNR increases until NO = N/2, i.e., until reference and sample intensity are identical. For high values of α the SNR decreases rapidly when going to a significant amount of sample photo electrons.

Fig. 7
Fig. 7

B-scan of nanoparticles randomly dispersed in polyurethane resin. Due to full-range recording the B-scan covers a depth of about 10 mm. The central white structure marks the zero-delay line. At the imaging NA of 0.07 full lateral resolution was achieved only over a small axial depth of approximately two Rayleigh lengths 2zR ≈ 100 μm (a). When using digital refocusing techniques, the depth of focus was increased to nearly the full imaging depth (b). Please note that the refocusing technique compressed the imaged area slightly. First published in Ref. [18], zoom boxes were added.

Fig. 8
Fig. 8

B-scan of an entire porcine eye including cornea, lens, and retina with an entire measurement depth of more than 25 mm. During data acquisition the focus of the imaging optics was approximately on the retina. Later the image was numerically refocused to the iris. The retina could not be refocused since no lateral structures were visible to ensure correct focusing.

Tables (2)

Tables Icon

Table 1 Imaging parameters for on-axis and off-axis FF-SS-OCT.

Tables Icon

Table 2 Signal-to-noise ratio (SNR) at the retinal pigment epithelium (RPE) for different measurement geometries and sample power image at the macula. While the SNR in on-axis geometry for 10× radiant flux on the sample increased only by 1.2 dB, the SNR can be significantly increased by using off-axis reference illumination and lateral filtering.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , k ) | R ( x , y , k ) + O ( x , y , k ) | 2 = | R | 2 ( x , y , k ) DC + | O | 2 ( x , y , k ) autocorrelation + ( R * O ) ( x , y , k ) signal + ( O * R ) ( x , y , k ) conjugated signal .
R ( x , y , k ) = R 0 exp ( i k x ) | z = z 0 ,
R ( x , y , k ) = R 0 exp ( i k x ) exp ( i k x ) | z = z 0 .
x y = [ | R | 2 ] = [ R 0 2 ] = R 0 2 δ ( k x , k y ) .
x y [ I ( x , y , k ) ] = γ ( R 0 2 δ ( k x , k y ) + x y [ | O | 2 ] + + ( R 0 δ ( k k ) * x y [ O * ] ) + ( R 0 * δ ( k + k ) * x y [ O ] ) ) ,
N x N y f N k = 38.6 MHz
S N R N O ,
σ γ = N R + N O ,
σ AC = α N O ,
SNR N R N O N R + N O + α 2 N O 2 .
N = N R + N O ,

Metrics