Abstract

We report transmission measurements of germanium on silicon waveguides in the 7.5–8.5 μm wavelength range, with a minimum propagation loss of 2.5 dB/cm at 7.575 μm. However, we find an unexpected strongly increasing loss at higher wavelengths, potential causes of which we discuss in detail. We also demonstrate the first germanium on silicon multimode interferometers operating in this range, as well as grating couplers optimized for measurement using a long wavelength infrared camera. Finally, we use an implementation of the “cut-back” method for loss measurements that allows simultaneous transmission measurement through multiple waveguides of different lengths, and we use dicing in the ductile regime for fast and reproducible high quality optical waveguide end-facet preparation.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Germanium-on-SOI waveguides for mid-infrared wavelengths

Usman Younis, Sudheer K. Vanga, Andy Eu-Jin Lim, Patrick Guo-Qiang Lo, Andrew A. Bettiol, and Kah-Wee Ang
Opt. Express 24(11) 11987-11993 (2016)

Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding

J. Soler Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich
Opt. Express 24(20) 22908-22916 (2016)

Germanium as a material for stimulated Brillouin scattering in the mid-infrared

C. Wolff, R. Soref, C.G. Poulton, and B.J. Eggleton
Opt. Express 22(25) 30735-30747 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
    [Crossref]
  2. A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5µm,” Appl. Phys. Lett. 97, 213501 (2010).
    [Crossref]
  3. F. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
    [Crossref] [PubMed]
  4. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
    [Crossref]
  5. A. Spott, J. Peters, M. L. Davenport, E. J. Stanton, C. D. Merritt, W. W. Bewley, I. Vurgaftman, C. S. Kim, J. R. Meyer, J. Kirch, L. J. Mawst, D. Botez, and J. E. Bowers, “Quantum cascade laser on silicon,” Optica 3, 545 (2016).
    [Crossref]
  6. J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908 (2016).
    [Crossref] [PubMed]
  7. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon. 4, 495–497 (2010).
    [Crossref]
  8. M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss sige graded index waveguides for mid-ir applications,” Opt. Express 22, 508–518 (2014).
    [Crossref] [PubMed]
  9. M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
    [Crossref]
  10. Y.-C. Chang, V. Paeder, L. Hvozdara, J.-M. Hartmann, and H. P. Herzig, “Low-loss germanium strip waveguides on silicon for the mid-infrared,” Opt. Lett. 37, 2883–2885 (2012).
    [Crossref] [PubMed]
  11. G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
    [Crossref]
  12. Tydex, “Tydex Germanium data sheet,” http://www.tydexoptics.com/pdf/Germanium.pdf .
  13. Tydex, “Tydex Silicon data sheet,” http://www.tydexoptics.com/pdf/Si.pdf .
  14. C. Alonso-Ramos, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, L. Zavargo-Peche, and R. Halir, “Efficient fiber-to-chip grating coupler for micrometric SOI rib waveguides,” Opt. Express 18, 15189 (2010).
    [Crossref] [PubMed]
  15. J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).
  16. D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).
    [Crossref]
  17. M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
    [Crossref]
  18. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [Crossref]
  19. T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Industry 113, 184 (1991).
    [Crossref]
  20. L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
    [Crossref]
  21. K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, and M. Imaeda, “Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3,” Opt. Lett. 28, 1344 (2003).
    [Crossref] [PubMed]
  22. V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40, 2016 (2015).
    [Crossref] [PubMed]
  23. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24, 1386 (2016).
    [Crossref] [PubMed]
  24. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891 (2006).
    [Crossref]
  25. S. Sakaguchi and S.-i. Todoroki, “Optical properties of GeO2 glass and optical fibers,” Appl. Opt. 36, 6809 (1997).
    [Crossref]
  26. R. Kurstjens, K. Dessein, and C. Quaeyhaegens, “Shelf life for ge wafers,” Proceedings of 10th European Space Power Conference : 13–17 April 2014Noordwijkerhout, the Netherlands (2014).
  27. E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
    [Crossref]
  28. F. A. Johnson, “Lattice absorption bands in silicon,” Proc. Phys. Soc. 73, 265 (1959).
    [Crossref]
  29. S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice bands in germanium,” Proc. Phys. Soc. 85, 153 (1965).
    [Crossref]
  30. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photon. J. 7, 1–14 (2015).
    [Crossref]
  31. D. B. Cuttriss, “Relation between surface concentration and average conductivity in diffused layers in germanium,” Bell System Tech. J. 40, 509–521 (1961).
    [Crossref]

2017 (1)

2016 (4)

2015 (4)

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photon. J. 7, 1–14 (2015).
[Crossref]

V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40, 2016 (2015).
[Crossref] [PubMed]

2014 (2)

M. Brun, P. Labeye, G. Grand, J.-M. Hartmann, F. Boulila, M. Carras, and S. Nicoletti, “Low loss sige graded index waveguides for mid-ir applications,” Opt. Express 22, 508–518 (2014).
[Crossref] [PubMed]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

2013 (2)

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (4)

C. Alonso-Ramos, A. Ortega-Moñux, I. Molina-Fernández, P. Cheben, L. Zavargo-Peche, and R. Halir, “Efficient fiber-to-chip grating coupler for micrometric SOI rib waveguides,” Opt. Express 18, 15189 (2010).
[Crossref] [PubMed]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon. 4, 495–497 (2010).
[Crossref]

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5µm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

2006 (1)

2003 (1)

1997 (2)

S. Sakaguchi and S.-i. Todoroki, “Optical properties of GeO2 glass and optical fibers,” Appl. Opt. 36, 6809 (1997).
[Crossref]

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

1995 (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

1991 (1)

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Industry 113, 184 (1991).
[Crossref]

1965 (1)

S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice bands in germanium,” Proc. Phys. Soc. 85, 153 (1965).
[Crossref]

1961 (1)

D. B. Cuttriss, “Relation between surface concentration and average conductivity in diffused layers in germanium,” Bell System Tech. J. 40, 509–521 (1961).
[Crossref]

1959 (1)

F. A. Johnson, “Lattice absorption bands in silicon,” Proc. Phys. Soc. 73, 265 (1959).
[Crossref]

Aghajani, A.

Alonso-Ramos, C.

Artacho, E.

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Atanackovic, P.

Baehr-Jones, T.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5µm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Bewley, W. W.

Bifano, T. G.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Industry 113, 184 (1991).
[Crossref]

Botez, D.

Boulila, F.

Boutami, S.

J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Bowers, J. E.

Brun, M.

Bucio, T. D.

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

Butement, J.

Cao, W.

Carpenter, L. G.

V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40, 2016 (2015).
[Crossref] [PubMed]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Carras, M.

Cassan, E.

Chang, Y.-C.

Cheben, P.

Chiles, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Chong, H. M. H.

Cooper, P. A.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Cuttriss, D. B.

D. B. Cuttriss, “Relation between surface concentration and average conductivity in diffused layers in germanium,” Bell System Tech. J. 40, 509–521 (1961).
[Crossref]

Davenport, M. L.

Dessein, K.

R. Kurstjens, K. Dessein, and C. Quaeyhaegens, “Shelf life for ge wafers,” Proceedings of 10th European Space Power Conference : 13–17 April 2014Noordwijkerhout, the Netherlands (2014).

Dominguez Bucio, T.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

Dow, T. A.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Industry 113, 184 (1991).
[Crossref]

Duan, G.-H.

J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Durantin, C.

J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Duvall, S. G.

Eggleton, B. J.

Fathpour, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Favreau, J.

J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Fedeli, J. M.

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

Fédéli, J.-M.

J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Fray, S. J.

S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice bands in germanium,” Proc. Phys. Soc. 85, 153 (1965).
[Crossref]

Gardes, F. Y.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Gates, J. C.

V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40, 2016 (2015).
[Crossref] [PubMed]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Grand, G.

Grillet, C.

Grillot, F.

Halir, R.

Haller, E. E.

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Hartmann, J.-M.

Herrero, C. P.

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Herzig, H. P.

Hochberg, M.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5µm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Holmes, C.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Hu, Y.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

Hudson, D.

Hvozdara, L.

Ilic, R.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5µm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Imaeda, M.

Itoh, K. M.

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Jackson, S. D.

Johnson, F. A.

S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice bands in germanium,” Proc. Phys. Soc. 85, 153 (1965).
[Crossref]

F. A. Johnson, “Lattice absorption bands in silicon,” Proc. Phys. Soc. 73, 265 (1959).
[Crossref]

Kawaguchi, T.

Ke, L.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Khirunenko, L. I.

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Khokhar, A. Z.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Kim, C. S.

Kip, D.

Kirch, J.

Kurstjens, R.

R. Kurstjens, K. Dessein, and C. Quaeyhaegens, “Shelf life for ge wafers,” Proceedings of 10th European Space Power Conference : 13–17 April 2014Noordwijkerhout, the Netherlands (2014).

Labeye, P.

Laval, S.

Li, F.

Littlejohns, C. G.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Liu, Y.

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5µm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

Ma, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Madden, S. J.

Magi, E.

Masaud, T. B.

Mashanovich, G. Z.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photon. J. 7, 1–14 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Mawst, L. J.

Merritt, C. D.

Meyer, J. R.

Mitchell, C. J.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Mittal, V.

Mizuuchi, K.

Moghe, Y.

Molina-Fernández, I.

Moss, D. J.

Murugan, G. S.

Nedeljkovic, M.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

J. S. Penades, A. Ortega-Moñux, M. Nedeljkovic, J. G. Wangüemert-Pérez, R. Halir, A. Z. Khokhar, C. Alonso-Ramos, Z. Qu, I. Molina-Fernández, P. Cheben, and G. Z. Mashanovich, “Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding,” Opt. Express 24, 22908 (2016).
[Crossref] [PubMed]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photon. J. 7, 1–14 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Nicoletti, S.

O’Brien, C.

Ortega-Moñux, A.

Paeder, V.

Pajot, B.

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Passaro, V. M. N.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

Peacock, A. C.

Penades, J. S.

Pennings, E.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Peters, J.

Qu, Z.

Quaeyhaegens, C.

R. Kurstjens, K. Dessein, and C. Quaeyhaegens, “Shelf life for ge wafers,” Proceedings of 10th European Space Power Conference : 13–17 April 2014Noordwijkerhout, the Netherlands (2014).

Quarrington, J. E.

S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice bands in germanium,” Proc. Phys. Soc. 85, 153 (1965).
[Crossref]

Ramírez, R.

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Read, A.

Reed, G. T.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

Reynolds, S. A.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Rogers, H. L.

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Rüter, C. E.

Sakaguchi, S.

Scattergood, R. O.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Industry 113, 184 (1991).
[Crossref]

Smith, P. G. R.

V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40, 2016 (2015).
[Crossref] [PubMed]

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Soldano, L.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[Crossref]

Soler Penades, J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photon. J. 7, 1–14 (2015).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon. 4, 495–497 (2010).
[Crossref]

Spott, A.

Stankovic, S.

G. Z. Mashanovich, C. J. Mitchell, J. S. Penades, A. Z. Khokhar, C. G. Littlejohns, W. Cao, Z. Qu, S. Stanković, F. Y. Gardes, T. B. Masaud, H. M. H. Chong, V. Mittal, G. S. Murugan, J. S. Wilkinson, A. C. Peacock, and M. Nedeljkovic, “Germanium mid-infrared photonic devices,” J. Lightwave Technol. 35, 624–630 (2017).
[Crossref]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

Stanton, E. J.

Sugita, T.

Suntsov, S.

Thomson, D. J.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

Todoroki, S.-i.

Topley, R.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

Troia, B.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

Vivien, L.

Volk, M. F.

Vurgaftman, I.

Wangüemert-Pérez, J. G.

Wilkinson, J. S.

Williams, N.

S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice bands in germanium,” Proc. Phys. Soc. 85, 153 (1965).
[Crossref]

Wilson, P. R.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

Yamamoto, K.

Ynduráin, F.

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Yoshino, T.

Yun, W.

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

Zavargo-Peche, L.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Spott, Y. Liu, T. Baehr-Jones, R. Ilic, and M. Hochberg, “Silicon waveguides and ring resonators at 5.5µm,” Appl. Phys. Lett. 97, 213501 (2010).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Bell System Tech. J. (1)

D. B. Cuttriss, “Relation between surface concentration and average conductivity in diffused layers in germanium,” Bell System Tech. J. 40, 509–521 (1961).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Z. Mashanovich, F. Y. Gardes, D. J. Thomson, Y. Hu, L. Ke, M. Nedeljkovic, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, S. Stankovic, R. Topley, S. A. Reynolds, W. Yun, B. Troia, V. M. N. Passaro, C. G. Littlejohns, T. Dominguez Bucio, P. R. Wilson, and G. T. Reed, “Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–12 (2015).
[Crossref]

IEEE Photon. J. (1)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of free-carrier electroabsorption and electrorefraction in germanium,” IEEE Photon. J. 7, 1–14 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (3)

D. J. Thomson, Y. Hu, G. T. Reed, and J. M. Fedeli, “Low Loss MMI Couplers for High Performance MZI Modulators,” IEEE Photon. Technol. Lett. 22, 1485–1487 (2010).
[Crossref]

M. Nedeljkovic, S. Stankovic, C. J. Mitchell, A. Z. Khokhar, S. A. Reynolds, D. J. Thomson, F. Y. Gardes, C. G. Littlejohns, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared thermo-optic modulators in SoI,” IEEE Photon. Technol. Lett. 26, 1352–1355 (2014).
[Crossref]

M. Nedeljkovic, J. S. Penades, C. J. Mitchell, A. Z. Khokhar, S. Stankovic, T. D. Bucio, C. G. Littlejohns, F. Y. Gardes, and G. Z. Mashanovich, “Surface-Grating-Coupled Low-Loss Ge-on-Si Rib Waveguides and Multimode Interferometers,” IEEE Photon. Technol. Lett. 27, 1040–1043 (2015).
[Crossref]

J. Eng. Industry (1)

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” J. Eng. Industry 113, 184 (1991).
[Crossref]

J. Lightwave Technol. (3)

J. Phys. D: Appl. Phys. (1)

L. G. Carpenter, H. L. Rogers, P. A. Cooper, C. Holmes, J. C. Gates, and P. G. R. Smith, “Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime,” J. Phys. D: Appl. Phys. 46, 475103 (2013).
[Crossref]

Nature Photon. (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nature Photon. 4, 495–497 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Optica (1)

Phys. Rev. B (1)

E. Artacho, F. Ynduráin, B. Pajot, R. Ramírez, C. P. Herrero, L. I. Khirunenko, K. M. Itoh, and E. E. Haller, “Interstitial oxygen in germanium and silicon,” Phys. Rev. B 56, 3820–3833 (1997).
[Crossref]

Proc. Phys. Soc. (2)

F. A. Johnson, “Lattice absorption bands in silicon,” Proc. Phys. Soc. 73, 265 (1959).
[Crossref]

S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice bands in germanium,” Proc. Phys. Soc. 85, 153 (1965).
[Crossref]

Proc. SPIE (1)

J. Favreau, C. Durantin, J.-M. Fédéli, S. Boutami, and G.-H. Duan, “Suspended mid-infrared fiber-to-chip grating couplers for SiGe waveguides,” Proc. SPIE 9753, 975319 (2016).

Other (3)

Tydex, “Tydex Germanium data sheet,” http://www.tydexoptics.com/pdf/Germanium.pdf .

Tydex, “Tydex Silicon data sheet,” http://www.tydexoptics.com/pdf/Si.pdf .

R. Kurstjens, K. Dessein, and C. Quaeyhaegens, “Shelf life for ge wafers,” Proceedings of 10th European Space Power Conference : 13–17 April 2014Noordwijkerhout, the Netherlands (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

a) Schematic diagram of the lateral view of the experimental setup. b) Schematic diagram of the photonic “cut-back” circuit for waveguide propagation loss measurement. Figure reprinted with permission from [11].

Fig. 2
Fig. 2

Black line with circles shows for different wavelengths the simulated waveguide width at which the 1st higher order TE mode appears, in a Ge-on-Si waveguide with height 3 μm and etch depth 1.8 μm at different wavelengths. The solid line (red) shows the simulated propagation loss for a waveguide at that same width and wavelength, with a Float Zone (FZ) Si substrate. The dotted line (blue) shows the simulated propagation loss for a waveguide at that same width and wavelength, but with a Czhochralski (CZ) Si substrate. The loss values only include loss coming from bulk material absorption of Ge and Si.

Fig. 3
Fig. 3

a) Simulated grating coupler response for 400 μm long grating with etch depth 1.0 μm, period = 2.0 μm and duty cycle = 0.7, showing fractions of power radiated upwards and reflected back into the access waveguide, for λ = 6.0–9.5 μm. b) Scanning electron microscope image of a fabricated grating coupler. The inset shows an expanded view of several of the time dependent haze defects that appear on the Ge surface over time.

Fig. 4
Fig. 4

Scanning electron microscope image of a diced waveguide facet.

Fig. 5
Fig. 5

a) Captured LWIR camera image with the QCL tuned to λ = 7.825 μm. Figure reprinted with permission from [11]. b) The same image, with the background image (i.e. when the laser is not emitting) subtracted.

Fig. 6
Fig. 6

a) Propagation loss (dB/cm) measured for Ge-on-Si waveguides at wavelengths between 7.5 and 8.5 μm. b) Effective cut-back loss measurement at a single wavelength, λ = 7.825 μm. The transmission is normalized to the transmission through the shortest waveguide. c) Multimode interferometer insertion loss measurement at λ = 7.9 μm, showing normalized transmission for chains of different numbers of MMIs. The insertion loss at this wavelength is 0.23±0.04 dB.

Fig. 7
Fig. 7

Estimated Ge-on-Si waveguide loss from sidewall roughness scattering, with an r.m.s roughness (σ) = 50 nm, and varying correlation length (Lc).

Metrics