Abstract

A fast tunable dual-wavelength laser based on in-fiber acousto-optic Mach-Zehnder interferometer (AO-MZI) with new fabrication process is proposed. Not only could the center wavelength of the output laser be optimized with enhanced tuning range about 30 nm by tuning the polarization and the driving frequency of the radio frequency (RF) signal accordingly, but also the spectral spacing between the two output wavelengths could be tuned from ~0 nm to 2.65 nm by controlling the power of the RF signal. The tuning mechanism was also discussed.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable in-fiber Mach-Zehnder interferometer driven by unique acoustic transducer and its application in tunable multi-wavelength laser

Ligang Huang, Pengfa Chang, Xiaobo Song, Weihua Peng, Wending Zhang, Feng Gao, Fang Bo, Guoquan Zhang, and Jingjun Xu
Opt. Express 24(3) 2406-2412 (2016)

All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber

Ligang Huang, Xiaobo Song, Pengfa Chang, Weihua Peng, Wending Zhang, Feng Gao, Fang Bo, Guoquan Zhang, and Jingjun Xu
Opt. Express 24(7) 7449-7455 (2016)

Tunable dual-wavelength ytterbium-doped fiber laser using a strain technique on microfiber Mach–Zehnder interferometer

H. Ahmad, M. A. M. Salim, Saaidal R. Azzuhri, M. F. Jaddoa, and S. W. Harun
Appl. Opt. 55(4) 778-782 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51-μm wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).
  2. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [PubMed]
  3. M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30(13), 1085–1087 (1994).
  4. Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photonics Technol. Lett. 18(1), 187–189 (2006).
  5. M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. L. Floch, “Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).
  6. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19(2), 779–786 (2011).
    [PubMed]
  7. D. S. Moon, U.-C. Paek, and Y. Chung, “Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating,” Opt. Express 12(25), 6147–6152 (2004).
    [PubMed]
  8. M. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812 (2008).
  9. P. C. Peng, T. Hong-Yih, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 15(5), 661–663 (2003).
  10. H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).
  11. W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).
  12. H. Young-Geun, K. Chang-Seok, J. U. Kang, P. Un-Chul, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).
  13. X. S. Liu, L. Zhan, S. Y. Luo, Y. X. Wang, and Q. S. Shen, “Individually switchable and widely tunable multiwavelength erbium-doped fiber laser based on cascaded mismatching long-period fiber gratings,” J. Lightwave Technol. 29(21), 3319–3326 (2011).
  14. L. Huang, P. Chang, X. Song, W. Peng, W. Zhang, F. Gao, F. Bo, G. Zhang, and J. Xu, “Tunable in-fiber Mach-Zehnder interferometer driven by unique acoustic transducer and its application in tunable multi-wavelength laser,” Opt. Express 24(3), 2406–2412 (2016).
    [PubMed]
  15. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
    [PubMed]
  16. W. Zhang, K. Wei, L. Huang, D. Mao, B. Jiang, F. Gao, G. Zhang, T. Mei, and J. Zhao, “Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating,” Opt. Express 24(17), 19278–19285 (2016).
    [PubMed]
  17. T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single mode fiber,” IEEE Photonics Technol. Lett. 14(8), 1133–1135 (2002).
  18. J. Villatoro, V. P. Minkovich, and D. Monz’on-Hern’andez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photonics Technol. Lett. 18(9–12), 1258–1260 (2006).
  19. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
    [PubMed]
  20. W. Zhang, L. Huang, K. Wei, P. Li, B. Jiang, D. Mao, F. Gao, T. Mei, G. Zhang, and J. Zhao, “Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave,” Opt. Express 24(10), 10376–10384 (2016).
    [PubMed]
  21. J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, “Analysis of intermodal coupling in a two-mode fiber with periodic microbends,” Opt. Lett. 12(4), 281–283 (1987).
    [PubMed]
  22. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

2016 (3)

2013 (1)

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[PubMed]

2011 (3)

2009 (1)

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

2008 (1)

M. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812 (2008).

2007 (1)

2006 (2)

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photonics Technol. Lett. 18(1), 187–189 (2006).

J. Villatoro, V. P. Minkovich, and D. Monz’on-Hern’andez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photonics Technol. Lett. 18(9–12), 1258–1260 (2006).

2004 (1)

2003 (2)

P. C. Peng, T. Hong-Yih, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 15(5), 661–663 (2003).

H. Young-Geun, K. Chang-Seok, J. U. Kang, P. Un-Chul, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).

2002 (1)

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single mode fiber,” IEEE Photonics Technol. Lett. 14(8), 1133–1135 (2002).

2001 (1)

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51-μm wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).

1999 (1)

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).

1998 (1)

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. L. Floch, “Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

1994 (1)

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30(13), 1085–1087 (1994).

1987 (1)

Abdul Rashid, H. A.

M. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812 (2008).

Al-Mansoori, M. H.

M. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812 (2008).

Alouini, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. L. Floch, “Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).

An, H. L.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).

Archambault, J. L.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30(13), 1085–1087 (1994).

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

Blake, J. N.

Bo, F.

Bretenaker, F.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. L. Floch, “Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).

Brunel, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. L. Floch, “Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).

Chang, P.

Chang-Seok, K.

H. Young-Geun, K. Chang-Seok, J. U. Kang, P. Un-Chul, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).

Charrière, F.

Chen, W. G.

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

Chen, X. F.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photonics Technol. Lett. 18(1), 187–189 (2006).

Cheng, K.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single mode fiber,” IEEE Photonics Technol. Lett. 14(8), 1133–1135 (2002).

Chi, S.

P. C. Peng, T. Hong-Yih, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 15(5), 661–663 (2003).

Choudhury, P. K.

M. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812 (2008).

Chung, Y.

D. S. Moon, U.-C. Paek, and Y. Chung, “Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating,” Opt. Express 12(25), 6147–6152 (2004).
[PubMed]

H. Young-Geun, K. Chang-Seok, J. U. Kang, P. Un-Chul, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).

Colomb, T.

Cuche, E.

Dai, Y. T.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photonics Technol. Lett. 18(1), 187–189 (2006).

Dakin, J. P.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30(13), 1085–1087 (1994).

Depeursinge, C.

Emery, Y.

Engan, H. E.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

Feng, S. C.

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

Floch, A. L.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. L. Floch, “Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).

Gao, F.

Guo, T. Y.

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[PubMed]

Hong-Yih, T.

P. C. Peng, T. Hong-Yih, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 15(5), 661–663 (2003).

Huang, L.

Ito, H.

Jian, S. S.

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

Jiang, B.

Jiang, L.

Jin, T.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single mode fiber,” IEEE Photonics Technol. Lett. 14(8), 1133–1135 (2002).

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

Kang, J. U.

H. Young-Geun, K. Chang-Seok, J. U. Kang, P. Un-Chul, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).

Kasamatsu, T.

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51-μm wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).

Kim, B. Y.

Kühn, J.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

Li, B.

Li, H. L.

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

Li, P.

Li, Q.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single mode fiber,” IEEE Photonics Technol. Lett. 14(8), 1133–1135 (2002).

Lin, X. Z.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).

Liu, H. D.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).

Liu, X.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[PubMed]

Liu, X. M.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single mode fiber,” IEEE Photonics Technol. Lett. 14(8), 1133–1135 (2002).

Liu, X. S.

Lou, S. Q.

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

Lu, H.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[PubMed]

Lu, Y.

Luo, S. Y.

Mao, D.

Marquet, P.

Mei, T.

Minamide, H.

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, and D. Monz’on-Hern’andez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photonics Technol. Lett. 18(9–12), 1258–1260 (2006).

Mohd Nasir, M. N.

M. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812 (2008).

Montfort, F.

Monz’on-Hern’andez, D.

J. Villatoro, V. P. Minkovich, and D. Monz’on-Hern’andez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photonics Technol. Lett. 18(9–12), 1258–1260 (2006).

Moon, D. S.

Notake, T.

Ohno, S.

Ono, T.

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51-μm wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).

Paek, U.-C.

Peng, P. C.

P. C. Peng, T. Hong-Yih, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 15(5), 661–663 (2003).

Peng, W.

Pun, E. Y. B.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).

Reekie, L.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30(13), 1085–1087 (1994).

Shaw, H. J.

Shen, Q. S.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

Song, X.

Sun, Z.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[PubMed]

Tang, M.

Tsai, H.

Un-Chul, P.

H. Young-Geun, K. Chang-Seok, J. U. Kang, P. Un-Chul, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).

Vallet, M.

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. L. Floch, “Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

Villatoro, J.

J. Villatoro, V. P. Minkovich, and D. Monz’on-Hern’andez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photonics Technol. Lett. 18(9–12), 1258–1260 (2006).

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[PubMed]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[PubMed]

Wang, L. W.

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

Wang, M.

Wang, S.

Wang, Y.

Wang, Y. X.

Wei, K.

Xiao, H.

Xie, S. Z.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photonics Technol. Lett. 18(1), 187–189 (2006).

Xu, J.

Xu, M. G.

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30(13), 1085–1087 (1994).

Yang, J.

Yano, Y.

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51-μm wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).

Yao, Y.

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photonics Technol. Lett. 18(1), 187–189 (2006).

Young-Geun, H.

H. Young-Geun, K. Chang-Seok, J. U. Kang, P. Un-Chul, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).

Yusoff, Z.

M. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812 (2008).

Zhan, L.

Zhang, G.

Zhang, W.

Zhao, J.

Zhao, J. H.

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single mode fiber,” IEEE Photonics Technol. Lett. 14(8), 1133–1135 (2002).

Appl. Opt. (1)

Electron. Lett. (1)

M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, “Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors,” Electron. Lett. 30(13), 1085–1087 (1994).

IEEE Photonics Technol. Lett. (7)

Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photonics Technol. Lett. 18(1), 187–189 (2006).

M. Alouini, M. Brunel, F. Bretenaker, M. Vallet, and A. L. Floch, “Dual tunable wavelength Er, Yb: glass laser for terahertz beat frequency generation,” IEEE Photonics Technol. Lett. 10(11), 1554–1556 (1998).

T. Kasamatsu, Y. Yano, and T. Ono, “Gain-shifted dual-wavelength-pumped thulium-doped fiber amplifier for WDM signals in the 1.48-1.51-μm wavelength region,” IEEE Photonics Technol. Lett. 13(1), 31–33 (2001).

P. C. Peng, T. Hong-Yih, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry-Perot laser diode,” IEEE Photonics Technol. Lett. 15(5), 661–663 (2003).

H. Young-Geun, K. Chang-Seok, J. U. Kang, P. Un-Chul, and Y. Chung, “Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings,” IEEE Photonics Technol. Lett. 15(3), 383–385 (2003).

T. Jin, Q. Li, J. H. Zhao, K. Cheng, and X. M. Liu, “Ultra-broad-band AOTF based on cladding etched single mode fiber,” IEEE Photonics Technol. Lett. 14(8), 1133–1135 (2002).

J. Villatoro, V. P. Minkovich, and D. Monz’on-Hern’andez, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photonics Technol. Lett. 18(9–12), 1258–1260 (2006).

J. Lightwave Technol. (2)

X. S. Liu, L. Zhan, S. Y. Luo, Y. X. Wang, and Q. S. Shen, “Individually switchable and widely tunable multiwavelength erbium-doped fiber laser based on cascaded mismatching long-period fiber gratings,” J. Lightwave Technol. 29(21), 3319–3326 (2011).

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).

Laser Phys. (1)

W. G. Chen, S. Q. Lou, S. C. Feng, L. W. Wang, H. L. Li, T. Y. Guo, and S. S. Jian, “Switchable multi-wavelength fiber ring laser based on a compact in-fiber Mach-Zehnder interferometer with photonic crystal fiber,” Laser Phys. 19(11), 2115 (2009).

Laser Phys. Lett. (1)

M. N. Mohd Nasir, Z. Yusoff, M. H. Al-Mansoori, H. A. Abdul Rashid, and P. K. Choudhury, “Broadly tunable multi-wavelength Brillouin-erbium fiber laser in a Fabry-Perot cavity,” Laser Phys. Lett. 5(11), 812 (2008).

Opt. Commun. (1)

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, “Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach–Zehnder comb filter,” Opt. Commun. 169(1), 159–165 (1999).

Opt. Express (6)

Opt. Lett. (1)

Sci. Rep. (1)

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 3223 (2013).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Profile of the in-fiber AO-MZI and the configuration of tunable ring laser. (a) The profile of the AO-MZI prepared by tapering, in which AT is an acoustic transducer and RF is a radio-frequency source. (b) The configuration of the ring laser. FI: fiber isolator, PC: polarization controller, EDFA: erbium doped fiber amplifier, OSA: optical spectrum analyzer, Coupler: 90/10 coupler. AO-MZI acts as the multi-wavelength comb filter in the configuration. The polarizer could provide the tuning of the center wavelength in a larger range than previous configuration.
Fig. 2
Fig. 2 Wavelength spacing tuning with different driving powers of RF signal. (a)The output spectra of the laser at different polarization without RF signal applied in the AO-MZI; (b) The spectra of the output laser with different RF powers applied. (c)The tuning wavelength spacing of the two output dual-wavelength laser.
Fig. 3
Fig. 3 Spectra of the AO-MZI with different RF powers applied. (a)The transmission spectra of the AO-MZI. (b) The insertion loss of the AO-MZI. (c) The transmission spectra of the AO-MZI in a linear coordinate to show the visibility of the interference fringes.
Fig. 4
Fig. 4 (a) The calculated transmission spectra of the AO-MZI at different RF powers; (b) The calculation results of the total gain with both EDFA and AO-MZI considered. As the RF power is increasing, the gain spectrum evolves into two separated peaks with increasing spectral spacing, which will lead to a two-wavelength output with tunable spectral spacing accordingly.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Λ = ( π R C e x t / f a ) 1 / 2 ,
λ = ( n 01 c o n 1 u c l ) Λ ,

Metrics