Abstract

Waveguide chip-based microscopy reduces the complexity of total internal reflection fluorescence (TIRF) microscopy, and adds features like large field of view illumination, decoupling of illumination and collection path and easy multimodal imaging. However, for the technique to become widespread there is a need of low-loss and affordable waveguides made of high-refractive index material. Here, we develop and report a low-loss silicon nitride (Si3N4) waveguide platform for multi-color TIRF microscopy. Single mode conditions at visible wavelengths (488-660 nm) were achieved using shallow rib geometry. To generate uniform excitation over appropriate dimensions waveguide bends were used to filter-out higher modes followed by adiabatic tapering. Si3N4 material is finally shown to be biocompatible for growing and imaging living cells.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic crystal waveguides on silicon rich nitride platform

Kapil Debnath, Thalia Dominguez Bucio, Abdelrahman Al-Attili, Ali Z. Khokhar, Shinichi Saito, and Frederic Y. Gardes
Opt. Express 25(4) 3214-3221 (2017)

Silicon nitride based plasmonic components for CMOS back-end-of-line integration

Shiyang Zhu, G. Q. Lo, and D. L. Kwong
Opt. Express 21(20) 23376-23390 (2013)

Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited]

Ananth Z. Subramanian, Eva Ryckeboer, Ashim Dhakal, Frédéric Peyskens, Aditya Malik, Bart Kuyken, Haolan Zhao, Shibnath Pathak, Alfonso Ruocco, Andreas De Groote, Pieter Wuytens, Daan Martens, Francois Leo, Weiqiang Xie, Utsav Deepak Dave, Muhammad Muneeb, Pol Van Dorpe, Joris Van Campenhout, Wim Bogaerts, Peter Bienstman, Nicolas Le Thomas, Dries Van Thourhout, Zeger Hens, Gunther Roelkens, and Roel Baets
Photon. Res. 3(5) B47-B59 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip Raman spectroscopy,” Proc. SPIE 9141, 91410 (2014).
  2. G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75514B (2010).
  3. F. T. Dullo, S. Lindecrantz, J. Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-A cladded Mach-Zehnder interferometer,” Opt. Express 23(24), 31564–31573 (2015).
    [PubMed]
  4. P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).
  5. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [PubMed]
  6. A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).
  7. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
  8. J. Riemensberger, K. Hartinger, T. Herr, V. Brasch, R. Holzwarth, and T. J. Kippenberg, “Dispersion engineering of thick high-Q silicon nitride ring-resonators via atomic layer deposition,” Opt. Express 20(25), 27661–27669 (2012).
    [PubMed]
  9. W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).
  10. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. L. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Q. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).
  11. F. T. Dullo and O. G. Hellesø, “On-chip phase measurement for microparticles trapped on a waveguide,” Lab Chip 15(19), 3918–3924 (2015).
    [PubMed]
  12. B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
    [PubMed]
  13. B. Agnarsson, A. B. Jonsdottir, N. B. Arnfinnsdottir, and K. Leosson, “On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides,” Opt. Express 19(23), 22929–22935 (2011).
    [PubMed]
  14. H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
    [PubMed]
  15. A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).
  16. B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
    [PubMed]
  17. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
    [PubMed]
  18. R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).
  19. F. T. Dullo, J. C. Tinguely, S. A. Solbo, and O. G. Helleso, “Single-Mode Limit and Bending Losses for Shallow Rib Si3N4 Waveguides,” IEEE Photonics J. 7, 1–11 (2015).
  20. H. R. Philipp, “Optical Properties of Silicon-Nitride,” J. Electrochem. Soc. 120, 295–300 (1973).
  21. C. Guo, M. Kong, W. Gao, and B. Li, “Simultaneous determination of optical constants, thickness, and surface roughness of thin film from spectrophotometric measurements,” Opt. Lett. 38(1), 40–42 (2013).
    [PubMed]
  22. D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics - Pros and cons,” Integrated Optics: Devices, Materials, and Technologies VII 4987, 69–82 (2003).
  23. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2, A41–A44 (2014).
  24. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).
  25. C. E. Aitken, R. A. Marshall, and J. D. Puglisi, “An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments,” Biophys. J. 94(5), 1826–1835 (2008).
    [PubMed]

2017 (2)

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

2015 (6)

F. T. Dullo, J. C. Tinguely, S. A. Solbo, and O. G. Helleso, “Single-Mode Limit and Bending Losses for Shallow Rib Si3N4 Waveguides,” IEEE Photonics J. 7, 1–11 (2015).

F. T. Dullo and O. G. Hellesø, “On-chip phase measurement for microparticles trapped on a waveguide,” Lab Chip 15(19), 3918–3924 (2015).
[PubMed]

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. L. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Q. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).

F. T. Dullo, S. Lindecrantz, J. Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-A cladded Mach-Zehnder interferometer,” Opt. Express 23(24), 31564–31573 (2015).
[PubMed]

2014 (2)

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. 2, A41–A44 (2014).

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip Raman spectroscopy,” Proc. SPIE 9141, 91410 (2014).

2013 (3)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

C. Guo, M. Kong, W. Gao, and B. Li, “Simultaneous determination of optical constants, thickness, and surface roughness of thin film from spectrophotometric measurements,” Opt. Lett. 38(1), 40–42 (2013).
[PubMed]

2012 (1)

2011 (1)

2010 (1)

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75514B (2010).

2009 (1)

2008 (3)

A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).

C. E. Aitken, R. A. Marshall, and J. D. Puglisi, “An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments,” Biophys. J. 94(5), 1826–1835 (2008).
[PubMed]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
[PubMed]

2006 (1)

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[PubMed]

2003 (3)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[PubMed]

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics - Pros and cons,” Integrated Optics: Devices, Materials, and Technologies VII 4987, 69–82 (2003).

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

1973 (1)

H. R. Philipp, “Optical Properties of Silicon-Nitride,” J. Electrochem. Soc. 120, 295–300 (1973).

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Agnarsson, B.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

B. Agnarsson, A. B. Jonsdottir, N. B. Arnfinnsdottir, and K. Leosson, “On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides,” Opt. Express 19(23), 22929–22935 (2011).
[PubMed]

B. Agnarsson, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Evanescent-wave fluorescence microscopy using symmetric planar waveguides,” Opt. Express 17(7), 5075–5082 (2009).
[PubMed]

Ahluwalia, B. S.

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

Aimez, V.

Aitken, C. E.

C. E. Aitken, R. A. Marshall, and J. D. Puglisi, “An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments,” Biophys. J. 94(5), 1826–1835 (2008).
[PubMed]

Armstrong, S.

A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).

Arnfinnsdottir, N. B.

Baets, R.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. L. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Q. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip Raman spectroscopy,” Proc. SPIE 9141, 91410 (2014).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75514B (2010).

Bally, M.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Bienstman, P.

Bogaerts, W.

Brasch, V.

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Charette, P.

Chu, T.

Claes, T.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[PubMed]

Dave, U. D.

De Groote, A.

Deshpande, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Dhakal, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. L. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Q. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip Raman spectroscopy,” Proc. SPIE 9141, 91410 (2014).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Diekmann, R.

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

Dixon, J.

A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).

Domínguez, C.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Du Bois, B.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Dullo, F. T.

F. T. Dullo, S. Lindecrantz, J. Jágerská, J. H. Hansen, M. Engqvist, S. A. Solbø, and O. G. Hellesø, “Sensitive on-chip methane detection with a cryptophane-A cladded Mach-Zehnder interferometer,” Opt. Express 23(24), 31564–31573 (2015).
[PubMed]

F. T. Dullo and O. G. Hellesø, “On-chip phase measurement for microparticles trapped on a waveguide,” Lab Chip 15(19), 3918–3924 (2015).
[PubMed]

F. T. Dullo, J. C. Tinguely, S. A. Solbo, and O. G. Helleso, “Single-Mode Limit and Bending Losses for Shallow Rib Si3N4 Waveguides,” IEEE Photonics J. 7, 1–11 (2015).

Dumon, P.

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75514B (2010).

Engqvist, M.

Felici, T. P.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics - Pros and cons,” Integrated Optics: Devices, Materials, and Technologies VII 4987, 69–82 (2003).

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[PubMed]

Fu, Y.

Gaeta, A. L.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

Gallagher, D. F. G.

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics - Pros and cons,” Integrated Optics: Devices, Materials, and Technologies VII 4987, 69–82 (2003).

Gao, W.

Gorin, A.

Grandin, H. M.

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[PubMed]

Grondin, E.

Gudjonsson, T.

Gunnarsson, A.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Guo, C.

Hainberger, R.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).

Hansen, J. H.

Hartinger, K.

Hassanzadeh, A.

A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).

Helin, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Helle, O. I.

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

Helleso, O. G.

F. T. Dullo, J. C. Tinguely, S. A. Solbo, and O. G. Helleso, “Single-Mode Limit and Bending Losses for Shallow Rib Si3N4 Waveguides,” IEEE Photonics J. 7, 1–11 (2015).

Hellesø, O. G.

Hens, Z.

Herr, T.

Holzwarth, R.

Höök, F.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Huser, T. R.

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

Ingthorsson, S.

Jágerská, J.

Jansen, R.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Jaouad, A.

Jonsdottir, A. B.

Kippenberg, T. J.

Kong, M.

Koppitsch, G.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[PubMed]

Kraft, J.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).

Kunze, A.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Kuyken, B.

Langbein, U.

A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).

Le Thomas, N.

Lechuga, L. M.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Leo, F.

Leosson, K.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[PubMed]

Leyssens, K.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Li, B.

Lindecrantz, S.

Lipson, M.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Lundgren, A.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Malik, A.

Mapar, M.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Marshall, R. A.

C. E. Aitken, R. A. Marshall, and J. D. Puglisi, “An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments,” Biophys. J. 94(5), 1826–1835 (2008).
[PubMed]

Martens, D.

McCourt, P.

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

Melnik, E.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).

Mittler, S.

A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

Muellner, P.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).

Muneeb, M.

Neutens, P.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Nitsche, M.

A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).

Oie, C. I.

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

Pathak, S.

Pengfei, X.

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Peyskens, F.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. L. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Q. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip Raman spectroscopy,” Proc. SPIE 9141, 91410 (2014).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Philipp, H. R.

H. R. Philipp, “Optical Properties of Silicon-Nitride,” J. Electrochem. Soc. 120, 295–300 (1973).

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Puglisi, J. D.

C. E. Aitken, R. A. Marshall, and J. D. Puglisi, “An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments,” Biophys. J. 94(5), 1826–1835 (2008).
[PubMed]

Rabe, M.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Riemensberger, J.

Roelkens, G.

Rottenberg, X.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Ruocco, A.

Ryckeboer, E.

Schrank, F.

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).

Schuttpelz, M.

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

Selvaraja, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Sepulveda, B.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Severi, S.

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Simonsson, L.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Siyuan, Y.

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Solbo, S. A.

F. T. Dullo, J. C. Tinguely, S. A. Solbo, and O. G. Helleso, “Single-Mode Limit and Bending Losses for Shallow Rib Si3N4 Waveguides,” IEEE Photonics J. 7, 1–11 (2015).

Solbø, S. A.

Städler, B.

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[PubMed]

Subramanian, A. Z.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. L. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Q. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip Raman spectroscopy,” Proc. SPIE 9141, 91410 (2014).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Tang, W.

Textor, M.

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[PubMed]

Tianyou, Z.

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Tinguely, J. C.

F. T. Dullo, J. C. Tinguely, S. A. Solbo, and O. G. Helleso, “Single-Mode Limit and Bending Losses for Shallow Rib Si3N4 Waveguides,” IEEE Photonics J. 7, 1–11 (2015).

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[PubMed]

Van Campenhout, J.

Van Dorpe, P.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. L. Zhao, S. Pathak, A. Ruocco, A. De Groote, P. Wuytens, D. Martens, F. Leo, W. Q. Xie, U. D. Dave, M. Muneeb, P. Van Dorpe, J. Van Campenhout, W. Bogaerts, P. Bienstman, N. Le Thomas, D. Van Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip,” Photon. Res. 3, B47–B59 (2015).

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

Van Thourhout, D.

Vörös, J.

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[PubMed]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[PubMed]

Wuytens, P.

Xie, W. Q.

Yanfeng, Z.

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Ye, T.

Yuanhui, W.

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Yujie, C.

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Yurtsever, G.

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75514B (2010).

Zengkai, S.

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Zeru, W.

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Zhao, H. L.

Zhdanov, V. P.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

ACS Nano (1)

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[PubMed]

Appl. Phys. Lett. (1)

A. Hassanzadeh, M. Nitsche, S. Mittler, S. Armstrong, J. Dixon, and U. Langbein, “Waveguide evanescent field fluorescence microscopy: Thin film fluorescence intensities and its application in cell biology,” Appl. Phys. Lett. 92, 233503 (2008).

Biophys. J. (1)

C. E. Aitken, R. A. Marshall, and J. D. Puglisi, “An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments,” Biophys. J. 94(5), 1826–1835 (2008).
[PubMed]

Biosens. Bioelectron. (1)

H. M. Grandin, B. Städler, M. Textor, and J. Vörös, “Waveguide excitation fluorescence microscopy: A new tool for sensing and imaging the biointerface,” Biosens. Bioelectron. 21(8), 1476–1482 (2006).
[PubMed]

IEEE Photonics J. (2)

A. Z. Subramanian, P. Neutens, A. Dhakal, R. Jansen, T. Claes, X. Rottenberg, F. Peyskens, S. Selvaraja, P. Helin, B. Du Bois, K. Leyssens, S. Severi, P. Deshpande, R. Baets, and P. Van Dorpe, “Low-Loss Singlemode PECVD Silicon Nitride Photonic Wire Waveguides for 532-900 nm Wavelength Window Fabricated Within a CMOS Pilot Line,” IEEE Photonics J. 5, 220809 (2013).

F. T. Dullo, J. C. Tinguely, S. A. Solbo, and O. G. Helleso, “Single-Mode Limit and Bending Losses for Shallow Rib Si3N4 Waveguides,” IEEE Photonics J. 7, 1–11 (2015).

Integrated Optics: Devices, Materials, and Technologies VII (1)

D. F. G. Gallagher and T. P. Felici, “Eigenmode expansion methods for simulation of optical propagation in photonics - Pros and cons,” Integrated Optics: Devices, Materials, and Technologies VII 4987, 69–82 (2003).

J. Electrochem. Soc. (1)

H. R. Philipp, “Optical Properties of Silicon-Nitride,” J. Electrochem. Soc. 120, 295–300 (1973).

J. Opt. (1)

W. Zeru, C. Yujie, Z. Tianyou, S. Zengkai, W. Yuanhui, X. Pengfei, Z. Yanfeng, and Y. Siyuan, “Design and optimization of optical modulators based on graphene-on-silicon nitride microring resonators,” J. Opt. 19, 045801 (2017).

Lab Chip (1)

F. T. Dullo and O. G. Hellesø, “On-chip phase measurement for microparticles trapped on a waveguide,” Lab Chip 15(19), 3918–3924 (2015).
[PubMed]

Nanotechnology (1)

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907 (2003).

Nat Photonics (1)

R. Diekmann, O. I. Helle, C. I. Oie, P. McCourt, T. R. Huser, M. Schuttpelz, and B. S. Ahluwalia, “Chip-based wide field-of-view nanoscopy,” Nat Photonics 11, 322 (2017).

Nat. Photonics (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).

Opt. Express (5)

Opt. Lett. (1)

Photon. Res. (2)

Proc. SPIE (2)

A. Dhakal, P. Wuytens, F. Peyskens, A. Z. Subramanian, N. Le Thomas, and R. Baets, “Silicon-nitride waveguides for on-chip Raman spectroscopy,” Proc. SPIE 9141, 91410 (2014).

G. Yurtsever, P. Dumon, W. Bogaerts, and R. Baets, “Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography,” Proc. SPIE 7554, 75514B (2010).

Procedia Eng. (1)

P. Muellner, E. Melnik, G. Koppitsch, J. Kraft, F. Schrank, and R. Hainberger, “CMOS-compatible Si3N4 waveguides for optical biosensing,” Procedia Eng. 120, 578–581 (2015).

Science (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[PubMed]

Supplementary Material (5)

NameDescription
» Visualization 1       Movie showing light scattering from a straight 1.5 µm wide waveguide at 660 nm wavelength.
» Visualization 2       Movie showing light scattering from a straight 1.5 µm wide waveguide at 488 nm wavelength.
» Visualization 3       Movie showing light scattering from a waveguide at 488 nm wavelength before bending.
» Visualization 4       Movie showing light scattering from a waveguide at 488 nm wavelength after a bend and a adiabatic taper.
» Visualization 5       Live cell TIRF images of HTR-8 cells stained for plasma membrane

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) Cross-section scheme of strip vs. rib waveguide geometry. nSUP, nWG, nSUB: refractive indexes of superstrate, guiding material and substrate, respectively. tRIB, tSLAB: thicknesses of rib and slab regions. b) Top view scheme of waveguide designs demonstrating tapering of the waveguide width (design A and B) and bend structure (design B). wS: start width, wT: tapered width, L: taper length, R: bend radius.
Fig. 2
Fig. 2 a) Single mode condition simulations for TE polarized modes, 1.5µm rib width, 1.5µm SiO2 cladding. Single mode behaviour expected below the fitted line for the given wavelength and geometry. b) Taper adiabaticity simulation, wS = 1.5 µm to different end widths, λ = 660nm. c) Taper adiabaticity simulations, wS = 1.5 µm to wT = 25 µm. d) Simulation of power loss after a 90° bend as a function of bend radius.
Fig. 3
Fig. 3 Schematic diagram of the experimental setup. Imaging area at cladding is opening allowing for specimen contact to waveguide surface. Inset: approximate penetration depth of evanescent field. λ1, λ 2, λ 3: guiding/excitation wavelengths, MO: microscope objective.
Fig. 4
Fig. 4 Optical image of the scattered light from a waveguide at three wavelengths, (a, d, g): 660nm; (b, e, h): 561 nm and (c, f, i): 488 nm. a) to c) straight 1.5 µm wide waveguide. Multimode behaviour is observed for b) and c). d) to f): Adiabatic tapering to 25 µm width observed at d) while multimode behaviour was carried on at e) and f). g) to i): Bend section with 2mm radius preceding the taper structure removing multimode interference. Scalebar: 5 µm. Associated Visualization 1, Visualization 2, Visualization 3, and Visualization 4.
Fig. 5
Fig. 5 a) Waveguide design for measurement of bend losses. Microscope image shows the different waveguide test structures with no bend and increasing bend radii. b) Measurements vs. simulations for a bend loss structure as represented in a).
Fig. 6
Fig. 6 a), b) MCC13 cells stained for plasma membrane (CellMask deep red) and tubulin (Alexa 488 anti-Tubulin), fluorescence excited through a 25 µm wide waveguide. The cells are distributed homogeneously on the chip, the center of the waveguide being indicated with dotted lines. c), d) are the regions indicated with a white box in a) and b). The cells are evenly illuminated at this position on the waveguide.
Fig. 7
Fig. 7 HTR-8 cells stained for plasma membrane and kept alive in live-cell imaging media during the measurement. a) A frame from the movie (Visualization 5) shows several cells clustered together on the 25 µm wide waveguide. b) to d) Movement in the cell membrane can be seen over 3.6 minutes.

Tables (1)

Tables Icon

Table 1 Propagation loss for 1.5 µm wide Si3N4 waveguides. Single values averaged from four different waveguides. The measurement uncertainty is estimated to one digit.

Metrics