Abstract

The polarization conversion of electromagnetic (EM) waves, especially linear-to-circular (LTC) polarization conversion, is of great significance in practical applications. In this study, we propose an ultra-wideband high-efficiency reflective LTC polarization converter based on a metasurface in the terahertz regime. It consists of periodic unit cells, each cell of which is formed by a double split resonant square ring, dielectric layer, and fully reflective gold mirror. In the frequency range of 0.60 – 1.41 THz, the magnitudes of the reflection coefficients reach approximately 0.7, and the phase difference between the two orthogonal electric field components of the reflected wave is close to 90° or –270°. The results indicate that the relative bandwidth reaches 80% and the efficiency is greater than 88%, thus, ultra-wideband high-efficiency LTC polarization conversion has been realized. Finally, the physical mechanism of the polarization conversion is revealed. This converter has potential applications in antenna design, EM measurement, and stealth technology.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-wideband metasurface with linear-to-circular polarization conversion of an electromagnetic wave

Yongtao Jia, Ying Liu, Wenbo Zhang, Jun Wang, Yizhe Wang, Shuxi Gong, and Guisheng Liao
Opt. Mater. Express 8(3) 597-604 (2018)

Dual-band superposition induced broadband terahertz linear-to-circular polarization converter

Xiao-Fei Zang, Su-Ji Liu, Han-Hong Gong, Yajun Wang, and Yi-Ming Zhu
J. Opt. Soc. Am. B 35(4) 950-957 (2018)

Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface

Jin Xu, Rongqiang Li, Jin Qin, Shenyun Wang, and Tiancheng Han
Opt. Express 26(16) 20913-20919 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).
  2. E. Martini, M. Mencagli, and S. Maci, “Metasurface transformation for surface wave control,” Philos Trans A Math Phys Eng Sci 373(2049), 20140355 (2015).
    [PubMed]
  3. Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
    [PubMed]
  4. J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).
  5. J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
    [PubMed]
  6. J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
    [PubMed]
  7. Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).
  8. X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).
  9. A. Kajiwara, “Line-of-sight indoor radio communication using circular polarized waves,” IEEE Trans. Vehicular Technol. 44(3), 487–493 (1995).
  10. L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).
  11. R. Orr, G. Goussetis, V. Fusco, and E. Saenz, “Linear-to-circular polarization reflector with transmission band,” IEEE Trans. Antenn. Propag. 63(5), 1949–1956 (2015).
  12. Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).
  13. X. Gao, X.-Y. Yu, W.-P. Cao, Y.-N. Jiang, and X.-H. Yu, “Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces,” Chin. Phys. B 25(12), 128102 (2016).
  14. Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, “Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies,” Appl. Phys. B 122, 178 (2016).
  15. L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).
  16. X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).
  17. X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
    [PubMed]
  18. M. Fartookzadeh, “Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth,” J. Mod. Opt. 64(18), 1854–1861 (2017).
  19. L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).
  20. M. Zahn, Electromagnetic Field Theory: A Problem Solving Approach (Krieger Publishing Company, 2003).
  21. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).
  22. X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).
  23. H. Li, B. Xiao, X. Huang, and H. Yang, “Multiple-band reflective polarization converter based on deformed F-shaped metamaterial,” Phys. Scr. 90(3), 035806 (2015).
  24. Y. Jiang, R. Yuan, X. Gao, J. Wang, S. Li, and Y. Y. Lin, “An ultra-wideband pattern reconfigurable antenna based on graphene coating,” Chin. Phys. B 25(11), 118402 (2016).

2017 (6)

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[PubMed]

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[PubMed]

L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[PubMed]

M. Fartookzadeh, “Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth,” J. Mod. Opt. 64(18), 1854–1861 (2017).

2016 (6)

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).

X. Gao, X.-Y. Yu, W.-P. Cao, Y.-N. Jiang, and X.-H. Yu, “Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces,” Chin. Phys. B 25(12), 128102 (2016).

Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, “Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies,” Appl. Phys. B 122, 178 (2016).

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).

Y. Jiang, R. Yuan, X. Gao, J. Wang, S. Li, and Y. Y. Lin, “An ultra-wideband pattern reconfigurable antenna based on graphene coating,” Chin. Phys. B 25(11), 118402 (2016).

2015 (9)

H. Li, B. Xiao, X. Huang, and H. Yang, “Multiple-band reflective polarization converter based on deformed F-shaped metamaterial,” Phys. Scr. 90(3), 035806 (2015).

L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).

R. Orr, G. Goussetis, V. Fusco, and E. Saenz, “Linear-to-circular polarization reflector with transmission band,” IEEE Trans. Antenn. Propag. 63(5), 1949–1956 (2015).

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).

E. Martini, M. Mencagli, and S. Maci, “Metasurface transformation for surface wave control,” Philos Trans A Math Phys Eng Sci 373(2049), 20140355 (2015).
[PubMed]

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).

2013 (1)

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

1995 (1)

A. Kajiwara, “Line-of-sight indoor radio communication using circular polarized waves,” IEEE Trans. Vehicular Technol. 44(3), 487–493 (1995).

Abele, E.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Akwuruoha, C. N.

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).

Azad, A. K.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Bykov, A. Y.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).

Cao, W.

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Cao, W.-P.

X. Gao, X.-Y. Yu, W.-P. Cao, Y.-N. Jiang, and X.-H. Yu, “Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces,” Chin. Phys. B 25(12), 128102 (2016).

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).

Chen, H.

L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).

Chen, H. T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Chen, M.

Chen, Q.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Cong, L.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Cui, T. J.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).

Deng, L.

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).

L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).

Fartookzadeh, M.

M. Fartookzadeh, “Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth,” J. Mod. Opt. 64(18), 1854–1861 (2017).

Fusco, V.

R. Orr, G. Goussetis, V. Fusco, and E. Saenz, “Linear-to-circular polarization reflector with transmission band,” IEEE Trans. Antenn. Propag. 63(5), 1949–1956 (2015).

Gao, C. N.

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).

Gao, S.

L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).

Gao, X.

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[PubMed]

Y. Jiang, R. Yuan, X. Gao, J. Wang, S. Li, and Y. Y. Lin, “An ultra-wideband pattern reconfigurable antenna based on graphene coating,” Chin. Phys. B 25(11), 118402 (2016).

X. Gao, X.-Y. Yu, W.-P. Cao, Y.-N. Jiang, and X.-H. Yu, “Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces,” Chin. Phys. B 25(12), 128102 (2016).

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).

Goussetis, G.

R. Orr, G. Goussetis, V. Fusco, and E. Saenz, “Linear-to-circular polarization reflector with transmission band,” IEEE Trans. Antenn. Propag. 63(5), 1949–1956 (2015).

Gu, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Han, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Han, X.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).

He, Y.

L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).

Hu, Z.

Hua, M.

Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).

Huang, X.

H. Li, B. Xiao, X. Huang, and H. Yang, “Multiple-band reflective polarization converter based on deformed F-shaped metamaterial,” Phys. Scr. 90(3), 035806 (2015).

Jia-Fu, W.

Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).

Jiang, Y.

Jiang, Y. N.

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).

Jiang, Y.-N.

X. Gao, X.-Y. Yu, W.-P. Cao, Y.-N. Jiang, and X.-H. Yu, “Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces,” Chin. Phys. B 25(12), 128102 (2016).

Ji-Bao, Y.

Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).

Kajiwara, A.

A. Kajiwara, “Line-of-sight indoor radio communication using circular polarized waves,” IEEE Trans. Vehicular Technol. 44(3), 487–493 (1995).

Kivshar, Y. S.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).

Li, H.

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[PubMed]

H. Li, B. Xiao, X. Huang, and H. Yang, “Multiple-band reflective polarization converter based on deformed F-shaped metamaterial,” Phys. Scr. 90(3), 035806 (2015).

Li, H. O.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).

Li, Q.

L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).

Li, S.

Y. Jiang, R. Yuan, X. Gao, J. Wang, S. Li, and Y. Y. Lin, “An ultra-wideband pattern reconfigurable antenna based on graphene coating,” Chin. Phys. B 25(11), 118402 (2016).

Li, T.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Li, W.

L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).

Li, Y.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Lin, Y. Y.

Y. Jiang, R. Yuan, X. Gao, J. Wang, S. Li, and Y. Y. Lin, “An ultra-wideband pattern reconfigurable antenna based on graphene coating,” Chin. Phys. B 25(11), 118402 (2016).

Liu, D.

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).

Liu, Y.

Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, “Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies,” Appl. Phys. B 122, 178 (2016).

Lu, H.

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).

L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).

Luo, Q.

L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).

Ma, H. F.

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).

Ma, X.

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).

Maci, S.

E. Martini, M. Mencagli, and S. Maci, “Metasurface transformation for surface wave control,” Philos Trans A Math Phys Eng Sci 373(2049), 20140355 (2015).
[PubMed]

Martini, E.

E. Martini, M. Mencagli, and S. Maci, “Metasurface transformation for surface wave control,” Philos Trans A Math Phys Eng Sci 373(2049), 20140355 (2015).
[PubMed]

Mencagli, M.

E. Martini, M. Mencagli, and S. Maci, “Metasurface transformation for surface wave control,” Philos Trans A Math Phys Eng Sci 373(2049), 20140355 (2015).
[PubMed]

Ming-De, F.

Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).

Minovich, A. E.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).

Miroshnichenko, A. E.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).

Murzina, T. V.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).

Neshev, D. N.

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).

O’Hara, J. F.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Orr, R.

R. Orr, G. Goussetis, V. Fusco, and E. Saenz, “Linear-to-circular polarization reflector with transmission band,” IEEE Trans. Antenn. Propag. 63(5), 1949–1956 (2015).

Pang, Y.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Qiao, W.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).

Qu, S.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Saenz, E.

R. Orr, G. Goussetis, V. Fusco, and E. Saenz, “Linear-to-circular polarization reflector with transmission band,” IEEE Trans. Antenn. Propag. 63(5), 1949–1956 (2015).

Shao-Bo, Q.

Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).

Shi, H.

Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, “Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies,” Appl. Phys. B 122, 178 (2016).

Singh, R.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Taylor, A. J.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Wang, J.

J. Wang and Y. Jiang, “Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials,” Opt. Express 25(5), 5206–5216 (2017).
[PubMed]

J. Wang, Y. Jiang, and Z. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
[PubMed]

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).

Y. Jiang, R. Yuan, X. Gao, J. Wang, S. Li, and Y. Y. Lin, “An ultra-wideband pattern reconfigurable antenna based on graphene coating,” Chin. Phys. B 25(11), 118402 (2016).

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Wen, L.

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).

Xia, S.

Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, “Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies,” Appl. Phys. B 122, 178 (2016).

Xiao, B.

H. Li, B. Xiao, X. Huang, and H. Yang, “Multiple-band reflective polarization converter based on deformed F-shaped metamaterial,” Phys. Scr. 90(3), 035806 (2015).

Xiao, Z.

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).

Xie, J.

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).

L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).

Xu, Z.

Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, “Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies,” Appl. Phys. B 122, 178 (2016).

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Yang, H.

H. Li, B. Xiao, X. Huang, and H. Yang, “Multiple-band reflective polarization converter based on deformed F-shaped metamaterial,” Phys. Scr. 90(3), 035806 (2015).

Yang, W.

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[PubMed]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).

Yong-Feng, L.

Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).

Yu, X.

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[PubMed]

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).

Yu, X.-H.

X. Gao, X.-Y. Yu, W.-P. Cao, Y.-N. Jiang, and X.-H. Yu, “Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces,” Chin. Phys. B 25(12), 128102 (2016).

Yu, X.-Y.

X. Gao, X.-Y. Yu, W.-P. Cao, Y.-N. Jiang, and X.-H. Yu, “Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces,” Chin. Phys. B 25(12), 128102 (2016).

Yuan, R.

Y. Jiang, R. Yuan, X. Gao, J. Wang, S. Li, and Y. Y. Lin, “An ultra-wideband pattern reconfigurable antenna based on graphene coating,” Chin. Phys. B 25(11), 118402 (2016).

Zhang, A.

Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, “Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies,” Appl. Phys. B 122, 178 (2016).

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Zhang, H.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Zhang, J.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Zhang, L.

L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).

L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).

Zhang, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Zhang, X.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Zhang, Y.

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Zheng, L.

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Zhou, P.

L. Zhang, P. Zhou, H. Lu, L. Zhang, J. Xie, and L. Deng, “Realization of broadband reflective polarization converter using asymmetric cross-shaped resonator,” Opt. Mater. Express 6(4), 1393–1404 (2016).

L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).

Appl. Phys. (Berl.) (1)

Y. Li, J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, “Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces,” Appl. Phys. (Berl.) 117, 044501 (2015).

Appl. Phys. B (2)

Y. Liu, S. Xia, H. Shi, A. Zhang, and Z. Xu, “Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies,” Appl. Phys. B 122, 178 (2016).

L. Zhang, P. Zhou, H. Chen, H. Lu, J. Xie, and L. Deng, “Broadband and wide-angle reflective polarization converter based on metasurface at microwave frequencies,” Appl. Phys. B 120(4), 617–622 (2015).

Appl. Phys. Lett. (1)

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103, 171107 (2013).

Chin. Phys. B (3)

Y. Jiang, R. Yuan, X. Gao, J. Wang, S. Li, and Y. Y. Lin, “An ultra-wideband pattern reconfigurable antenna based on graphene coating,” Chin. Phys. B 25(11), 118402 (2016).

X. Gao, X.-Y. Yu, W.-P. Cao, Y.-N. Jiang, and X.-H. Yu, “Ultra-wideband circular-polarization converter with micro-split Jerusalem-cross metasurfaces,” Chin. Phys. B 25(12), 128102 (2016).

J. Wang, C. N. Gao, Y. N. Jiang, and C. N. Akwuruoha, “Ultra-broadband and polarization-independent planar absorber based on multilayered graphene,” Chin. Phys. B 26(11), 114102 (2017).

IEEE Photonics Technol. Lett. (1)

X. Yu, X. Gao, W. Qiao, L. Wen, and W. Yang, “Broadband tunable polarization converter realized by graphene-based metamaterial,” IEEE Photonics Technol. Lett. 28(21), 2399–2402 (2016).

IEEE Trans. Antenn. Propag. (3)

L. Zhang, S. Gao, Q. Luo, W. Li, Y. He, and Q. Li, “Single-layer wideband circularly polarized high-efficiency reflectarray for satellite communications,” IEEE Trans. Antenn. Propag. 65(9), 4529–4538 (2017).

R. Orr, G. Goussetis, V. Fusco, and E. Saenz, “Linear-to-circular polarization reflector with transmission band,” IEEE Trans. Antenn. Propag. 63(5), 1949–1956 (2015).

X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, “Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface,” IEEE Trans. Antenn. Propag. 63(8), 3522–3530 (2015).

IEEE Trans. Vehicular Technol. (1)

A. Kajiwara, “Line-of-sight indoor radio communication using circular polarized waves,” IEEE Trans. Vehicular Technol. 44(3), 487–493 (1995).

J. Mod. Opt. (2)

X. Ma, Z. Xiao, and D. Liu, “Dual-band cross polarization converter in bi-layered complementary chiral metamaterial,” J. Mod. Opt. 63(10), 937–940 (2016).

M. Fartookzadeh, “Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth,” J. Mod. Opt. 64(18), 1854–1861 (2017).

Laser Photonics Rev. (1)

A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, “Functional and nonlinear optical metasurfaces,” Laser Photonics Rev. 9(2), 195–213 (2015).

Opt. Express (3)

Opt. Mater. Express (1)

Philos Trans A Math Phys Eng Sci (1)

E. Martini, M. Mencagli, and S. Maci, “Metasurface transformation for surface wave control,” Philos Trans A Math Phys Eng Sci 373(2049), 20140355 (2015).
[PubMed]

Phys. Scr. (1)

H. Li, B. Xiao, X. Huang, and H. Yang, “Multiple-band reflective polarization converter based on deformed F-shaped metamaterial,” Phys. Scr. 90(3), 035806 (2015).

Sci. Rep. (1)

Y. Zhang, T. Li, Q. Chen, H. Zhang, J. F. O’Hara, E. Abele, A. J. Taylor, H. T. Chen, and A. K. Azad, “Independently tunable dual-band perfect absorber based on graphene at mid-infrared frequencies,” Sci. Rep. 5, 18463 (2015).
[PubMed]

Wuli Xuebao (1)

Y. Ji-Bao, M. Hua, W. Jia-Fu, F. Ming-De, L. Yong-Feng, and Q. Shao-Bo, “High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators,” Wuli Xuebao 64(17), 178101 (2015).

Other (1)

M. Zahn, Electromagnetic Field Theory: A Problem Solving Approach (Krieger Publishing Company, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 3 × 3 unit structure diagram of the proposed polarization converter.
Fig. 2
Fig. 2 Reflection coefficients for x-component and y-component. (a) Magnitude, (b) phase, and phase difference.
Fig. 3
Fig. 3 Ellipticity of this design excited by y-polarized plane wave. The insets from (a) to (i) show the electric field distribution at 0.8 THz for different time phases from 0° to 160° with a step of 20°.
Fig. 4
Fig. 4 AR and efficiency.
Fig. 5
Fig. 5 LTC polarization conversion performance for various parameters. (a) Angle of incidence and frequency-dependent AR; (b) the h-dependent reflection coefficient magnitudes and phase differences; (c) the h-dependent AR and η.
Fig. 6
Fig. 6 (a) Magnitudes, (b) phases, and phase differences of the reflection coefficients in the uv coordinate system.
Fig. 7
Fig. 7 Current distributions and diagrams of the equivalent electric and magnetic moments. The images from the 1st to 4th row show the case for 0.7, 1.0, 1.35, and 1.5 THz, respectively. The 1st and 3rd columns show the current distributions on the metasurface, and the 2nd and 4th columns show those on the metal ground; the 1st and 2nd columns show those for the u-polarized incident wave, and the 3rd and 4th columns show those for the v-polarized incident wave. The 5th column shows diagrams of the equivalent electric moments (red double-headed arrows) and equivalent magnetic moments (blue circles).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I= | r xy | 2 + | r yy | 2 Q= | r yy | 2 | r xy | 2 U=2| r xy || r yy |cosΔϕ . V=2| r xy || r yy |sinΔϕ

Metrics