Abstract

In this work, we propose an optimum unit cell arrangement to obtain near absolute polarization insensitivity in a metal-insulator-metal (MIM) based ultra-broadband perfect absorber. Our findings prove that upon utilizing this optimum arrangement, the response of the absorber is retained and unchanged over all arbitrary incidence light polarizations, regardless of the shape of the top metal patch. First, the impact of the geometry of the top nanopatch resonators on the absorption bandwidth of the overall structure is explored. Then, the response of the MIM design for different incidence polarizations and angles is scrutinized. Finally, the proposed design is fabricated and characterized.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks

Yuyin Li, Zhengqi Liu, Houjiao Zhang, Peng Tang, Biao Wu, and Guiqiang Liu
Opt. Express 27(8) 11809-11818 (2019)

Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial

Lei Lei, Shun Li, Haixuan Huang, Keyu Tao, and Ping Xu
Opt. Express 26(5) 5686-5693 (2018)

Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth

Amir Ghobadi, Hodjat Hajian, Alireza Rahimi Rashed, Bayram Butun, and Ekmel Ozbay
Photon. Res. 6(3) 168-176 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
    [PubMed]
  2. S. A. O. Olson, D. A. Mohr, J. Shaver, T. W. Johnson, and S. Oh, “Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy,” ACS Photonics 3, 1202–1207 (2016).
  3. Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
    [PubMed]
  4. J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10, 11–17 (2016).
  5. V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
    [PubMed]
  6. S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal – insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7, 42349 (2017).
    [PubMed]
  7. H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna,” Nano Lett. 14(3), 1374–1380 (2014).
    [PubMed]
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [PubMed]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [PubMed]
  10. W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010).
    [PubMed]
  11. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 1–5 (2009).
  12. H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).
  13. Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
    [PubMed]
  14. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [PubMed]
  15. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).
  16. M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 25006 (2013).
  17. N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
    [PubMed]
  18. M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).
  19. H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
    [PubMed]
  20. A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
    [PubMed]
  21. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
    [PubMed]
  22. X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photonic Res. 4, 146–152 (2016).
  23. X. Ming and Q. Tan, “Design Method of a Broadband Wide-Angle Plasmonic Absorber in the Visible Range,” Plasmonics 12, 14–17 (2017).
  24. H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
    [PubMed]
  25. F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
    [PubMed]
  26. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
    [PubMed]
  27. D. Hu, H.-Y. Wang, and Q.-F. Zhu, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophotonics 10, 26021 (2016).
  28. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
    [PubMed]
  29. G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5(20), 9957–9962 (2013).
    [PubMed]
  30. Lumerical Solut, Inc. http://www.lumerical.com/tcad-products/fdtd/ .
  31. Y. Huang, X. Zhang, J. Li, L. Ma, and Z. Zhang, “Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal – insulator – metal waveguides,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 6079–6085 (2017).
  32. Y. Huang, L. Ma, M. Hou, and Z. Zhang, “Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals,” Plasmonics 11, 1377–1383 (2016).
  33. R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
    [PubMed]
  34. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic Systems Unveiled by Fano Resonances,” ACS Nano 6(2), 1830–1838 (2012).
    [PubMed]
  35. M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
    [PubMed]
  36. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19(20), 19310–19322 (2011).
    [PubMed]

2017 (4)

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal – insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7, 42349 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

X. Ming and Q. Tan, “Design Method of a Broadband Wide-Angle Plasmonic Absorber in the Visible Range,” Plasmonics 12, 14–17 (2017).

Y. Huang, X. Zhang, J. Li, L. Ma, and Z. Zhang, “Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal – insulator – metal waveguides,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 6079–6085 (2017).

2016 (8)

Y. Huang, L. Ma, M. Hou, and Z. Zhang, “Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals,” Plasmonics 11, 1377–1383 (2016).

D. Hu, H.-Y. Wang, and Q.-F. Zhu, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophotonics 10, 26021 (2016).

X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photonic Res. 4, 146–152 (2016).

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[PubMed]

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
[PubMed]

S. A. O. Olson, D. A. Mohr, J. Shaver, T. W. Johnson, and S. Oh, “Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy,” ACS Photonics 3, 1202–1207 (2016).

J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10, 11–17 (2016).

2015 (2)

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[PubMed]

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

2014 (1)

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[PubMed]

2013 (7)

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
[PubMed]

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 25006 (2013).

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[PubMed]

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5(20), 9957–9962 (2013).
[PubMed]

H. Wang and L. Wang, “Perfect selective metamaterial solar absorbers,” Opt. Express 21, A1078–A1093 (2013).
[PubMed]

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[PubMed]

2012 (3)

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[PubMed]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic Systems Unveiled by Fano Resonances,” ACS Nano 6(2), 1830–1838 (2012).
[PubMed]

2011 (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19(20), 19310–19322 (2011).
[PubMed]

2010 (5)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010).
[PubMed]

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[PubMed]

2009 (2)

Q. Y. Wen, Y. S. Xie, H. W. Zhang, Q. H. Yang, Y. X. Li, and Y. L. Liu, “Transmission line model and fields analysis of metamaterial absorber in the terahertz band,” Opt. Express 17(22), 20256–20265 (2009).
[PubMed]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 1–5 (2009).

2008 (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Abedzadeh, N.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[PubMed]

Adam, P. M.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Aközbek, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[PubMed]

Albrektsen, O.

Amarloo, H.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[PubMed]

Ansell, D.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Arroyo, J. O.

J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10, 11–17 (2016).

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[PubMed]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 1–5 (2009).

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Beermann, J.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

Bingham, C. M.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[PubMed]

Bozhevolnyi, S. I.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[PubMed]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012).
[PubMed]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express 19(20), 19310–19322 (2011).
[PubMed]

Bozok, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Britnell, L.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Brongersma, M. L.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[PubMed]

Butun, B.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

Chalabi, H.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[PubMed]

Chang, W. S.

W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010).
[PubMed]

Chen, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[PubMed]

Chirumamilla, M.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

Czaplewski, D.

D’Aguanno, G.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[PubMed]

Dai, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[PubMed]

Deng, H.

Deng, J.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
[PubMed]

Dereshgi, S. A.

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal – insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7, 42349 (2017).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

Ding, F.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[PubMed]

Eghlidi, H.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5(20), 9957–9962 (2013).
[PubMed]

Eriksen, R. L.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

Fan, K.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

Fang, Y.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
[PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic Systems Unveiled by Fano Resonances,” ACS Nano 6(2), 1830–1838 (2012).
[PubMed]

Gao, J.

Geim, A. K.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Ghobadi, A.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic Systems Unveiled by Fano Resonances,” ACS Nano 6(2), 1830–1838 (2012).
[PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Gorbachev, R. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Gramotnev, D. K.

Grigorenko, A. N.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Ha, J. W.

W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010).
[PubMed]

Hajian, H.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Herro, Z.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Holmgaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

Hou, M.

Y. Huang, L. Ma, M. Hou, and Z. Zhang, “Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals,” Plasmonics 11, 1377–1383 (2016).

Hu, D.

D. Hu, H.-Y. Wang, and Q.-F. Zhu, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophotonics 10, 26021 (2016).

Huang, Y.

Y. Huang, X. Zhang, J. Li, L. Ma, and Z. Zhang, “Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal – insulator – metal waveguides,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 6079–6085 (2017).

Y. Huang, L. Ma, M. Hou, and Z. Zhang, “Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals,” Plasmonics 11, 1377–1383 (2016).

Jalil, R.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Jin, Y.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[PubMed]

Johnson, T. W.

S. A. O. Olson, D. A. Mohr, J. Shaver, T. W. Johnson, and S. Oh, “Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy,” ACS Photonics 3, 1202–1207 (2016).

Kabashin, A. V.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Kazan, M.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Khorasaninejad, M.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[PubMed]

Kravets, V. G.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Kristensen, P. K.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

Kukura, P.

J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10, 11–17 (2016).

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Lévêque, G.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Li, J.

Y. Huang, X. Zhang, J. Li, L. Ma, and Z. Zhang, “Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal – insulator – metal waveguides,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 6079–6085 (2017).

Li, Y.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
[PubMed]

Li, Y. X.

Li, Z.

X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photonic Res. 4, 146–152 (2016).

H. Deng, Z. Li, L. Stan, D. Rosenmann, D. Czaplewski, J. Gao, and X. Yang, “Broadband perfect absorber based on one ultrathin layer of refractory metal,” Opt. Lett. 40(11), 2592–2595 (2015).
[PubMed]

Link, S.

W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010).
[PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Liu, Y. L.

Luo, S.

Ma, L.

Y. Huang, X. Zhang, J. Li, L. Ma, and Z. Zhang, “Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal – insulator – metal waveguides,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 6079–6085 (2017).

Y. Huang, L. Ma, M. Hou, and Z. Zhang, “Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals,” Plasmonics 11, 1377–1383 (2016).

Madi, Y.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Maier, S. A.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic Systems Unveiled by Fano Resonances,” ACS Nano 6(2), 1830–1838 (2012).
[PubMed]

Marae-Djouda, J.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Mattiucci, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[PubMed]

Maurer, T.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Ming, X.

X. Ming and Q. Tan, “Design Method of a Broadband Wide-Angle Plasmonic Absorber in the Visible Range,” Plasmonics 12, 14–17 (2017).

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Mohr, D. A.

S. A. O. Olson, D. A. Mohr, J. Shaver, T. W. Johnson, and S. Oh, “Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy,” ACS Photonics 3, 1202–1207 (2016).

Mohsen Raeis-Zadeh, S.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[PubMed]

Montay, G.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Nicolas, R.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Nielsen, M. G.

Novikov, S. M.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

Novoselov, K. S.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Oh, S.

S. A. O. Olson, D. A. Mohr, J. Shaver, T. W. Johnson, and S. Oh, “Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy,” ACS Photonics 3, 1202–1207 (2016).

Okyay, A. K.

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal – insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7, 42349 (2017).
[PubMed]

Olson, S. A. O.

S. A. O. Olson, D. A. Mohr, J. Shaver, T. W. Johnson, and S. Oh, “Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy,” ACS Photonics 3, 1202–1207 (2016).

Ozbay, E.

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

Padilla, W. J.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Pedersen, K.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

Pilon, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

Plain, J.

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[PubMed]

Pors, A.

Poulikakos, D.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5(20), 9957–9962 (2013).
[PubMed]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Roberts, A. S.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

Rosenmann, D.

Safavi-Naeini, S.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[PubMed]

Saini, S. S.

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Schoen, D.

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[PubMed]

Shaver, J.

S. A. O. Olson, D. A. Mohr, J. Shaver, T. W. Johnson, and S. Oh, “Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy,” ACS Photonics 3, 1202–1207 (2016).

Shou, C.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
[PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 1–5 (2009).

Sisman, Z.

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal – insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7, 42349 (2017).
[PubMed]

Slaughter, L. S.

W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010).
[PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Søndergaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

Stan, L.

Strikwerda, A. C.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

Su, L.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
[PubMed]

Tagliabue, G.

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5(20), 9957–9962 (2013).
[PubMed]

Tan, Q.

X. Ming and Q. Tan, “Design Method of a Broadband Wide-Angle Plasmonic Absorber in the Visible Range,” Plasmonics 12, 14–17 (2017).

Tao, H.

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

Thackray, B.

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Tian, X.

X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photonic Res. 4, 146–152 (2016).

Topalli, K.

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal – insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7, 42349 (2017).
[PubMed]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 1–5 (2009).

Wang, D.

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

Wang, H.

Wang, H.-Y.

D. Hu, H.-Y. Wang, and Q.-F. Zhu, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophotonics 10, 26021 (2016).

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Wang, L.

Wang, X.

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

Wen, Q. Y.

Xie, Y. S.

Yan, M.

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 25006 (2013).

Yang, Q. H.

Yang, X.

Yu, C.

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
[PubMed]

Zhang, H. W.

Zhang, X.

Y. Huang, X. Zhang, J. Li, L. Ma, and Z. Zhang, “Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal – insulator – metal waveguides,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 6079–6085 (2017).

Zhang, Z.

Y. Huang, X. Zhang, J. Li, L. Ma, and Z. Zhang, “Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal – insulator – metal waveguides,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 6079–6085 (2017).

Y. Huang, L. Ma, M. Hou, and Z. Zhang, “Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals,” Plasmonics 11, 1377–1383 (2016).

Zhao, J.

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

Zhu, J.

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[PubMed]

Zhu, Q.-F.

D. Hu, H.-Y. Wang, and Q.-F. Zhu, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophotonics 10, 26021 (2016).

Zuo, D.

ACS Nano (1)

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic Systems Unveiled by Fano Resonances,” ACS Nano 6(2), 1830–1838 (2012).
[PubMed]

ACS Photonics (1)

S. A. O. Olson, D. A. Mohr, J. Shaver, T. W. Johnson, and S. Oh, “Plasmonic Cup Resonators for Single-Nanohole-Based Sensing and Spectroscopy,” ACS Photonics 3, 1202–1207 (2016).

Appl. Phys. Lett. (1)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96, 251104 (2010).

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Y. Huang, X. Zhang, J. Li, L. Ma, and Z. Zhang, “Analytical plasmon dispersion in subwavelength closely spaced Au nanorod arrays from planar metal – insulator – metal waveguides,” J. Mater. Chem. C Mater. Opt. Electron. Devices 5, 6079–6085 (2017).

J. Nanophotonics (1)

D. Hu, H.-Y. Wang, and Q.-F. Zhu, “Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator,” J. Nanophotonics 10, 26021 (2016).

J. Opt. (1)

M. Yan, “Metal-insulator-metal light absorber: a continuous structure,” J. Opt. 15, 25006 (2013).

J. Phys. D Appl. Phys. (1)

H. Tao, C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, and W. J. Padilla, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43, 225102 (2010).

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[PubMed]

H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna,” Nano Lett. 14(3), 1374–1380 (2014).
[PubMed]

Nanoscale (1)

G. Tagliabue, H. Eghlidi, and D. Poulikakos, “Facile multifunctional plasmonic sunlight harvesting with tapered triangle nanopatterning of thin films,” Nanoscale 5(20), 9957–9962 (2013).
[PubMed]

Nanotechnology (1)

M. Khorasaninejad, S. Mohsen Raeis-Zadeh, H. Amarloo, N. Abedzadeh, S. Safavi-Naeini, and S. S. Saini, “Colorimetric sensors using nano-patch surface plasmon resonators,” Nanotechnology 24(35), 355501 (2013).
[PubMed]

Nat. Commun. (2)

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011).
[PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[PubMed]

V. G. Kravets, F. Schedin, R. Jalil, L. Britnell, R. V. Gorbachev, D. Ansell, B. Thackray, K. S. Novoselov, A. K. Geim, A. V. Kabashin, and A. N. Grigorenko, “Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection,” Nat. Mater. 12(4), 304–309 (2013).
[PubMed]

Nat. Photonics (1)

J. O. Arroyo and P. Kukura, “Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy,” Nat. Photonics 10, 11–17 (2016).

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

M. Chirumamilla, A. S. Roberts, F. Ding, D. Wang, P. K. Kristensen, S. I. Bozhevolnyi, and K. Pedersen, “Multilayer tungsten-alumina-based broadband light absorbers for high- temperature applications,” Opt. Mater. Express 6, 1443–1447 (2016).

Photonic Res. (1)

X. Tian and Z. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials,” Photonic Res. 4, 146–152 (2016).

Phys. Rev. B (1)

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, “Wide-angle infrared absorber based on a negative-index plasmonic metamaterial,” Phys. Rev. B 79, 1–5 (2009).

Phys. Rev. Lett. (1)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect Metamaterial Absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[PubMed]

Plasmonics (2)

X. Ming and Q. Tan, “Design Method of a Broadband Wide-Angle Plasmonic Absorber in the Visible Range,” Plasmonics 12, 14–17 (2017).

Y. Huang, L. Ma, M. Hou, and Z. Zhang, “Universal Near-Field Interference Patterns of Fano Resonances in Two-Dimensional Plasmonic Crystals,” Plasmonics 11, 1377–1383 (2016).

Proc. Natl. Acad. Sci. U.S.A. (1)

W. S. Chang, J. W. Ha, L. S. Slaughter, and S. Link, “Plasmonic nanorod absorbers as orientation sensors,” Proc. Natl. Acad. Sci. U.S.A. 107(7), 2781–2786 (2010).
[PubMed]

Sci. Rep. (6)

Y. Li, L. Su, C. Shou, C. Yu, J. Deng, and Y. Fang, “Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared,” Sci. Rep. 3, 2865 (2013).
[PubMed]

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[PubMed]

S. A. Dereshgi, Z. Sisman, K. Topalli, and A. K. Okyay, “Plasmonically enhanced metal – insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications,” Sci. Rep. 7, 42349 (2017).
[PubMed]

R. Nicolas, G. Lévêque, J. Marae-Djouda, G. Montay, Y. Madi, J. Plain, Z. Herro, M. Kazan, P. M. Adam, and T. Maurer, “Plasmonic mode interferences and Fano resonances in Metal-Insulator-Metal nanostructured interface,” Sci. Rep. 5, 14419 (2015).
[PubMed]

A. Ghobadi, S. A. Dereshgi, H. Hajian, B. Bozok, B. Butun, and E. Ozbay, “Ultra-broadband, wide angle absorber utilizing metal insulator multilayers stack with a multi-thickness metal surface texture,” Sci. Rep. 7(1), 4755 (2017).
[PubMed]

F. Ding, J. Dai, Y. Chen, J. Zhu, Y. Jin, and S. I. Bozhevolnyi, “Broadband near-infrared metamaterial absorbers utilizing highly lossy metals,” Sci. Rep. 6, 39445 (2016).
[PubMed]

Other (1)

Lumerical Solut, Inc. http://www.lumerical.com/tcad-products/fdtd/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustrative representation of the (a) unit cell, (b) cross section of the MIM design, (c) SEM image of the fabricated structure (the inset shows the magnified version of the design), and (d) the extracted relative permittivity values for the Au and Al2O3 layers.
Fig. 2
Fig. 2 Impact of the ellipse diameters on the absorption spectra of the MIM design for four different cases for D1 of (a) 30 nm, (b) 40 nm, (c) 50 nm, and (d) 60 nm. (e) The corresponding electric and magnetic field distribution across the MIM design for two different wavelengths of 420 and 680 nm. The units of E and H fields are V/m and A/m, respectively.
Fig. 3
Fig. 3 (a) Amount of absorbed power in bottom and top monitors located in the positions shown in the inset of the panel. The electric field distributions in the interface plane of the top metal and insulator for two different wavelengths of (b) 420 nm, and (c) 680 nm. (d) The NFE values for the three structures with different aspect ratios. The inset shows the position of the point monitors.
Fig. 4
Fig. 4 Equivalent unit cells of the triangular, honeycomb, and proposed designs for different light polarizations.
Fig. 5
Fig. 5 The simulated absorption spectra of the MIM structure upon excitation with (a) different light polarizations, and different angles of incidence for the (b) TM and (c) TE polarizations.
Fig. 6
Fig. 6 The absorption spectra of the fabricated MIM structure upon excitation with (a) different light polarizations, and different angles of incidence for the (b) TM and (c) TE polarizations. The inset shows the averaged visible light absorption values of the design.

Metrics