Abstract

Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control and a photonic lantern front end was achieved. An array of three single-mode fiber inputs was used to adaptively inject the appropriate superposition of input modes in a three-mode gain fiber to achieve the desired mode at the output. Mode fluctuations at high power were compensated by adjusting the relative phase, amplitude, and polarization of the single-mode fiber inputs. The outlook for further power scaling and adaptive-optic compensation is described.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic lantern adaptive spatial mode control in LMA fiber amplifiers

Juan Montoya, Chris Aleshire, Christopher Hwang, Nicolas K. Fontaine, Amado Velázquez-Benítez, Dale H. Martz, T.Y. Fan, and Dan Ripin
Opt. Express 24(4) 3405-3413 (2016)

The photonic lantern

T. A. Birks, I. Gris-Sánchez, S. Yerolatsitis, S. G. Leon-Saval, and R. R. Thomson
Adv. Opt. Photon. 7(2) 107-167 (2015)

Semi-guiding high-aspect-ratio core (SHARC) fiber amplifiers with ultra-large core area
for single-mode kW operation
in a compact coilable package

John R. Marciante, Vladimir V. Shkunov, and David A. Rockwell
Opt. Express 20(18) 20238-20254 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
    [PubMed]
  2. C. Jauregui, J. Limpert, and A. Tünnermann, “High power fibre lasers,” Nat. Photonics 7, 861 (2013).
  3. F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
    [PubMed]
  4. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [PubMed]
  5. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [PubMed]
  6. S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
    [PubMed]
  7. J. Montoya, C. Aleshire, C. Hwang, N. K. Fontaine, A. Velázquez-Benítez, D. H. Martz, T. Y. Fan, and D. Ripin, “Photonic lantern adaptive spatial mode control in LMA fiber amplifiers,” Opt. Express 24(4), 3405–3413 (2016).
    [PubMed]
  8. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
    [PubMed]
  9. D. Noordegraaf, P. M. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
    [PubMed]
  10. S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
    [PubMed]
  11. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
    [PubMed]
  12. M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22(12), 907–909 (1997).
    [PubMed]
  13. S. M. Redmond, D. J. Ripin, C. X. Yu, S. J. Augst, T. Y. Fan, P. A. Thielen, J. E. Rothenberg, and G. D. Goodno, “Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam,” Opt. Lett. 37(14), 2832–2834 (2012).
    [PubMed]
  14. J. Montoya, S. J. Augst, K. Creedon, J. Kansky, T. Y. Fan, and A. Sanchez-Rubio, “External cavity beam combining of 21 semiconductor lasers using SPGD,” Appl. Opt. 51(11), 1724–1728 (2012).
    [PubMed]
  15. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré, “Mode analysis with a spatial light modulator as a correlation filter,” Opt. Lett. 37(13), 2478–2480 (2012).
    [PubMed]
  16. B. Yang, H. Zhang, C. Shi, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and J. Chen, “Experimental Study of the Transverse Mode Instability in a 3kW-level Bidirectional-pumped All-fiber Laser Oscillator,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper JM5A.15.
  17. A. Brignon, Coherent Laser Beam Combining (Wiley-VCH, 2013).
  18. H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
    [PubMed]

2017 (1)

2016 (1)

2013 (2)

2012 (5)

2011 (2)

2010 (1)

2009 (1)

2007 (1)

2005 (1)

1997 (1)

Ahmed, M. A.

Aleshire, C.

Argyros, A.

Augst, S. J.

Birks, T. A.

Bland-Hawthorn, J.

Carhart, G. W.

Creedon, K.

Dietrich, T.

Duparré, M.

Eidam, T.

Englund, M.

Fan, T. Y.

Flamm, D.

Fontaine, N. K.

Forbes, A.

Goodno, G. D.

Graf, T.

Hwang, C.

Jansen, F.

Jauregui, C.

Kansky, J.

Leon-Saval, S. G.

Liem, A.

Limpert, J.

Martz, D. H.

Montoya, J.

Naidoo, D.

Nielsen, M. D.

Noordegraaf, D.

Otto, H. J.

Piehler, S.

Redmond, S. M.

Ricklin, J. C.

Ripin, D.

Ripin, D. J.

Rothenberg, J. E.

Ryf, R.

Sanchez-Rubio, A.

Sawodny, O.

Schmidt, O.

Schreiber, T.

Schulze, C.

Skovgaard, P. M.

Smith, A. V.

Smith, J. J.

Stutzki, F.

Thielen, P. A.

Tünnermann, A.

Velázquez-Benítez, A.

Vorontsov, M. A.

Wielandy, S.

Wirth, C.

Wittmüss, P.

Yu, C. X.

Appl. Opt. (1)

Nat. Photonics (1)

C. Jauregui, J. Limpert, and A. Tünnermann, “High power fibre lasers,” Nat. Photonics 7, 861 (2013).

Opt. Express (10)

S. Wielandy, “Implications of higher-order mode content in large mode area fibers with good beam quality,” Opt. Express 15(23), 15402–15409 (2007).
[PubMed]

D. Noordegraaf, P. M. Skovgaard, M. D. Nielsen, and J. Bland-Hawthorn, “Efficient multi-mode to single-mode coupling in a photonic lantern,” Opt. Express 17(3), 1988–1994 (2009).
[PubMed]

S. G. Leon-Saval, A. Argyros, and J. Bland-Hawthorn, “Photonic lanterns: a study of light propagation in multimode to single-mode converters,” Opt. Express 18(8), 8430–8439 (2010).
[PubMed]

A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
[PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[PubMed]

F. Jansen, F. Stutzki, H. J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[PubMed]

N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
[PubMed]

H. J. Otto, C. Jauregui, F. Stutzki, F. Jansen, J. Limpert, and A. Tünnermann, “Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector,” Opt. Express 21(14), 17285–17298 (2013).
[PubMed]

J. Montoya, C. Aleshire, C. Hwang, N. K. Fontaine, A. Velázquez-Benítez, D. H. Martz, T. Y. Fan, and D. Ripin, “Photonic lantern adaptive spatial mode control in LMA fiber amplifiers,” Opt. Express 24(4), 3405–3413 (2016).
[PubMed]

S. Piehler, T. Dietrich, P. Wittmüss, O. Sawodny, M. A. Ahmed, and T. Graf, “Deformable mirrors for intra-cavity use in high-power thin-disk lasers,” Opt. Express 25(4), 4254–4267 (2017).
[PubMed]

Opt. Lett. (4)

Other (2)

B. Yang, H. Zhang, C. Shi, R. Su, P. Ma, X. Wang, P. Zhou, X. Xu, and J. Chen, “Experimental Study of the Transverse Mode Instability in a 3kW-level Bidirectional-pumped All-fiber Laser Oscillator,” in Laser Congress 2017 (ASSL, LAC), OSA Technical Digest (online) (Optical Society of America, 2017), paper JM5A.15.

A. Brignon, Coherent Laser Beam Combining (Wiley-VCH, 2013).

Supplementary Material (3)

NameDescription
» Visualization 1       Mode control demonstration. Adaptive mode control using a photonic front end is used to generate a rotating LP11 mode. A spatial light modulator is used to project the correlation between the fiber output and the desired mode to generate feedback.
» Visualization 2       Video displays the mode fluctuations observed at 800 W using conventional preamplifier seeding. The gain fiber was loosely coiled with 200 mm diameters. The on-axis intensity exhibited periodic fluctuations. This same gain fiber was then used to i
» Visualization 3       Adaptive spatial mode control using a photonic lantern front end is used to stabilize the output at a pump-limited power of 1.27 kW. This video shows the output with the control system on, and then with the control system off.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photonic lantern coherent combining schematic.

Fig. 2
Fig. 2

Passive photonic lantern (prior to gain stage) output at select SPGD pinhole detector positions. Moving the detector off-axis allows for excitation of the LP11 modes as shown on the left and center. Moving the detector on-axis allows LP01 excitation.

Fig. 3
Fig. 3

(a) Mode oscillations measured by an on-axis detector using a single mode front-end. The threshold for the mode oscillations was 800 W. (b) SPGD compensation using a photonic lantern front end at a pump-limited 1.27 kW output power. With the control on, a stable on-axis intensity is obtained. With the control system turned off, the on-axis intensity reduces and fluctuates.

Fig. 4
Fig. 4

(a) Output power vs pump power for an amplifier without photonic lantern seeding (blue) referred to as a conventional amplifier and using photonic lantern mode control (red). The decreased slope in the conventional amplifier depicts a decrease in efficiency.

Fig. 5
Fig. 5

(Left) Typical output beam at pump-limited 1.27 kW with SPGD turned off. (Right) Output beam with SPGD turned on illustrating an increase in intensity on-axis.

Metrics