Abstract

A monolithic optical injection-locked (MOIL) DFB laser with large stable injection locking range is experimentally demonstrated using the side-mode injection locking technique. The low-frequency roll-off in the MOIL DFB laser is suppressed significantly. The relaxation oscillation frequency is measured to be 26.84 GHz and the intrinsic 3-dB response bandwidth is more than 30 GHz, which is about 20 GHz higher than that of the free running DFB laser. The nonlinear distortions, including the 1-dB compression point, second harmonic distortion (2HD) and third-order intermodulation distortion (IMD3), are also suppressed significantly. A simple radio-over-fiber system transmitting 40 Msymbol/s 32-QAM signal with 6 GHz carrier is achieved using the MOIL DFB laser. After 50 km transmission, the average error vector magnitude (EVM) of the whole link is 2.94% in injection locked state, while the EVM in free running DFB laser is 5.25% as a comparison. To our knowledge, this is the first time that the MOIL DFB laser is realized utilizing the side-mode injection locking method.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths

Erwin K. Lau, Xiaoxue Zhao, Hyuk-Kee Sung, Devang Parekh, Connie Chang-Hasnain, and Ming C. Wu
Opt. Express 16(9) 6609-6618 (2008)

Dynamic behavior of injection-locked two-state quantum dot lasers

Amin Dehghaninejad, Mohammad Mohsen Sheikhey, and Hamed Baghban
J. Opt. Soc. Am. B 36(6) 1518-1524 (2019)

Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions

SeungHun Lee, Devang Parekh, Takahiko Shindo, Weijian Yang, Peng Guo, Daisuke Takahashi, Nobuhiko Nishiyama, Connie J. Chang-Hasnain, and Shigehisa Arai
Opt. Express 18(16) 16370-16378 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection,” IEEE Photonics Technol. Lett. 14(2), 233–235 (2002).
  2. L. Hai-Han, H. Hsu-Hung, S. Heng-Sheng, and W. Ming-Chuan, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photonics Technol. Lett. 15(7), 1017–1019 (2003).
  3. R. A. York and T. Itoh, “Injection- and phase-locking techniques for beam control antenna arrays,” IEEE Trans. Microw. Theory Tech. 46(11), 1920–1929 (1998).
  4. L. Yu, L. Guo, D. Lu, C. Ji, H. Wang, and L. Zhao, “Modulated bandwidth enhancement in an amplified feedback laser,” Chin. Opt. Lett. 13(5), 051401 (2015).
  5. J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
  6. Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).
  7. E. K. Lau, L. Wong, X. Zhao, Y. K. Chen, C. J. Chang-Hasnain, and M. C. Wu, “Bandwidth Enhancement by Master Modulation of Optical Injection-Locked Lasers,” J. Lightwave Technol. 26(15), 2584–2593 (2008).
  8. E. K. Lau, W. Liang Jie, and M. C. Wu, “Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).
  9. A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).
  10. X. Meng, C. Tai, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection,” Electron. Lett. 34(21), 2031–2032 (1998).
  11. E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
    [PubMed]
  12. C. Browning, K. Shi, S. Latkowski, P. M. Anandarajah, F. Smyth, B. Cardiff, R. Phelan, and L. P. Barry, “Performance improvement of 10 Gb/s direct modulation OFDM by optical injection using monolithically integrated discrete mode lasers,” Opt. Express 19(26), B289–B294 (2011).
    [PubMed]
  13. A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).
  14. H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.
  15. C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
  16. D. Liu, C. Sun, B. Xiong, and Y. Luo, “Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay,” Opt. Express 22(5), 5614–5622 (2014).
    [PubMed]
  17. T. P. Lee, C. Zah, R. Bhat, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–974 (1996).
  18. Y. Shi, R. Liu, S. Liu, and X. Zhu, “A Low-Cost and High-Wavelength-Precision Fabrication Method for Multiwavelength DFB Semiconductor Laser Array,” IEEE Photonics J. 6(3), 1–12 (2014).
  19. C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).
  20. J. H. Seo, Y. K. Seo, and W. Y. Choi, “Nonlinear distortion suppression in directly modulated DFB lasers by side-mode optical injection,” in IEEE MTT-S International Microwave Sympsoium Digest (IEEE 2001), pp. 555–558.
  21. Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
    [PubMed]
  22. Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
    [PubMed]
  23. Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 15(5), 2348–2353 (2007).
    [PubMed]
  24. J. Lu, S. Liu, Q. Tang, H. Xu, Y. Chen, and X. Chen, “Multi-wavelength distributed feedback laser array with very high wavelength-spacing precision,” Opt. Lett. 40(22), 5136–5139 (2015).
    [PubMed]
  25. J. H. Han and S. W. Park, “Experimental Study of a Hybrid Small-Signal Parameter Modeling and Extraction Method for a Microopto electronic Device,” IEEE-ASME T Mech. 20(6), 3285–3290 (2015).
  26. J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997).
  27. M. Xue Jun, C. Tai, and M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE. Trans. Microw. Theory 47(7), 1172–1176 (1999).
  28. C. Jianyao, R. J. Ram, and R. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE. J. Quantum Electron. 35(8), 1231–1237 (1999).
  29. K. Lau and A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45(10), 1034–1036 (1984).

2015 (6)

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

J. H. Han and S. W. Park, “Experimental Study of a Hybrid Small-Signal Parameter Modeling and Extraction Method for a Microopto electronic Device,” IEEE-ASME T Mech. 20(6), 3285–3290 (2015).

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

L. Yu, L. Guo, D. Lu, C. Ji, H. Wang, and L. Zhao, “Modulated bandwidth enhancement in an amplified feedback laser,” Chin. Opt. Lett. 13(5), 051401 (2015).

J. Lu, S. Liu, Q. Tang, H. Xu, Y. Chen, and X. Chen, “Multi-wavelength distributed feedback laser array with very high wavelength-spacing precision,” Opt. Lett. 40(22), 5136–5139 (2015).
[PubMed]

2014 (3)

D. Liu, C. Sun, B. Xiong, and Y. Luo, “Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay,” Opt. Express 22(5), 5614–5622 (2014).
[PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Y. Shi, R. Liu, S. Liu, and X. Zhu, “A Low-Cost and High-Wavelength-Precision Fabrication Method for Multiwavelength DFB Semiconductor Laser Array,” IEEE Photonics J. 6(3), 1–12 (2014).

2012 (1)

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).

2011 (2)

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

C. Browning, K. Shi, S. Latkowski, P. M. Anandarajah, F. Smyth, B. Cardiff, R. Phelan, and L. P. Barry, “Performance improvement of 10 Gb/s direct modulation OFDM by optical injection using monolithically integrated discrete mode lasers,” Opt. Express 19(26), B289–B294 (2011).
[PubMed]

2009 (1)

E. K. Lau, W. Liang Jie, and M. C. Wu, “Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).

2008 (2)

2007 (1)

2003 (2)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).

L. Hai-Han, H. Hsu-Hung, S. Heng-Sheng, and W. Ming-Chuan, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photonics Technol. Lett. 15(7), 1017–1019 (2003).

2002 (1)

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection,” IEEE Photonics Technol. Lett. 14(2), 233–235 (2002).

2000 (1)

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

1999 (2)

M. Xue Jun, C. Tai, and M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE. Trans. Microw. Theory 47(7), 1172–1176 (1999).

C. Jianyao, R. J. Ram, and R. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE. J. Quantum Electron. 35(8), 1231–1237 (1999).

1998 (2)

R. A. York and T. Itoh, “Injection- and phase-locking techniques for beam control antenna arrays,” IEEE Trans. Microw. Theory Tech. 46(11), 1920–1929 (1998).

X. Meng, C. Tai, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection,” Electron. Lett. 34(21), 2031–2032 (1998).

1997 (1)

J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997).

1996 (1)

T. P. Lee, C. Zah, R. Bhat, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–974 (1996).

1984 (1)

K. Lau and A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45(10), 1034–1036 (1984).

Alford, C.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Anandarajah, P.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection,” IEEE Photonics Technol. Lett. 14(2), 233–235 (2002).

Anandarajah, P. M.

Atsuki, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).

Barry, L. P.

C. Browning, K. Shi, S. Latkowski, P. M. Anandarajah, F. Smyth, B. Cardiff, R. Phelan, and L. P. Barry, “Performance improvement of 10 Gb/s direct modulation OFDM by optical injection using monolithically integrated discrete mode lasers,” Opt. Express 19(26), B289–B294 (2011).
[PubMed]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection,” IEEE Photonics Technol. Lett. 14(2), 233–235 (2002).

Bhat, R.

T. P. Lee, C. Zah, R. Bhat, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–974 (1996).

Browning, C.

Cajas, F.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Carcenac, F.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Cardiff, B.

Cartledge, J. C.

J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997).

Chang-Hasnain, C.

Chang-Hasnain, C. J.

Chen, X.

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

J. Lu, S. Liu, Q. Tang, H. Xu, Y. Chen, and X. Chen, “Multi-wavelength distributed feedback laser array with very high wavelength-spacing precision,” Opt. Lett. 40(22), 5136–5139 (2015).
[PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Y. Dai and X. Chen, “DFB semiconductor lasers based on reconstruction-equivalent-chirp technology,” Opt. Express 15(5), 2348–2353 (2007).
[PubMed]

Chen, Y.

J. Lu, S. Liu, Q. Tang, H. Xu, Y. Chen, and X. Chen, “Multi-wavelength distributed feedback laser array with very high wavelength-spacing precision,” Opt. Lett. 40(22), 5136–5139 (2015).
[PubMed]

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Chen, Y. K.

Chow, W. W.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Couraud, L.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Dai, Y.

Gaertner, T.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).

Guo, L.

Hai-Han, L.

L. Hai-Han, H. Hsu-Hung, S. Heng-Sheng, and W. Ming-Chuan, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photonics Technol. Lett. 15(7), 1017–1019 (2003).

Han, J. H.

J. H. Han and S. W. Park, “Experimental Study of a Hybrid Small-Signal Parameter Modeling and Extraction Method for a Microopto electronic Device,” IEEE-ASME T Mech. 20(6), 3285–3290 (2015).

Han, Y.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

Hao, Z.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

Helkey, R.

C. Jianyao, R. J. Ram, and R. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE. J. Quantum Electron. 35(8), 1231–1237 (1999).

Heng-Sheng, S.

L. Hai-Han, H. Hsu-Hung, S. Heng-Sheng, and W. Ming-Chuan, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photonics Technol. Lett. 15(7), 1017–1019 (2003).

Hou, L.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Hsu-Hung, H.

L. Hai-Han, H. Hsu-Hung, S. Heng-Sheng, and W. Ming-Chuan, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photonics Technol. Lett. 15(7), 1017–1019 (2003).

Itoh, T.

R. A. York and T. Itoh, “Injection- and phase-locking techniques for beam control antenna arrays,” IEEE Trans. Microw. Theory Tech. 46(11), 1920–1929 (1998).

Ji, C.

Jianyao, C.

C. Jianyao, R. J. Ram, and R. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE. J. Quantum Electron. 35(8), 1231–1237 (1999).

Jung, T.

H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection,” IEEE Photonics Technol. Lett. 14(2), 233–235 (2002).

Kawashima, K.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).

Kreissl, J.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).

Latkowski, S.

Lau, E. K.

Lau, K.

K. Lau and A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45(10), 1034–1036 (1984).

Launois, H.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Lebib, A.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Lee, T. P.

T. P. Lee, C. Zah, R. Bhat, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–974 (1996).

Lepore, A.

T. P. Lee, C. Zah, R. Bhat, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–974 (1996).

Li, H.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

Li, J.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Li, L.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Li, S.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Liang Jie, W.

E. K. Lau, W. Liang Jie, and M. C. Wu, “Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).

Liou, K. Y.

H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.

Liu, D.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

D. Liu, C. Sun, B. Xiong, and Y. Luo, “Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay,” Opt. Express 22(5), 5614–5622 (2014).
[PubMed]

Liu, R.

Y. Shi, R. Liu, S. Liu, and X. Zhu, “A Low-Cost and High-Wavelength-Precision Fabrication Method for Multiwavelength DFB Semiconductor Laser Array,” IEEE Photonics J. 6(3), 1–12 (2014).

Liu, S.

Lu, D.

Lu, J.

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

J. Lu, S. Liu, Q. Tang, H. Xu, Y. Chen, and X. Chen, “Multi-wavelength distributed feedback laser array with very high wavelength-spacing precision,” Opt. Lett. 40(22), 5136–5139 (2015).
[PubMed]

Luo, Y.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

D. Liu, C. Sun, B. Xiong, and Y. Luo, “Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay,” Opt. Express 22(5), 5614–5622 (2014).
[PubMed]

Manin-Ferlazzo, L.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Marsh, J. H.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Mejias, M.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Meng, X.

X. Meng, C. Tai, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection,” Electron. Lett. 34(21), 2031–2032 (1998).

Ming-Chuan, W.

L. Hai-Han, H. Hsu-Hung, S. Heng-Sheng, and W. Ming-Chuan, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photonics Technol. Lett. 15(7), 1017–1019 (2003).

Murakami, A.

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).

Overberg, M.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Parekh, D.

Park, S. W.

J. H. Han and S. W. Park, “Experimental Study of a Hybrid Small-Signal Parameter Modeling and Extraction Method for a Microopto electronic Device,” IEEE-ASME T Mech. 20(6), 3285–3290 (2015).

Peake, G.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Pépin, A.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Phelan, R.

Qian, Y.

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Qiu, B.

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Ram, R. J.

C. Jianyao, R. J. Ram, and R. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE. J. Quantum Electron. 35(8), 1231–1237 (1999).

Schell, M.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).

Shi, K.

Shi, Y.

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Y. Shi, R. Liu, S. Liu, and X. Zhu, “A Low-Cost and High-Wavelength-Precision Fabrication Method for Multiwavelength DFB Semiconductor Laser Array,” IEEE Photonics J. 6(3), 1–12 (2014).

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Skogen, E. J.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Smyth, F.

Srinivasan, R. C.

J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997).

Sun, C.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

D. Liu, C. Sun, B. Xiong, and Y. Luo, “Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay,” Opt. Express 22(5), 5614–5622 (2014).
[PubMed]

Sung, H. K.

H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.

Sung, H.-K.

Tai, C.

M. Xue Jun, C. Tai, and M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE. Trans. Microw. Theory 47(7), 1172–1176 (1999).

X. Meng, C. Tai, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection,” Electron. Lett. 34(21), 2031–2032 (1998).

Tanbun-Ek, T.

H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.

Tang, Q.

Tang, S.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Tauke-Pedretti, A.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Tishinin, D.

H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.

Torres, D.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Troppenz, U.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).

Tsang, W. T.

H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.

Vawter, G. A.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Vercesi, V.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).

Vieu, C.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Wang, H.

Wang, J.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

Wang, L.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

Wang, P.

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Wang, W.

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Wenisch, W.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).

Wong, L.

Wu, M. C.

E. K. Lau, W. Liang Jie, and M. C. Wu, “Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).

E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express 16(9), 6609–6618 (2008).
[PubMed]

E. K. Lau, L. Wong, X. Zhao, Y. K. Chen, C. J. Chang-Hasnain, and M. C. Wu, “Bandwidth Enhancement by Master Modulation of Optical Injection-Locked Lasers,” J. Lightwave Technol. 26(15), 2584–2593 (2008).

M. Xue Jun, C. Tai, and M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE. Trans. Microw. Theory 47(7), 1172–1176 (1999).

X. Meng, C. Tai, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection,” Electron. Lett. 34(21), 2031–2032 (1998).

H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.

Xiong, B.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

D. Liu, C. Sun, B. Xiong, and Y. Luo, “Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay,” Opt. Express 22(5), 5614–5622 (2014).
[PubMed]

Xu, H.

Xue Jun, M.

M. Xue Jun, C. Tai, and M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE. Trans. Microw. Theory 47(7), 1172–1176 (1999).

Yang, Z. S.

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

Yariv, A.

K. Lau and A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45(10), 1034–1036 (1984).

York, R. A.

R. A. York and T. Itoh, “Injection- and phase-locking techniques for beam control antenna arrays,” IEEE Trans. Microw. Theory Tech. 46(11), 1920–1929 (1998).

Yu, L.

Zah, C.

T. P. Lee, C. Zah, R. Bhat, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–974 (1996).

Zhang, F.

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

Zhang, T.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Zhang, Y.

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Zhao, L.

Zhao, X.

Zheng, J.

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

Y. Zhang, J. Zheng, F. Zhang, Y. Shi, J. Zheng, J. Lu, S. Liu, B. Qiu, and X. Chen, “Study on DFB semiconductor laser array integrated with grating reflector based on reconstruction-equivalent-chirp technique,” Opt. Express 23(3), 2889–2894 (2015).
[PubMed]

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Zhu, X.

Y. Shi, R. Liu, S. Liu, and X. Zhu, “A Low-Cost and High-Wavelength-Precision Fabrication Method for Multiwavelength DFB Semiconductor Laser Array,” IEEE Photonics J. 6(3), 1–12 (2014).

Appl. Phys. Lett. (1)

K. Lau and A. Yariv, “Intermodulation distortion in a directly modulated semiconductor injection laser,” Appl. Phys. Lett. 45(10), 1034–1036 (1984).

Appl. Surf. Sci. (1)

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1), 111–117 (2000).

Chin. Opt. Lett. (1)

Electron. Lett. (1)

X. Meng, C. Tai, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection,” Electron. Lett. 34(21), 2031–2032 (1998).

IEEE J. Quantum Electron. (1)

A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection,” IEEE J. Quantum Electron. 39(10), 1196–1204 (2003).

IEEE J. Sel. Top. Quantum Electron. (2)

E. K. Lau, W. Liang Jie, and M. C. Wu, “Enhanced Modulation Characteristics of Optical Injection-Locked Lasers: A Tutorial,” IEEE J. Sel. Top. Quantum Electron. 15(3), 618–633 (2009).

Y. Zhang, J. Zheng, Y. Shi, Y. Qian, J. Zheng, F. Zhang, P. Wang, B. Qiu, J. Lu, W. Wang, and X. Chen, “Study on Two-Section DFB Lasers and Laser Arrays Based on the Reconstruction Equivalent Chirp Technique and Their Application in Radio-Over-Fiber Systems,” IEEE J. Sel. Top. Quantum Electron. 21(6), 232–240 (2015).

IEEE Photonics J. (1)

Y. Shi, R. Liu, S. Liu, and X. Zhu, “A Low-Cost and High-Wavelength-Precision Fabrication Method for Multiwavelength DFB Semiconductor Laser Array,” IEEE Photonics J. 6(3), 1–12 (2014).

IEEE Photonics Technol. Lett. (4)

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s Directly Modulated Laser Operating at Low Driving Current: Buried-Heterostructure Passive Feedback Laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Improved performance of a hybrid radio/fiber system using a directly modulated laser transmitter with external injection,” IEEE Photonics Technol. Lett. 14(2), 233–235 (2002).

L. Hai-Han, H. Hsu-Hung, S. Heng-Sheng, and W. Ming-Chuan, “Fiber optical CATV system-performance improvement by using external light-injection technique,” IEEE Photonics Technol. Lett. 15(7), 1017–1019 (2003).

A. Tauke-Pedretti, G. A. Vawter, E. J. Skogen, G. Peake, M. Overberg, C. Alford, W. W. Chow, Z. S. Yang, D. Torres, and F. Cajas, “Mutual injection locking of monolithically integrated coupled-cavity DBR lasers,” IEEE Photonics Technol. Lett. 23(13), 908–910 (2011).

IEEE Trans. Microw. Theory Tech. (1)

R. A. York and T. Itoh, “Injection- and phase-locking techniques for beam control antenna arrays,” IEEE Trans. Microw. Theory Tech. 46(11), 1920–1929 (1998).

IEEE-ASME T Mech. (1)

J. H. Han and S. W. Park, “Experimental Study of a Hybrid Small-Signal Parameter Modeling and Extraction Method for a Microopto electronic Device,” IEEE-ASME T Mech. 20(6), 3285–3290 (2015).

IEEE. J. Quantum Electron. (1)

C. Jianyao, R. J. Ram, and R. Helkey, “Linearity and third-order intermodulation distortion in DFB semiconductor lasers,” IEEE. J. Quantum Electron. 35(8), 1231–1237 (1999).

IEEE. J. Sel. Top. Quantum Electron. (1)

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation Characteristics Enhancement of Monolithically Integrated Laser Diodes Under Mutual Injection Locking,” IEEE. J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).

IEEE. Trans. Microw. Theory (1)

M. Xue Jun, C. Tai, and M. C. Wu, “Improved intrinsic dynamic distortions in directly modulated semiconductor lasers by optical injection locking,” IEEE. Trans. Microw. Theory 47(7), 1172–1176 (1999).

J. Lightwave Technol. (3)

J. C. Cartledge and R. C. Srinivasan, “Extraction of DFB laser rate equation parameters for system simulation purposes,” J. Lightwave Technol. 15(5), 852–860 (1997).

T. P. Lee, C. Zah, R. Bhat, and A. Lepore, “Multiwavelength DFB laser array transmitters for ONTC reconfigurable optical network testbed,” J. Lightwave Technol. 14(6), 967–974 (1996).

E. K. Lau, L. Wong, X. Zhao, Y. K. Chen, C. J. Chang-Hasnain, and M. C. Wu, “Bandwidth Enhancement by Master Modulation of Optical Injection-Locked Lasers,” J. Lightwave Technol. 26(15), 2584–2593 (2008).

Opt. Express (5)

Opt. Lett. (1)

Sci. Rep. (1)

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4, 7377 (2014).
[PubMed]

Other (2)

J. H. Seo, Y. K. Seo, and W. Y. Choi, “Nonlinear distortion suppression in directly modulated DFB lasers by side-mode optical injection,” in IEEE MTT-S International Microwave Sympsoium Digest (IEEE 2001), pp. 555–558.

H. K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K. Y. Liou, and W. T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB lasers,” in International Topical Meeting on Microwave Photonics Proceedings, (IEEE, 2003), pp. 27–30.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 The schematic (a), photograph (b) and material structure (c) of the MOIL DFB laser chip.
Fig. 2
Fig. 2 (a) PI curve of ML and SL at 25 °C, (b) injection ratio against Im with Is = 50 mA.
Fig. 3
Fig. 3 Measured spectra of the MOIL DFB laser with Is = 50 mA and different Im (a) Im = 50 mA, (b) Im = 110 mA, (c) Im = 130 mA, (d) Im = 150 mA, (e) Im = 170 mA, (f) Im = 175 mA.
Fig. 4
Fig. 4 (a) Frequency of the ML and SL side-mode and (b) detuning frequency and SMSR of the MOIL DFB laser against Im with Is = 50 mA.
Fig. 5
Fig. 5 The experimental setup for frequency response and nonlinear distortions measurement. The inset is the photograph of the packaged laser. PD: photodetector, ESA: electrical signal analyzer, OSA: optical spectrum analyzer.
Fig. 6
Fig. 6 Measured frequency response of the MOIL DFB laser with Is = 50 mA and different Im .
Fig. 7
Fig. 7 (a) Subtracted frequency response obtained by subtracting the frequency response with Im = 140 mA from Im = 150 mA. The red line is the fitting curve, (b) normalized intrinsic frequency response of the MOIL DFB laser at different bias levels.
Fig. 8
Fig. 8 Extrinsic response of the parasitic network in the package.
Fig. 9
Fig. 9 The measured 1-dB compression point of the MOIL DFB laser at different bias levels, (a) Is = 50 mA, Im = 0 mA, (b) Is = 50 mA, Im = 150 mA.
Fig. 10
Fig. 10 (a) Measured spectrum of the second harmonic signal with Is = 50 mA, Im = 0 mA, (b) measured spectrum of the second harmonic signal with Is = 50 mA, Im = 150 mA.
Fig. 11
Fig. 11 Measured 2HD versus Im with Is = 50 mA.
Fig. 12
Fig. 12 (a) Spectrum of IMD3 signal with Is = 50 mA, Im = 0 mA, (b) spectrum of IMD3 signal with Is = 50 mA, Im = 150 m.
Fig. 13
Fig. 13 SFDR of the MOIL DFB laser at different bias state. In free running state, Is = 50 mA, Im = 0 mA, while in injection locked state, Is = 50 mA, Im = 150 mA.
Fig. 14
Fig. 14 Schematic of the ROF link based on the MOIL DFB laser. VSG: vector signal generator.
Fig. 15
Fig. 15 Analysis of the received signal with Is = 50 mA and (a) Im = 0 mA, (b) Im = 150 mA. The received optical power is fixed at 5.87 dBm in both states.
Fig. 16
Fig. 16 Measured EVM versus received optical power in free running and injection locking state

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ( ω ) = H I ( ω ) + H p ( ω )
H I ( ω ) = 10 log [ | T ( j ω + ω F P ) ( j ω j ω R + Γ / 2 ) ( j ω + j ω R + Γ / 2 ) | 2 ]
T = S 0 g z ( α sin ϕ 0 cos ϕ 0 )
H ( ω ) = H I 1 ( ω ) H I 2 ( ω ) = 10 log [ | T 1 ( j ω + ω F P 1 ) ( j ω j ω R 1 + Γ 1 / 2 ) ( j ω + j ω R 1 + Γ 1 / 2 ) | 2 ] 10 log [ | T 2 ( j ω + ω F P 2 ) ( j ω j ω R 2 + Γ 2 / 2 ) ( j ω + j ω R 2 + Γ 2 / 2 ) | 2 ]

Metrics