Abstract

We report a photonic integrated circuit implementation of an optical clock multiplier, or equivalently an optical frequency comb filter. The circuit comprises a novel topology of a ring-resonator-assisted asymmetrical Mach-Zehnder interferometer in a Sagnac loop, providing a reconfigurable comb filter with sub-GHz selectivity and low complexity. A proof-of-concept device is fabricated in a high-index-contrast stoichiometric silicon nitride (Si3N4/SiO2) waveguide, featuring low loss, small size, and large bandwidth. In the experiment, we show a very narrow passband for filters of this kind, i.e. a −3-dB bandwidth of 0.6 GHz and a −20-dB passband of 1.2 GHz at a frequency interval of 12.5 GHz. As an application example, this particular filter shape enables successful demonstrations of five-fold repetition rate multiplication of optical clock signals, i.e. from 2.5 Gpulses/s to 12.5 Gpulses/s and from 10 Gpulses/s to 50 Gpulses/s. This work addresses comb spectrum processing on an integrated platform, pointing towards a device-compact solution for optical clock multipliers (frequency comb filters) which have diverse applications ranging from photonic-based RF spectrum scanners and photonic radars to GHz-granularity WDM switches and LIDARs.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Integrated microwave photonic splitter with reconfigurable amplitude, phase, and delay offsets

Leimeng Zhuang, Maurizio Burla, Caterina Taddei, Chris G. H. Roeloffzen, Marcel Hoekman, Arne Leinse, Klaus -J. Boller, and Arthur J. Lowery
Opt. Lett. 40(23) 5618-5621 (2015)

Programmable photonic signal processor chip for radiofrequency applications

Leimeng Zhuang, Chris G. H. Roeloffzen, Marcel Hoekman, Klaus-J. Boller, and Arthur J. Lowery
Optica 2(10) 854-859 (2015)

Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering

Andrew J. Metcalf, Hyoung-Jun Kim, Daniel E. Leaird, Jose A. Jaramillo-Villegas, Keith A. McKinzie, Vikrant Lal, Amir Hosseini, Gloria E. Hoefler, Fred Kish, and Andrew M. Weiner
Opt. Express 24(21) 23925-23940 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
    [PubMed]
  2. X. F. Yi, “Tb/s coherent optical OFDM systems enabled by optical frequency combs,” J. Lightwave Technol. 28, 2054–2061 (2010).
  3. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [PubMed]
  4. Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).
  5. C. Y. She, J. R. Yu, H. Latifi, and R. E. Bills, “High-spectral-resolution fluorescence light detection and ranging for mesospheric sodium temperature measurements,” Appl. Opt. 31(12), 2095–2106 (1992).
    [PubMed]
  6. A. G. Glenday, C. H. Li, N. Langellier, G. Chang, L. J. Chen, G. Furesz, A. A. Zibrov, F. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph,” Optica 2, 250–254 (2015).
  7. D. F. Phillips, A. G. Glenday, C. H. Li, C. Cramer, G. Furesz, G. Chang, A. J. Benedick, L. J. Chen, F. X. Kärtner, S. Korzennik, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb,” Opt. Express 20(13), 13711–13726 (2012).
    [PubMed]
  8. M. W. Graham, S. F. Shi, D. C. Ralph, J. Park, and P. L. McEuen, “Photocurrent measurements of supercollision cooling in graphene,” Nat. Phys. 9, 103–108 (2013).
  9. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [PubMed]
  10. O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: a new dawn for the optical layer,” IEEE Commun. Mag. 50, S12–S20 (2012).
  11. T. A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [PubMed]
  12. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004).
    [PubMed]
  13. H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).
  14. Y. Cheng, X. Luo, J. Song, T. Y. Liow, G. Q. Lo, Y. Cao, X. Hu, X. Li, P. H. Lim, and Q. J. Wang, “Passively mode-locked III-V/silicon laser with continuous-wave optical injection,” Opt. Express 23(5), 6392–6399 (2015).
    [PubMed]
  15. S. Uvin, S. Keyvaninia, F. Lelarge, G. Duan, B. Kuyken, and G. Roelkens, “Narrow line width frequency comb source based on an injection-locked III–V-on-silicon mode-locked laser,” Opt. Express 24, 5277–5286 (2016).
  16. V. Moskalenko, S. Latkowski, S. Tahvili, T. de Vries, M. Smit, and E. Bente, “Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser,” Opt. Express 22(23), 28865–28874 (2014).
    [PubMed]
  17. E. Bente, S. Latkowski, V. Moskalenko, M. Llorens-Revul, S. Tahvili, and K. Williams, “Mode-locked lasers in InP photonic integrated circuits,” in Optoelectronics, Photonic Materials and Devices Conference (OPTO, 2017), pp. 101230F.
  18. S. B. Papp, K. Beha, P. D. Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams, “Microresonator frequency comb optical clock,” Optica 1, 10–14 (2014).
  19. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).
  20. X. L. Wang, J. Ding, W. J. Ni, C. S. Guo, and H. T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett. 32(24), 3549–3551 (2007).
    [PubMed]
  21. J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express 21(1), 690–697 (2013).
    [PubMed]
  22. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
    [PubMed]
  23. C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).
  24. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).
  25. C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon Nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
    [PubMed]
  26. K. Worhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).
  27. M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6, 1–13 (2012).
  28. L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits (Wiley 2012).
  29. L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K. J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).
  30. L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photonics Rev. 7, 994–1002 (2013).
  31. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  32. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuit,” in Optical Fiber Communications Conference (OFC, 2014), pp. Th1C.1.
  33. O. Schwelb, “Transmission, group delay, and dispersion in single-ring optical resonators and add/drop filters-a tutorial overview,” J. Lightwave Technol. 22, 1380–1394 (2004).
  34. F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides bringing slow light to applications,” Laser Photonics Rev. 6, 74–96 (2012).
  35. M. S. Rasras, D. M. Gill, S. S. Patel, K. Y. Tu, Y. K. Chen, A. E. White, A. T. S. Pomerence, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, and L. C. Kimerling, “Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes,” J. Lightwave Technol. 25, 87–92 (2007).
  36. P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” J. Lightwave Technol. 32, 897–907 (2014).
  37. R. Rudnick, A. Tolmachev, D. Sinefeld, O. Golani, S. Ben-Ezra, M. Nazarathy, and D. M. Marom, “Sub-banded/single-sub-carrier drop-demux and flexible spectral shaping with a fine resolution photonic processor,” in European Conference on Optical Communications (ECOC, 2014), pp. PD.4.1.
  38. T. Goh, M. Itoh, H. Yamazaki, T. Saida, and T. Hashimoto, “Optical Nyquist-filtering multi/demultiplexer with PLC for 1-Tb/s class super-channel transceiver,” in Optical Fiber Communications (OFC, 2015), pp. Tu3A.5.
  39. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
    [PubMed]
  40. T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).
  41. P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
    [PubMed]
  42. H. Yu, M. Chen, P. Li, S. Yang, H. Chen, and S. Xie, “Silicon-on-insulator narrow-passband filter based on cascaded MZIs incorporating enhanced FSR for downconverting analog photonic links,” Opt. Express 21(6), 6749–6755 (2013).
    [PubMed]
  43. D. X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express 18(3), 1937–1945 (2010).
    [PubMed]
  44. S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
    [PubMed]
  45. J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).
  46. R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
    [PubMed]
  47. E. J. Norberg, R. S. Guzzon, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Programmable photonic microwave filters monolithically integrated in InP–InGaAsP,” J. Lightwave Technol. 29, 1611–1619 (2011).
  48. N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a ezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23(11), 14018–14026 (2015).
    [PubMed]

2016 (3)

T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).

S. Uvin, S. Keyvaninia, F. Lelarge, G. Duan, B. Kuyken, and G. Roelkens, “Narrow line width frequency comb source based on an injection-locked III–V-on-silicon mode-locked laser,” Opt. Express 24, 5277–5286 (2016).

2015 (6)

2014 (4)

2013 (7)

J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express 21(1), 690–697 (2013).
[PubMed]

H. Yu, M. Chen, P. Li, S. Yang, H. Chen, and S. Xie, “Silicon-on-insulator narrow-passband filter based on cascaded MZIs incorporating enhanced FSR for downconverting analog photonic links,” Opt. Express 21(6), 6749–6755 (2013).
[PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon Nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[PubMed]

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

M. W. Graham, S. F. Shi, D. C. Ralph, J. Park, and P. L. McEuen, “Photocurrent measurements of supercollision cooling in graphene,” Nat. Phys. 9, 103–108 (2013).

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photonics Rev. 7, 994–1002 (2013).

2012 (4)

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides bringing slow light to applications,” Laser Photonics Rev. 6, 74–96 (2012).

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6, 1–13 (2012).

O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: a new dawn for the optical layer,” IEEE Commun. Mag. 50, S12–S20 (2012).

D. F. Phillips, A. G. Glenday, C. H. Li, C. Cramer, G. Furesz, G. Chang, A. J. Benedick, L. J. Chen, F. X. Kärtner, S. Korzennik, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb,” Opt. Express 20(13), 13711–13726 (2012).
[PubMed]

2011 (5)

2010 (3)

2008 (1)

2007 (2)

2004 (3)

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

2000 (1)

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).

1995 (1)

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).

1992 (1)

Agarwal, A.

Alem, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

Amin Shoaie, M.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

Asghari, M.

Baets, R.

Bajraszewski, T.

Banwell, T.

Bassi, P.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

Beals, M. A.

Beckx, S.

Beeker, W.

Beeker, W. P.

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photonics Rev. 7, 994–1002 (2013).

Beha, K.

Ben Yoo, S. J.

O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: a new dawn for the optical layer,” IEEE Commun. Mag. 50, S12–S20 (2012).

Benedick, A. J.

Bente, E.

Bienstman, P.

Bills, R. E.

Bland-Hawthorn, J.

T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).

Bogaerts, W.

Boller, K. J.

Boller, K.-J.

Bos, J.

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

Brasch, V.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).

Brès, C.-S.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

Burla, M.

Canciamilla, A.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides bringing slow light to applications,” Laser Photonics Rev. 6, 74–96 (2012).

Cao, Y.

Capmany, J.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).

Carothers, D. N.

Chang, G.

Cheben, P.

Chen, H.

Chen, L. J.

Chen, M.

Chen, Y. K.

Cheng, Y.

Cheung, S.

Chrostowski, L.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuit,” in Optical Fiber Communications Conference (OFC, 2014), pp. Th1C.1.

Coddington, I.

Coldren, L. A.

Cramer, C.

Dagenais, M.

T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).

Danziger, S.

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

de Vries, T.

Dekker, R.

Dekkers, M.

Delâge, A.

Densmore, A.

Diddams, S. A.

Ding, J.

Ding, Z.

Djordjevic, S. S.

Doerr, C. R.

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).

Doménech, D.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).

Dong, P.

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

Du, L. B.

Duan, G.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

Dumon, P.

Eggleton, B. J.

Fandiño, J. S.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).

Fard, S. T.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuit,” in Optical Fiber Communications Conference (OFC, 2014), pp. Th1C.1.

Feng, D.

Feng, N. N.

Ferrari, C.

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides bringing slow light to applications,” Laser Photonics Rev. 6, 74–96 (2012).

Flueckiger, J.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuit,” in Optical Fiber Communications Conference (OFC, 2014), pp. Th1C.1.

Fontaine, N. K.

Frisken, S.

Furesz, G.

Gatkine, P.

T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: a new dawn for the optical layer,” IEEE Commun. Mag. 50, S12–S20 (2012).

Gill, D. M.

Glenday, A. G.

Gorodetsky, M. L.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).

Graham, M. W.

M. W. Graham, S. F. Shi, D. C. Ralph, J. Park, and P. L. McEuen, “Photocurrent measurements of supercollision cooling in graphene,” Nat. Phys. 9, 103–108 (2013).

Grove, M. J.

Guan, B.

Guo, C. S.

Guzzon, R. S.

Haye, P. D.

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

Heideman, R.

Heideman, R. G.

K. Worhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photonics Rev. 7, 994–1002 (2013).

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon Nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[PubMed]

Herr, T.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).

Hill, C. M.

Hill, M.

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6, 1–13 (2012).

Hoekman, M.

K. Worhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a ezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23(11), 14018–14026 (2015).
[PubMed]

L. Zhuang, C. G. H. Roeloffzen, M. Hoekman, K. J. Boller, and A. J. Lowery, “Programmable photonic signal processor chip for radiofrequency applications,” Optica 2, 854–859 (2015).

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photonics Rev. 7, 994–1002 (2013).

Hosseini, N.

Hu, X.

Hu, Y. W.

T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).

Huber, R.

Ibrahim, S.

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

Janz, S.

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: a new dawn for the optical layer,” IEEE Commun. Mag. 50, S12–S20 (2012).

Johansson, L. A.

Jørgensen, C. G.

Jost, J. D.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).

Kärtner, F.

Kärtner, F. X.

Keyvaninia, S.

Kimerling, L. C.

Kippenberg, T. J.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).

Kobayashi, T.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).

Kondratiev, N. M.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).

Korzennik, S.

Kowalczyk, A.

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

Kuyken, B.

Langellier, N.

Lapointe, J.

Latifi, H.

Latkowski, S.

Lee, D. C.

Lee, H.

Leinse, A.

Lelarge, F.

Li, C. H.

Li, P.

Li, X.

Liang, H.

Lim, P. H.

Liow, T. Y.

Liu, T. A.

Lo, G. Q.

Lord, A.

O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: a new dawn for the optical layer,” IEEE Commun. Mag. 50, S12–S20 (2012).

Lowery, A. J.

Luff, B. J.

Luo, X.

Luyssaert, B.

Ma, R.

Marpaung, D.

Marpaung, D. A. I.

McEuen, P. L.

M. W. Graham, S. F. Shi, D. C. Ralph, J. Park, and P. L. McEuen, “Photocurrent measurements of supercollision cooling in graphene,” Nat. Phys. 9, 103–108 (2013).

McKinnon, R.

Melloni, A.

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” J. Lightwave Technol. 32, 897–907 (2014).

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides bringing slow light to applications,” Laser Photonics Rev. 6, 74–96 (2012).

Menendez, R.

Michel, J.

Morichetti, F.

P. Orlandi, F. Morichetti, M. J. Strain, M. Sorel, P. Bassi, and A. Melloni, “Photonic integrated filter with widely tunable bandwidth,” J. Lightwave Technol. 32, 897–907 (2014).

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides bringing slow light to applications,” Laser Photonics Rev. 6, 74–96 (2012).

Morimoto, A.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).

Moskalenko, V.

Muñoz, P.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).

Murata, H.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).

Newbury, N. R.

Ni, W. J.

Nicholson, J. W.

Norberg, E. J.

Okamoto, K.

Oldenbeuving, R. M.

Orlandi, P.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

Papp, S. B.

Park, J.

M. W. Graham, S. F. Shi, D. C. Ralph, J. Park, and P. L. McEuen, “Photocurrent measurements of supercollision cooling in graphene,” Nat. Phys. 9, 103–108 (2013).

Parker, J. S.

Patel, S. S.

Phillips, D. F.

Pomerence, A. T. S.

Pomerene, A. T.

Qian, W.

Quinlan, F.

Ralph, D. C.

M. W. Graham, S. F. Shi, D. C. Ralph, J. Park, and P. L. McEuen, “Photocurrent measurements of supercollision cooling in graphene,” Nat. Phys. 9, 103–108 (2013).

Rasras, M. S.

Roelens, M. A. F.

Roelkens, G.

Roeloffzen, C.

Roeloffzen, C. G. H.

Sasselov, D.

Schmid, J. H.

Schneider, T.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

Schröder, J.

Schwelb, O.

Scott, R. P.

Seaford, L. L.

She, C. Y.

Shi, S. F.

M. W. Graham, S. F. Shi, D. C. Ralph, J. Park, and P. L. McEuen, “Photocurrent measurements of supercollision cooling in graphene,” Nat. Phys. 9, 103–108 (2013).

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

Smit, M.

Song, J.

Sorel, M.

Soto, M. A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

Sparacin, D. K.

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

Strain, M. J.

Su, T.

Szentgyorgyi, A.

Szkulmowska, A.

Szkulmowski, M.

Taddei, C.

Tahvili, S.

Taillaert, D.

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

Thévenaz, L.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

Toliver, P.

Tu, K. Y.

Uvin, S.

Vachon, M.

Vahala, K. J.

Van Campenhout, J.

van der Tol, J.

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6, 1–13 (2012).

van Dijk, P. W. L.

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photonics Rev. 7, 994–1002 (2013).

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon Nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[PubMed]

Van Thourhout, D.

Vedadi, A.

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

Veilleux, S.

T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).

Walsworth, R. L.

Wang, C. Y.

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).

Wang, H. T.

Wang, Q. J.

Wang, X.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuit,” in Optical Fiber Communications Conference (OFC, 2014), pp. Th1C.1.

Wang, X. L.

Wang, Y.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuit,” in Optical Fiber Communications Conference (OFC, 2014), pp. Th1C.1.

Washburn, B. R.

White, A. E.

Wiaux, V.

Wojtkowski, M.

Woodward, T. K.

Worhoff, K.

K. Worhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Wu, Q.

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).

Wu, Y.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuit,” in Optical Fiber Communications Conference (OFC, 2014), pp. Th1C.1.

Xie, S.

Xu, D. X.

Yamamoto, S.

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).

Yan, M. F.

Yang, S.

Yi, X. F.

Yoo, S. J.

Yu, H.

Yu, J. R.

Zhang, X. C.

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).

Zhu, T.

T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).

Zhuang, L.

Zibrov, A. A.

Adv. Opt. Technol. (1)

K. Worhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Q. Wu and X. C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett. 67, 3523–3525 (1995).

Front. Phys. (1)

C. R. Doerr, “Silicon photonic integration in telecommunications,” Front. Phys. 3, 37 (2015).

IEEE Commun. Mag. (1)

O. Gerstel, M. Jinno, A. Lord, and S. J. Ben Yoo, “Elastic optical networking: a new dawn for the optical layer,” IEEE Commun. Mag. 50, S12–S20 (2012).

IEEE J. Sel. Top. Quantum Electron. (2)

H. Murata, A. Morimoto, T. Kobayashi, and S. Yamamoto, “Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators,” IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).

IEEE Photonics J. (1)

T. Zhu, Y. W. Hu, P. Gatkine, S. Veilleux, J. Bland-Hawthorn, and M. Dagenais, “Ultra-broadband high coupling efficiency fiber-to-waveguide coupler using Si3N4/SiO2 waveguides on silicon,” IEEE Photonics J. 8, 1 (2016).

J. Lightwave Technol. (5)

Laser Photonics Rev. (3)

F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, “The first decade of coupled resonator optical waveguides bringing slow light to applications,” Laser Photonics Rev. 6, 74–96 (2012).

L. Zhuang, M. Hoekman, W. P. Beeker, A. Leinse, R. G. Heideman, P. W. L. van Dijk, and C. G. H. Roeloffzen, “Novel low-loss waveguide delay lines using Vernier ring resonators for on-chip multi-λ microwave photonic signal processors,” Laser Photonics Rev. 7, 994–1002 (2013).

M. Smit, J. van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photonics Rev. 6, 1–13 (2012).

Nat. Commun. (1)

M. A. Soto, M. Alem, M. Amin Shoaie, A. Vedadi, C.-S. Brès, L. Thévenaz, and T. Schneider, “Optical sinc-shaped Nyquist pulses of exceptional quality,” Nat. Commun. 4, 2898 (2013).
[PubMed]

Nat. Photonics (2)

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” Nat. Photonics 8, 145–152 (2014).

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11, 124–129 (2016).

Nat. Phys. (1)

M. W. Graham, S. F. Shi, D. C. Ralph, J. Park, and P. L. McEuen, “Photocurrent measurements of supercollision cooling in graphene,” Nat. Phys. 9, 103–108 (2013).

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[PubMed]

Opt. Express (16)

T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
[PubMed]

Y. Cheng, X. Luo, J. Song, T. Y. Liow, G. Q. Lo, Y. Cao, X. Hu, X. Li, P. H. Lim, and Q. J. Wang, “Passively mode-locked III-V/silicon laser with continuous-wave optical injection,” Opt. Express 23(5), 6392–6399 (2015).
[PubMed]

S. Uvin, S. Keyvaninia, F. Lelarge, G. Duan, B. Kuyken, and G. Roelkens, “Narrow line width frequency comb source based on an injection-locked III–V-on-silicon mode-locked laser,” Opt. Express 24, 5277–5286 (2016).

V. Moskalenko, S. Latkowski, S. Tahvili, T. de Vries, M. Smit, and E. Bente, “Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser,” Opt. Express 22(23), 28865–28874 (2014).
[PubMed]

T. A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[PubMed]

D. F. Phillips, A. G. Glenday, C. H. Li, C. Cramer, G. Furesz, G. Chang, A. J. Benedick, L. J. Chen, F. X. Kärtner, S. Korzennik, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb,” Opt. Express 20(13), 13711–13726 (2012).
[PubMed]

J. Schröder, M. A. F. Roelens, L. B. Du, A. J. Lowery, S. Frisken, and B. J. Eggleton, “An optical FPGA: reconfigurable simultaneous multi-output spectral pulse-shaping for linear optical processing,” Opt. Express 21(1), 690–697 (2013).
[PubMed]

W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
[PubMed]

C. G. H. Roeloffzen, L. Zhuang, C. Taddei, A. Leinse, R. G. Heideman, P. W. L. van Dijk, R. M. Oldenbeuving, D. A. I. Marpaung, M. Burla, and K.-J. Boller, “Silicon Nitride microwave photonic circuits,” Opt. Express 21(19), 22937–22961 (2013).
[PubMed]

R. S. Guzzon, E. J. Norberg, J. S. Parker, L. A. Johansson, and L. A. Coldren, “Integrated InP-InGaAsP tunable coupled ring optical bandpass filters with zero insertion loss,” Opt. Express 19(8), 7816–7826 (2011).
[PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si3N4/SiO2 optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[PubMed]

P. Dong, N. N. Feng, D. Feng, W. Qian, H. Liang, D. C. Lee, B. J. Luff, T. Banwell, A. Agarwal, P. Toliver, R. Menendez, T. K. Woodward, and M. Asghari, “GHz-bandwidth optical filters based on high-order silicon ring resonators,” Opt. Express 18(23), 23784–23789 (2010).
[PubMed]

H. Yu, M. Chen, P. Li, S. Yang, H. Chen, and S. Xie, “Silicon-on-insulator narrow-passband filter based on cascaded MZIs incorporating enhanced FSR for downconverting analog photonic links,” Opt. Express 21(6), 6749–6755 (2013).
[PubMed]

D. X. Xu, A. Delâge, R. McKinnon, M. Vachon, R. Ma, J. Lapointe, A. Densmore, P. Cheben, S. Janz, and J. H. Schmid, “Archimedean spiral cavity ring resonators in silicon as ultra-compact optical comb filters,” Opt. Express 18(3), 1937–1945 (2010).
[PubMed]

S. Ibrahim, N. K. Fontaine, S. S. Djordjevic, B. Guan, T. Su, S. Cheung, R. P. Scott, A. T. Pomerene, L. L. Seaford, C. M. Hill, S. Danziger, Z. Ding, K. Okamoto, and S. J. Yoo, “Demonstration of a fast-reconfigurable silicon CMOS optical lattice filter,” Opt. Express 19(14), 13245–13256 (2011).
[PubMed]

N. Hosseini, R. Dekker, M. Hoekman, M. Dekkers, J. Bos, A. Leinse, and R. Heideman, “Stress-optic modulator in TriPleX platform using a ezoelectric lead zirconate titanate (PZT) thin film,” Opt. Express 23(11), 14018–14026 (2015).
[PubMed]

Opt. Lett. (2)

Optica (3)

Other (6)

E. Bente, S. Latkowski, V. Moskalenko, M. Llorens-Revul, S. Tahvili, and K. Williams, “Mode-locked lasers in InP photonic integrated circuits,” in Optoelectronics, Photonic Materials and Devices Conference (OPTO, 2017), pp. 101230F.

L. A. Coldren, S. W. Corzine, and M. L. Masanovic, Diode Lasers and Photonic Integrated Circuits (Wiley 2012).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuit,” in Optical Fiber Communications Conference (OFC, 2014), pp. Th1C.1.

R. Rudnick, A. Tolmachev, D. Sinefeld, O. Golani, S. Ben-Ezra, M. Nazarathy, and D. M. Marom, “Sub-banded/single-sub-carrier drop-demux and flexible spectral shaping with a fine resolution photonic processor,” in European Conference on Optical Communications (ECOC, 2014), pp. PD.4.1.

T. Goh, M. Itoh, H. Yamazaki, T. Saida, and T. Hashimoto, “Optical Nyquist-filtering multi/demultiplexer with PLC for 1-Tb/s class super-channel transceiver,” in Optical Fiber Communications (OFC, 2015), pp. Tu3A.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) A schematic of the novel filter topology, (b) an equivalent lattice-structured circuit, (c) an illustration of the interleaving Chebyshev Type II filter shapes and group delays (GDs) of an A-MZI, (d) corresponding filter shapes and GDs at the outputs of the novel filter topology in (a).
Fig. 2
Fig. 2 (a) Calculations of filter passband bandwidth relative to interval as a function of the number of ring resonators. (b) Passband comparison between different filter designs, i.e. a tapped-delay-line (FIR) filter with 81 taps, a serial cascade of two add-drop ring resonators, and a serial cascade of two RAMZIs.
Fig. 3
Fig. 3 (a) A photomicrograph of a fabricated chip. Inset: a scanning electron microscope (SEM) photograph of the waveguide cross-section. (b) The chip mask layout design.
Fig. 4
Fig. 4 Measured filter shapes demonstrating: (a, b) the capability of providing both narrow-passband and notch filtering functions, (c) the bandwidth variability of the filter passband, (d) the tuning of passband center frequency, (e) the full C-band coverage of the fabricated chip with an inset showing stopband extinction and passband interval versus wavelength. The responses are normalized to their maximum values.
Fig. 5
Fig. 5 Demonstration of five-fold repetition rate multiplication of periodically pulsed optical signals: (a) from 2.5 Gpulse/s to 12.5 Gpulse/s, (b) from 10 Gpulse/s to 50 Gpulse/s. The signal spectra were measured using a high-resolution optical spectrum analyzer (Agilent 8164B) and the waveforms were measured using a 50-GHz real-time oscilloscope (Agilent DSO-X 95004Q).

Tables (2)

Tables Icon

Table 1 Circuit parameters for the filter shapes in Fig. 1

Tables Icon

Table 2 Overview of several representative comb filters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[ H 31 (f) H 41 (f) H 32 (f) H 42 (f) ]=[ H 1'3' (f) H 1'4' (f) H 2'3' (f) H 2'4' (f) ]= η[ 2 2 j 2 2 j 2 2 2 2 ][ n=1,3,5... 2N±1 R n (f) 0 0 D(f) n=2,4,6... 2N R n (f) ][ 2 2 j 2 2 j 2 2 2 2 ]
D(f)=t e j2πf/ΔfFSR e j ϕ 0
R n (f)= 1 κ n t 2 e j4πf/ΔfFSR e j ϕ n 1 1 κ n t 2 e j4πf/ΔfFSR e j ϕ n .
[ H 2'1 (f) H 2'2 (f) H 1'1 (f) H 1'2 (f) ]=[ H 31 (f) H 32 (f) H 41 (f) H 42 (f) ][ H 2'4' (f) H 2'3' (f) H 1'4' (f) H 1'3' (f) ] =[ H 31 (f) H 2'4' (f)+ H 32 (f) H 1'4' (f) H 31 (f) H 2'3' (f)+ H 32 (f) H 1'3' (f) H 41 (f) H 2'4' (f)+ H 42 (f) H 1'4' (f) H 41 (f) H 2'3' (f)+ H 42 (f) H 1'3' (f) ].
[ H 11 (f) H 21 (f) ]=[ H 22 (f) H 12 (f) ]=[ 2 H 31 (f) H 41 (f) H 31 (f) H 42 (f)+ H 41 (f) H 32 (f) ].

Metrics