Abstract

Multi-aperture receiver with optical combining architecture is an effective approach to overcome the turbulent atmosphere effect on the performance of the free-space optical (FSO) communications, in which how to combine the multiple laser beams received by the sub-apertures efficiently is one of the key technologies. In this paper, we focus on the combining module based on fiber couplers, and propose the all-fiber coherent beam combining (CBC) with two architectures by using active phase locking. To validate the feasibility of the proposed combining module, corresponding experiments and simulations on the CBC of four laser beams are carried out. The experimental results show that the phase differences among the input beams can be compensated and the combining efficiency can be stably promoted by active phase locking in CBC with both of the two architectures. The simulation results show that the combining efficiency fluctuates when turbulent atmosphere is considered, and the effectiveness of the combining module decreases as the turbulence increases. We believe that the combining module proposed in this paper has great potential, and the results can provide significant advices for researchers when building such a multi-aperture receiver with optical combining architecture for FSO commutation systems.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-aperture digital coherent combining for free-space optical communication receivers

David J. Geisler, Timothy M. Yarnall, Mark L. Stevens, Curt M. Schieler, Bryan S. Robinson, and Scott A. Hamilton
Opt. Express 24(12) 12661-12671 (2016)

Combining module based on coherent polarization beam combining

Yan Yang, Chao Geng, Feng Li, and Xinyang Li
Appl. Opt. 56(7) 2020-2028 (2017)

Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity

Kangning Li, Jing Ma, Liying Tan, Siyuan Yu, and Chao Zhai
Appl. Opt. 55(17) 4649-4656 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. W. S. Chan, “Free-space optical communications,” J. Lightwave Technol. 24(12), 4750–4762 (2006).
  2. Z. Ghassemlooy, H. L. Minh, and M. Ijaz, “Free space optical communications,” Optical And Microwave Technologies for Telecommunication Networks, O. Strobel, ed. (Wiley, 2016), Chapter 10.4, pp. 349–377.
  3. G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, Inc., 2002).
  4. B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).
  5. R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).
  6. M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).
  7. C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
    [PubMed]
  8. W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
    [PubMed]
  9. J. Cao, X. Zhao, W. Liu, and H. Gu, “Performance analysis of a coherent free space optical communication system based on experiment,” Opt. Express 25(13), 15299–15312 (2017).
    [PubMed]
  10. A. Belmonte, “Capacity of coherent laser downlinks,” J. Lightwave Technol. 32(11), 2128–2132 (2014).
  11. J. Park, E. Lee, C. Chae, and G. Yoon, “Performance analysis of coherent free-space optical systems with multiple receivers,” IEEE Photonics Technol. Lett. 27(9), 1010–1013 (2015).
  12. Y. Yang, C. Geng, F. Li, and X. Li, “Combining module based on coherent polarization beam combining,” Appl. Opt. 56(7), 2020–2028 (2017).
    [PubMed]
  13. D. J. Geisler, T. M. Yarnall, M. L. Stevens, C. M. Schieler, B. S. Robinson, and S. A. Hamilton, “Multi-aperture digital coherent combining for free-space optical communication receivers,” Opt. Express 24(12), 12661–12671 (2016).
    [PubMed]
  14. K. Li, J. Ma, L. Tan, S. Yu, and C. Zhai, “Performance analysis of fiber-based free-space optical communications with coherent detection spatial diversity,” Appl. Opt. 55(17), 4649–4656 (2016).
    [PubMed]
  15. A. Belmonte and J. M. Kahn, “Sequential optimization of adaptive arrays in coherent laser communications,” J. Lightwave Technol. 31(9), 1383–1387 (2013).
  16. A. Belmonte, “Digital equalization of time-delay array receivers on coherent laser communications,” Opt. Lett. 42(2), 310–313 (2017).
    [PubMed]
  17. Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Coherent polarization beam combining approach based on polarization controlling in fiber devices,” IEEE Photonics Technol. Lett. 29(12), 945–948 (2017).
  18. T. W. Wu, W. Z. Chang, A. Galvanauskas, and H. G. Winful, “Dynamical, bidirectional model for coherent beam combining in passive fiber laser arrays,” Opt. Express 18(25), 25873–25886 (2010).
    [PubMed]
  19. C. Zhang, W. Chang, A. Galvanauskas, and H. G. Winful, “Simultaneous passive coherent beam combining and mode locking of fiber laser arrays,” Opt. Express 20(15), 16245–16257 (2012).
  20. J. Li, H. Zhao, Z. Chen, X. Wang, and X. Xu, “All-fiber active coherent combining via a fiber combiner,” Opt. Commun. 286, 273–276 (2012).
  21. R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).
  22. Y. Yang, C. Geng, F. Li, and X. Li, “Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers,” Acta Opt. Sin. 35, s106005 (2015).
  23. C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, “Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control,” Opt. Express 21(21), 25045–25055 (2013).
    [PubMed]
  24. F. Li, C. Geng, X. Li, and Q. Qiu, “Co-aperture transceiving of two combined beams based on adaptive fiber coupling control,” IEEE Photonics Technol. Lett. 27(17), 1790–1797 (2015).
  25. F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).
  26. B. Chen and X. Li, “Bandwidth of adaptive optics system based on stochastic parallel gradient descent algorithm,” Laser Optoelectron. Prog. 50, 030101 (2013).
  27. W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).
  28. R. Zhang, J. Wang, G. Zhao, and J. Lv, “Fiber-based free-space optical coherent receiver with vibration compensation mechanism,” Opt. Express 21(15), 18434–18441 (2013).
    [PubMed]
  29. D. Bykhovsky, “Simple generation of Gamma, Gamma–Gamma, and K distributions with exponential autocorrelation function,” J. Lightwave Technol. 34(9), 2106–2110 (2016).
  30. C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
    [PubMed]

2017 (5)

F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).

Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Coherent polarization beam combining approach based on polarization controlling in fiber devices,” IEEE Photonics Technol. Lett. 29(12), 945–948 (2017).

A. Belmonte, “Digital equalization of time-delay array receivers on coherent laser communications,” Opt. Lett. 42(2), 310–313 (2017).
[PubMed]

Y. Yang, C. Geng, F. Li, and X. Li, “Combining module based on coherent polarization beam combining,” Appl. Opt. 56(7), 2020–2028 (2017).
[PubMed]

J. Cao, X. Zhao, W. Liu, and H. Gu, “Performance analysis of a coherent free space optical communication system based on experiment,” Opt. Express 25(13), 15299–15312 (2017).
[PubMed]

2016 (5)

2015 (3)

J. Park, E. Lee, C. Chae, and G. Yoon, “Performance analysis of coherent free-space optical systems with multiple receivers,” IEEE Photonics Technol. Lett. 27(9), 1010–1013 (2015).

Y. Yang, C. Geng, F. Li, and X. Li, “Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers,” Acta Opt. Sin. 35, s106005 (2015).

F. Li, C. Geng, X. Li, and Q. Qiu, “Co-aperture transceiving of two combined beams based on adaptive fiber coupling control,” IEEE Photonics Technol. Lett. 27(17), 1790–1797 (2015).

2014 (4)

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

A. Belmonte, “Capacity of coherent laser downlinks,” J. Lightwave Technol. 32(11), 2128–2132 (2014).

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[PubMed]

2013 (4)

2012 (2)

J. Li, H. Zhao, Z. Chen, X. Wang, and X. Xu, “All-fiber active coherent combining via a fiber combiner,” Opt. Commun. 286, 273–276 (2012).

C. Zhang, W. Chang, A. Galvanauskas, and H. G. Winful, “Simultaneous passive coherent beam combining and mode locking of fiber laser arrays,” Opt. Express 20(15), 16245–16257 (2012).

2011 (1)

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).

2010 (2)

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).

T. W. Wu, W. Z. Chang, A. Galvanauskas, and H. G. Winful, “Dynamical, bidirectional model for coherent beam combining in passive fiber laser arrays,” Opt. Express 18(25), 25873–25886 (2010).
[PubMed]

2009 (1)

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

2006 (1)

Belmonte, A.

Boehmer, K.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Bykhovsky, D.

Cao, J.

Chae, C.

J. Park, E. Lee, C. Chae, and G. Yoon, “Performance analysis of coherent free-space optical systems with multiple receivers,” IEEE Photonics Technol. Lett. 27(9), 1010–1013 (2015).

Chan, V. W. S.

Chang, W.

Chang, W. Z.

Chen, B.

B. Chen and X. Li, “Bandwidth of adaptive optics system based on stochastic parallel gradient descent algorithm,” Laser Optoelectron. Prog. 50, 030101 (2013).

Chen, M.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[PubMed]

Chen, S.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[PubMed]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[PubMed]

Chen, Z.

J. Li, H. Zhao, Z. Chen, X. Wang, and X. Xu, “All-fiber active coherent combining via a fiber combiner,” Opt. Commun. 286, 273–276 (2012).

Czichy, R.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Dallmann, D.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Feldhaus, T.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Fields, R. A.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).

Freier, A.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Galvanauskas, A.

Geisler, D. J.

Geng, C.

Y. Yang, C. Geng, F. Li, and X. Li, “Combining module based on coherent polarization beam combining,” Appl. Opt. 56(7), 2020–2028 (2017).
[PubMed]

F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).

Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Coherent polarization beam combining approach based on polarization controlling in fiber devices,” IEEE Photonics Technol. Lett. 29(12), 945–948 (2017).

Y. Yang, C. Geng, F. Li, and X. Li, “Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers,” Acta Opt. Sin. 35, s106005 (2015).

F. Li, C. Geng, X. Li, and Q. Qiu, “Co-aperture transceiving of two combined beams based on adaptive fiber coupling control,” IEEE Photonics Technol. Lett. 27(17), 1790–1797 (2015).

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, “Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control,” Opt. Express 21(21), 25045–25055 (2013).
[PubMed]

Gregory, M.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).

Greulich, P.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Gu, H.

Hamilton, S. A.

Heine, F.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Hildebrand, U.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Huang, D.

Huang, G.

Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Coherent polarization beam combining approach based on polarization controlling in fiber devices,” IEEE Photonics Technol. Lett. 29(12), 945–948 (2017).

F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).

Kaempfner, H.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Kahn, J. M.

Kämpfner, H.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).

Kozlowski, D. A.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).

Lange, R.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Lee, E.

J. Park, E. Lee, C. Chae, and G. Yoon, “Performance analysis of coherent free-space optical systems with multiple receivers,” IEEE Photonics Technol. Lett. 27(9), 1010–1013 (2015).

Li, F.

F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).

Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Coherent polarization beam combining approach based on polarization controlling in fiber devices,” IEEE Photonics Technol. Lett. 29(12), 945–948 (2017).

Y. Yang, C. Geng, F. Li, and X. Li, “Combining module based on coherent polarization beam combining,” Appl. Opt. 56(7), 2020–2028 (2017).
[PubMed]

Y. Yang, C. Geng, F. Li, and X. Li, “Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers,” Acta Opt. Sin. 35, s106005 (2015).

F. Li, C. Geng, X. Li, and Q. Qiu, “Co-aperture transceiving of two combined beams based on adaptive fiber coupling control,” IEEE Photonics Technol. Lett. 27(17), 1790–1797 (2015).

Li, J.

J. Li, H. Zhao, Z. Chen, X. Wang, and X. Xu, “All-fiber active coherent combining via a fiber combiner,” Opt. Commun. 286, 273–276 (2012).

Li, K.

Li, X.

F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).

Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Coherent polarization beam combining approach based on polarization controlling in fiber devices,” IEEE Photonics Technol. Lett. 29(12), 945–948 (2017).

Y. Yang, C. Geng, F. Li, and X. Li, “Combining module based on coherent polarization beam combining,” Appl. Opt. 56(7), 2020–2028 (2017).
[PubMed]

Y. Yang, C. Geng, F. Li, and X. Li, “Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers,” Acta Opt. Sin. 35, s106005 (2015).

F. Li, C. Geng, X. Li, and Q. Qiu, “Co-aperture transceiving of two combined beams based on adaptive fiber coupling control,” IEEE Photonics Technol. Lett. 27(17), 1790–1797 (2015).

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[PubMed]

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, “Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control,” Opt. Express 21(21), 25045–25055 (2013).
[PubMed]

B. Chen and X. Li, “Bandwidth of adaptive optics system based on stochastic parallel gradient descent algorithm,” Laser Optoelectron. Prog. 50, 030101 (2013).

Lin, X.

Liu, C.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[PubMed]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[PubMed]

Liu, H.

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, “Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control,” Opt. Express 21(21), 25045–25055 (2013).
[PubMed]

Liu, W.

Liu, X.

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

Lunde, C. T.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).

Luo, Q.

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

Luo, W.

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, “Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control,” Opt. Express 21(21), 25045–25055 (2013).
[PubMed]

Lv, J.

Lv, Y.

Ma, J.

Ma, P.

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

Ma, Y.

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

Meyer, R.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Mu, J.

Muehlnikel, G.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Mueller, J.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Park, J.

J. Park, E. Lee, C. Chae, and G. Yoon, “Performance analysis of coherent free-space optical systems with multiple receivers,” IEEE Photonics Technol. Lett. 27(9), 1010–1013 (2015).

Qiu, Q.

F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).

F. Li, C. Geng, X. Li, and Q. Qiu, “Co-aperture transceiving of two combined beams based on adaptive fiber coupling control,” IEEE Photonics Technol. Lett. 27(17), 1790–1797 (2015).

Reinhardt, M.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Robinson, B. S.

Saucke, K.

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).

Schieler, C. M.

Seel, S.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Smutny, B.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Sterr, U.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Stevens, M. L.

Su, R.

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

Tan, L.

Tan, Y.

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, “Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control,” Opt. Express 21(21), 25045–25055 (2013).
[PubMed]

Wandernoth, B.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Wang, J.

Wang, L.

Wang, X.

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

J. Li, H. Zhao, Z. Chen, X. Wang, and X. Xu, “All-fiber active coherent combining via a fiber combiner,” Opt. Commun. 286, 273–276 (2012).

Weichert, A.

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

Wicker, J. M.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).

Winful, H. G.

Wong, R. L.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).

Wu, T. W.

Wu, Y.

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

Xian, H.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[PubMed]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[PubMed]

Xiao, H.

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

Xu, X.

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

J. Li, H. Zhao, Z. Chen, X. Wang, and X. Xu, “All-fiber active coherent combining via a fiber combiner,” Opt. Commun. 286, 273–276 (2012).

Yang, Y.

Y. Yang, C. Geng, F. Li, and X. Li, “Combining module based on coherent polarization beam combining,” Appl. Opt. 56(7), 2020–2028 (2017).
[PubMed]

Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Coherent polarization beam combining approach based on polarization controlling in fiber devices,” IEEE Photonics Technol. Lett. 29(12), 945–948 (2017).

F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).

Y. Yang, C. Geng, F. Li, and X. Li, “Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers,” Acta Opt. Sin. 35, s106005 (2015).

Yao, K.

Yarnall, T. M.

Yoon, G.

J. Park, E. Lee, C. Chae, and G. Yoon, “Performance analysis of coherent free-space optical systems with multiple receivers,” IEEE Photonics Technol. Lett. 27(9), 1010–1013 (2015).

Yu, S.

Yura, H. T.

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).

Zhai, C.

Zhang, C.

Zhang, R.

Zhao, G.

Zhao, H.

J. Li, H. Zhao, Z. Chen, X. Wang, and X. Xu, “All-fiber active coherent combining via a fiber combiner,” Opt. Commun. 286, 273–276 (2012).

Zhao, X.

Zhou, P.

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

Acta Opt. Sin. (1)

Y. Yang, C. Geng, F. Li, and X. Li, “Research of cascaded coherent combining of fiber lasers based on 3-dB fiber couplers,” Acta Opt. Sin. 35, s106005 (2015).

Appl. Opt. (2)

Chin. Phys. B (1)

W. Luo, C. Geng, Y. Wu, Y. Tan, Q. Luo, H. Liu, and X. Li, “Experimental demonstration of single-mode fiber coupling using adaptive fiber coupler,” Chin. Phys. B 23(1), 014207 (2014).

IEEE J. Sel. Top. Quantum Electron. (1)

R. Su, P. Zhou, X. Wang, Y. Ma, H. Xiao, P. Ma, X. Xu, and X. Liu, “High power narrow-linewidth nanosecond all-fiber lasers and their actively coherent beam combination,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0903913 (2014).

IEEE Photonics J. (1)

F. Li, C. Geng, G. Huang, Y. Yang, X. Li, and Q. Qiu, “Experimental demonstration of coherent combining with tip/tilt control based on adaptive space-to-fiber laser beam coupling,” IEEE Photonics J. 9(2), 7102812 (2017).

IEEE Photonics Technol. Lett. (3)

F. Li, C. Geng, X. Li, and Q. Qiu, “Co-aperture transceiving of two combined beams based on adaptive fiber coupling control,” IEEE Photonics Technol. Lett. 27(17), 1790–1797 (2015).

Y. Yang, C. Geng, F. Li, G. Huang, and X. Li, “Coherent polarization beam combining approach based on polarization controlling in fiber devices,” IEEE Photonics Technol. Lett. 29(12), 945–948 (2017).

J. Park, E. Lee, C. Chae, and G. Yoon, “Performance analysis of coherent free-space optical systems with multiple receivers,” IEEE Photonics Technol. Lett. 27(9), 1010–1013 (2015).

J. Lightwave Technol. (4)

Laser Optoelectron. Prog. (1)

B. Chen and X. Li, “Bandwidth of adaptive optics system based on stochastic parallel gradient descent algorithm,” Laser Optoelectron. Prog. 50, 030101 (2013).

Opt. Commun. (2)

J. Li, H. Zhao, Z. Chen, X. Wang, and X. Xu, “All-fiber active coherent combining via a fiber combiner,” Opt. Commun. 286, 273–276 (2012).

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21–24 (2016).
[PubMed]

Opt. Express (8)

T. W. Wu, W. Z. Chang, A. Galvanauskas, and H. G. Winful, “Dynamical, bidirectional model for coherent beam combining in passive fiber laser arrays,” Opt. Express 18(25), 25873–25886 (2010).
[PubMed]

C. Zhang, W. Chang, A. Galvanauskas, and H. G. Winful, “Simultaneous passive coherent beam combining and mode locking of fiber laser arrays,” Opt. Express 20(15), 16245–16257 (2012).

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express 22(13), 15554–15563 (2014).
[PubMed]

R. Zhang, J. Wang, G. Zhao, and J. Lv, “Fiber-based free-space optical coherent receiver with vibration compensation mechanism,” Opt. Express 21(15), 18434–18441 (2013).
[PubMed]

C. Geng, W. Luo, Y. Tan, H. Liu, J. Mu, and X. Li, “Experimental demonstration of using divergence cost-function in SPGD algorithm for coherent beam combining with tip/tilt control,” Opt. Express 21(21), 25045–25055 (2013).
[PubMed]

D. J. Geisler, T. M. Yarnall, M. L. Stevens, C. M. Schieler, B. S. Robinson, and S. A. Hamilton, “Multi-aperture digital coherent combining for free-space optical communication receivers,” Opt. Express 24(12), 12661–12671 (2016).
[PubMed]

W. Liu, K. Yao, D. Huang, X. Lin, L. Wang, and Y. Lv, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the greenwood frequency,” Opt. Express 24(12), 13288–13302 (2016).
[PubMed]

J. Cao, X. Zhao, W. Liu, and H. Gu, “Performance analysis of a coherent free space optical communication system based on experiment,” Opt. Express 25(13), 15299–15312 (2017).
[PubMed]

Opt. Lett. (1)

Proc. SPIE (3)

B. Smutny, H. Kaempfner, G. Muehlnikel, U. Sterr, B. Wandernoth, F. Heine, U. Hildebrand, D. Dallmann, M. Reinhardt, A. Freier, R. Lange, K. Boehmer, T. Feldhaus, J. Mueller, A. Weichert, P. Greulich, S. Seel, R. Meyer, and R. Czichy, “5.6 Gbps optical intersatellite communication link,” Proc. SPIE 7199, 719906 (2009).

R. A. Fields, D. A. Kozlowski, H. T. Yura, R. L. Wong, J. M. Wicker, and C. T. Lunde, “5.625 Gbps bidirectional laser communications measurements between the NFIRE Satellite and an Optical Ground Station,” Proc. SPIE 8184, 81840D (2011).

M. Gregory, F. Heine, H. Kämpfner, R. Lange, K. Saucke, and R. Meyer, “Inter-satellite and satellite-ground laser communication links based on homodyne BPSK,” Proc. SPIE 7587, 75970E (2010).

Other (2)

Z. Ghassemlooy, H. L. Minh, and M. Ijaz, “Free space optical communications,” Optical And Microwave Technologies for Telecommunication Networks, O. Strobel, ed. (Wiley, 2016), Chapter 10.4, pp. 349–377.

G. P. Agrawal, Fiber-Optic Communication Systems (John Wiley & Sons, Inc., 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Multi-aperture receiver with (a) digital combining architecture, and (b) optical combining architecture. LO: local oscillator.
Fig. 2
Fig. 2 Structural schematic diagram of the combining module with the integrated architecture.
Fig. 3
Fig. 3 Structural schematic diagram of the combining module with the distributed architecture.
Fig. 4
Fig. 4 Performance of the combining module: (a) combining efficiency and (b) combined optical power.
Fig. 5
Fig. 5 Experimental setup of CBC of four laser beams with the integrated architecture.
Fig. 6
Fig. 6 Experimental results of the output optical powers (a) P1; (b) P2; (c) P3; (d) P4.
Fig. 7
Fig. 7 Results of the calculated combining efficiency.
Fig. 8
Fig. 8 Experimental setup of the CBC of four laser beams with the distributed architecture.
Fig. 9
Fig. 9 Experimental results of the output optical powers (a) P1; (b) P2; (c) P3; (d) P4.
Fig. 10
Fig. 10 Results of the calculated combining efficiency.
Fig. 11
Fig. 11 Simulation results of the CBC of four input beams under the turbulent atmosphere conditions of (a) D/r0 = 1, (b) D/r0 = 3, (c) D/r0 = 5, (d) D/r0 = 7, and (e) D/r0 = 9.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I out1 = 1 2 [ I in1 + I in2 2 I in1 I in2 cos( Δδ+ π 2 ) ]
I out2 = 1 2 [ I in1 + I in2 +2 I in1 I in2 cos( Δδ+ π 2 ) ]
U i = U i +γΔ U i ( J + J )/2
η CBC = P 4 P 1 + P 2 + P 3 + P 4
Δ ϕ rms =2 J rms / J max
U i = U i γΔ U i ( J i+ J i )/2
I i = η i × I f_i
η i = | E O ( r ) F O ( r )ds | 2 | E O ( r ) | 2 ds × | F O ( r ) | 2 ds
E O ( r )=F[ E A ( r ) ]
E A ( r )= E s exp[ jφ( r ) ]
F O ( r )= 2 π ω 0 2 exp( r 2 ω 0 2 )
I f_i = π 4 D 2 × I rr
f( I rr )= 2 ( αβ ) α+β 2 Γ( α )Γ( β ) I rr α+β 2 1 Κ αβ ( 2 αβ I rr ), I rr 0
I sc1 = 1 2 ( I 1 + I 2 +2 I 1 I 2 )
I sc2 = 1 2 ( I 3 + I 4 +2 I 3 I 4 )
I c = 1 2 ( I sc1 + I sc2 +2 I sc1 I sc2 )
η c = I c I 1 + I 2 + I 3 + I 4
CL=10log( I c I 1 + I 2 + I 3 + I 4 )

Metrics