Abstract

Optical diffraction tomography (ODT) provides three-dimensional refractive index (RI) tomograms of a transparent microscopic object. However, because of the finite numerical aperture of objective lenses, ODT has a limited access to diffracted light and suffers from poor spatial resolution, particularly along the axial direction. To overcome the limitation of the quality of RI tomography, we present an algorithm that accurately reconstructs RI tomography of a specimen with discrete and uniform RI, using prior information about the RI levels. Through simulations and experiments on various samples, including microspheres, red blood cells, and water droplets, we show that the proposed method can precisely reconstruct RI tomograms of samples which have discrete and homogenous RI distributions in the presence of the missing information and noise.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography

JooWon Lim, KyeoReh Lee, Kyong Hwan Jin, Seungwoo Shin, SeoEun Lee, YongKeun Park, and Jong Chul Ye
Opt. Express 23(13) 16933-16948 (2015)

Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging

Kyoohyun Kim, Wei Sun Park, Sangchan Na, Sangbum Kim, Taehong Kim, Won Do Heo, and YongKeun Park
Biomed. Opt. Express 8(12) 5688-5697 (2017)

Beyond Born-Rytov limit for super-resolution optical diffraction tomography

JooWon Lim, Abdul Wahab, GwangSik Park, KyeoReh Lee, YongKeun Park, and Jong Chul Ye
Opt. Express 25(24) 30445-30458 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).
  2. K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
    [PubMed]
  3. D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv, preprint 106328 (2017).
  4. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
  5. K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).
  6. T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10, 13–39 (2016).
  7. J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
    [PubMed]
  8. D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
    [PubMed]
  9. J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
    [PubMed]
  10. K. Kim, J. Yoon, and Y. Park, “Large-scale optical diffraction tomography for inspection of optical plastic lenses,” Opt. Lett. 41(5), 934–937 (2016).
    [PubMed]
  11. F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).
  12. M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
    [PubMed]
  13. M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).
  14. B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).
  15. Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, “Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy,” Opt. Lett. 42(7), 1321–1324 (2017).
    [PubMed]
  16. A. Kus, W. Krauze, and M. Kujawinska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20(11), 111216 (2015).
    [PubMed]
  17. S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40(22), 5407–5410 (2015).
    [PubMed]
  18. K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42(5), 999–1002 (2017).
    [PubMed]
  19. U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).
  20. J. Lim, A. Goy, M. Hasani Shoreh, M. Unser, and D. Psaltis, “Assessment of learning tomography using Mie theory,” arXiv:1705.10410 (2017).
  21. X. Ma, W. Xiao, and F. Pan, “Optical tomographic reconstruction based on multi-slice wave propagation method,” Opt. Express 25(19), 22595–22607 (2017).
    [PubMed]
  22. H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,”arXiv:1705.04281 (2017).
  23. U. S. Kamilov, D. H. Liu, H. Mansour, and P. T. Boufounos, “A recursive born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).
  24. E. Soubies, T.-A. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for optical diffraction tomography,” Opt. Express 25(18), 21786–21800 (2017).
    [PubMed]
  25. W. van Aarle, K. J. Batenburg, and J. Sijbers, “Automatic parameter estimation for the discrete algebraic reconstruction technique (DART),” IEEE Trans. Image Process. 21(11), 4608–4621 (2012).
    [PubMed]
  26. R. W. Gerchberg, “Super-resolution through Error Energy Reduction,” Int. J. Opt. 21, 709–720 (1974).
  27. A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circ. Syst. 22, 735–742 (1975).
  28. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt. 12(3), 555–563 (1973).
    [PubMed]
  29. Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
    [PubMed]
  30. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
    [PubMed]
  31. M. Friebel and M. Meinke, “Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration,” Appl. Opt. 45(12), 2838–2842 (2006).
    [PubMed]
  32. Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
    [PubMed]
  33. S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
    [PubMed]
  34. E. Nagao, O. Kaneko, and J. A. Dvorak, “Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy,” J. Struct. Biol. 130(1), 34–44 (2000).
    [PubMed]
  35. S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).
  36. K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. D. Heo, and Y. Park, “Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging,” bioRxiv, 186734, preprint (2017).
  37. Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
    [PubMed]
  38. T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at \labmda/10 resolution,” Optica 3, 609–612 (2016).
  39. K. Belkebir, P. C. Chaumet, and A. Sentenac, “Influence of multiple scattering on three-dimensional imaging with optical diffraction tomography,” J. Opt. Soc. Am. A 23(3), 586–595 (2006).
    [PubMed]
  40. J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
    [PubMed]
  41. S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
    [PubMed]
  42. S. Shin, K. Kim, T. Kim, J. Yoon, K. Hong, J. Park, and Y. Park, “Optical diffraction tomography using a digital micromirror device for stable measurements of 4D refractive index tomography of cells,” in SPIE BiOS (SPIE, 2016), paper 971814.
  43. V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002).
    [PubMed]
  44. A. J. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett. 6(8), 374–376 (1981).
    [PubMed]
  45. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
  46. K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
    [PubMed]
  47. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
    [PubMed]
  48. L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. 21, 21–43 (1974).
  49. M. Debailleul, V. Georges, B. Simon, R. Morin, and O. Haeberlé, “High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples,” Opt. Lett. 34(1), 79–81 (2009).
    [PubMed]
  50. D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).
  51. T. C. Wedberg, J. J. Stamnes, and W. Singer, “Comparison of the filtered backpropagation and the filtered backprojection algorithms for quantitative tomography,” Appl. Opt. 34(28), 6575–6581 (1995).
    [PubMed]

2017 (12)

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42(5), 999–1002 (2017).
[PubMed]

Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, “Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy,” Opt. Lett. 42(7), 1321–1324 (2017).
[PubMed]

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

B. Simon, M. Debailleul, M. Houkal, C. Ecoffet, J. Bailleul, J. Lambert, A. Spangenberg, H. Liu, O. Soppera, and O. Haeberlé, “Tomographic diffractive microscopy with isotropic resolution,” Optica 4, 460–463 (2017).

S. Chowdhury, W. J. Eldridge, A. Wax, and J. Izatt, “Refractive index tomography with structured illumination,” Optica 4, 537–545 (2017).

E. Soubies, T.-A. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for optical diffraction tomography,” Opt. Express 25(18), 21786–21800 (2017).
[PubMed]

X. Ma, W. Xiao, and F. Pan, “Optical tomographic reconstruction based on multi-slice wave propagation method,” Opt. Express 25(19), 22595–22607 (2017).
[PubMed]

2016 (10)

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

U. S. Kamilov, D. H. Liu, H. Mansour, and P. T. Boufounos, “A recursive born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10, 13–39 (2016).

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Kim, J. Yoon, and Y. Park, “Large-scale optical diffraction tomography for inspection of optical plastic lenses,” Opt. Lett. 41(5), 934–937 (2016).
[PubMed]

T. Zhang, C. Godavarthi, P. C. Chaumet, G. Maire, H. Giovannini, A. Talneau, M. Allain, K. Belkebir, and A. Sentenac, “Far-field diffraction microscopy at \labmda/10 resolution,” Optica 3, 609–612 (2016).

2015 (2)

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40(22), 5407–5410 (2015).
[PubMed]

A. Kus, W. Krauze, and M. Kujawinska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20(11), 111216 (2015).
[PubMed]

2014 (1)

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

2013 (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

2012 (2)

W. van Aarle, K. J. Batenburg, and J. Sijbers, “Automatic parameter estimation for the discrete algebraic reconstruction technique (DART),” IEEE Trans. Image Process. 21(11), 4608–4621 (2012).
[PubMed]

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[PubMed]

2010 (1)

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

2009 (1)

2008 (2)

D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

2006 (2)

2002 (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002).
[PubMed]

2001 (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[PubMed]

2000 (1)

E. Nagao, O. Kaneko, and J. A. Dvorak, “Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy,” J. Struct. Biol. 130(1), 34–44 (2000).
[PubMed]

1995 (1)

1982 (1)

1981 (1)

1975 (1)

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circ. Syst. 22, 735–742 (1975).

1974 (2)

R. W. Gerchberg, “Super-resolution through Error Energy Reduction,” Int. J. Opt. 21, 709–720 (1974).

L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. 21, 21–43 (1974).

1973 (1)

1969 (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).

Allain, M.

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[PubMed]

Auth, T.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Bailleul, J.

Barnea, I.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Barnes, B. M.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
[PubMed]

Batenburg, K. J.

W. van Aarle, K. J. Batenburg, and J. Sijbers, “Automatic parameter estimation for the discrete algebraic reconstruction technique (DART),” IEEE Trans. Image Process. 21(11), 4608–4621 (2012).
[PubMed]

Belkebir, K.

Bertrand, S.

D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).

Best, C. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Boufounos, P. T.

U. S. Kamilov, D. H. Liu, H. Mansour, and P. T. Boufounos, “A recursive born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,”arXiv:1705.04281 (2017).

Chang, G.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Chaumet, P. C.

Chen, H. C.

Chen, X.

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

Cheng, C. J.

Cho, S.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[PubMed]

Choi, C.

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

Choi, W.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

Chowdhury, S.

Cojoc, G.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[PubMed]

D’Ippolito, G.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Dao, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

Dardikman, G.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Dasari, R. R.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

Debailleul, M.

Devaney, A. J.

Diez-Silva, M.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

Dixson, R. G.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
[PubMed]

Duschl, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Dvorak, J. A.

E. Nagao, O. Kaneko, and J. A. Dvorak, “Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy,” J. Struct. Biol. 130(1), 34–44 (2000).
[PubMed]

Ecoffet, C.

Eldridge, W. J.

Feld, M. S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

Ferraro, P.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Fontana, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Friebel, M.

Gambale, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Georges, V.

Gerchberg, R. W.

R. W. Gerchberg, “Super-resolution through Error Energy Reduction,” Int. J. Opt. 21, 709–720 (1974).

Giovannini, H.

Girardo, S.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).

Godavarthi, C.

Goddard, L. L.

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10, 13–39 (2016).

Gov, N. S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Goy, A.

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

J. Lim, A. Goy, M. Hasani Shoreh, M. Unser, and D. Psaltis, “Assessment of learning tomography using Mie theory,” arXiv:1705.10410 (2017).

Guan, Y.

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

Guck, J.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[PubMed]

Guernth-Marschner, C.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Guo, P.

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

Habaza, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Haeberlé, O.

Hale, G. M.

Hasani Shoreh, M.

J. Lim, A. Goy, M. Hasani Shoreh, M. Unser, and D. Psaltis, “Assessment of learning tomography using Mie theory,” arXiv:1705.10410 (2017).

Henn, M. A.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
[PubMed]

Heo, J.

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Houkal, M.

Hur, J.

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

Ina, H.

Iolascon, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Izatt, J.

Jo, Y.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Jung, J.

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Kamilov, U. S.

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

U. S. Kamilov, D. H. Liu, H. Mansour, and P. T. Boufounos, “A recursive born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,”arXiv:1705.04281 (2017).

Kaneko, O.

E. Nagao, O. Kaneko, and J. A. Dvorak, “Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy,” J. Struct. Biol. 130(1), 34–44 (2000).
[PubMed]

Kang, S.-J.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

Käs, J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[PubMed]

Kim, D.

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

Kim, G.

Kim, K.

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42(5), 999–1002 (2017).
[PubMed]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

K. Kim, J. Yoon, and Y. Park, “Large-scale optical diffraction tomography for inspection of optical plastic lenses,” Opt. Lett. 41(5), 934–937 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40(22), 5407–5410 (2015).
[PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Kim, M. H.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

Kim, S.

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[PubMed]

Kim, T.

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10, 13–39 (2016).

Kim, Y.

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[PubMed]

Kirschbaum, M.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Kobayashi, S.

Korenstein, R.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Krauze, W.

A. Kus, W. Krauze, and M. Kujawinska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20(11), 111216 (2015).
[PubMed]

Kujawinska, M.

A. Kus, W. Krauze, and M. Kujawinska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20(11), 111216 (2015).
[PubMed]

Kus, A.

A. Kus, W. Krauze, and M. Kujawinska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20(11), 111216 (2015).
[PubMed]

Lambert, J.

Lauer, V.

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002).
[PubMed]

Lee, K.

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42(5), 999–1002 (2017).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Lee, S.

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Li, F.

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

Liang, Z.

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

Lim, J.

J. Lim, A. Goy, M. Hasani Shoreh, M. Unser, and D. Psaltis, “Assessment of learning tomography using Mie theory,” arXiv:1705.10410 (2017).

Lin, Y. C.

Liu, C. Y.

Liu, D.

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,”arXiv:1705.04281 (2017).

Liu, D. H.

U. S. Kamilov, D. H. Liu, H. Mansour, and P. T. Boufounos, “A recursive born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

Liu, G.

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

Liu, H.

Liu, H.-Y.

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,”arXiv:1705.04281 (2017).

Logan, B. F.

L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. 21, 21–43 (1974).

Lykotrafitis, G.

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

Ma, X.

Mahmood, H.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[PubMed]

Maire, G.

Mansour, H.

U. S. Kamilov, D. H. Liu, H. Mansour, and P. T. Boufounos, “A recursive born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,”arXiv:1705.04281 (2017).

Matthieu, D.

D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).

Meinke, M.

Memmolo, P.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Merola, F.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Miccio, L.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Moon, T. J.

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[PubMed]

Morin, R.

Mugnano, M.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Müller, P.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).

Nagao, E.

E. Nagao, O. Kaneko, and J. A. Dvorak, “Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy,” J. Struct. Biol. 130(1), 34–44 (2000).
[PubMed]

Oh, N.

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

Olivier, H.

D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).

Pack, C.-G.

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

Pan, F.

Papadopoulos, I. N.

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

Papoulis, A.

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circ. Syst. 22, 735–742 (1975).

Park, H.

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Park, J.-H.

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

Park, Y.

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

K. Lee, K. Kim, G. Kim, S. Shin, and Y. Park, “Time-multiplexed structured illumination using a DMD for optical diffraction tomography,” Opt. Lett. 42(5), 999–1002 (2017).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

S. Shin, K. Kim, K. Lee, S. Lee, and Y. Park, “Effects of spatiotemporal coherence on interferometric microscopy,” Opt. Express 25(7), 8085–8097 (2017).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Kim, J. Yoon, and Y. Park, “Large-scale optical diffraction tomography for inspection of optical plastic lenses,” Opt. Lett. 41(5), 934–937 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40(22), 5407–5410 (2015).
[PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[PubMed]

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

Pham, T.-A.

Popescu, G.

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10, 13–39 (2016).

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

Psaltis, D.

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

J. Lim, A. Goy, M. Hasani Shoreh, M. Unser, and D. Psaltis, “Assessment of learning tomography using Mie theory,” arXiv:1705.10410 (2017).

Qin, J.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
[PubMed]

Querry, M. R.

Safran, S. A.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Sardo, A.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Savoia, R.

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

Schürmann, M.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).

Sentenac, A.

Shaked, N. T.

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Shepp, L. A.

L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. 21, 21–43 (1974).

Shin, S.

Shoreh, M. H.

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

Sijbers, J.

W. van Aarle, K. J. Batenburg, and J. Sijbers, “Automatic parameter estimation for the discrete algebraic reconstruction technique (DART),” IEEE Trans. Image Process. 21(11), 4608–4621 (2012).
[PubMed]

Silver, R. M.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
[PubMed]

Simon, B.

Singer, W.

Soppera, O.

Soubies, E.

Spangenberg, A.

Stamnes, J. J.

Suresh, S.

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

Takeda, M.

Talneau, A.

Tian, Y.

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

Tu, H. Y.

Ulbricht, E.

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).

Unser, M.

E. Soubies, T.-A. Pham, and M. Unser, “Efficient inversion of multiple-scattering model for optical diffraction tomography,” Opt. Express 25(18), 21786–21800 (2017).
[PubMed]

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

J. Lim, A. Goy, M. Hasani Shoreh, M. Unser, and D. Psaltis, “Assessment of learning tomography using Mie theory,” arXiv:1705.10410 (2017).

van Aarle, W.

W. van Aarle, K. J. Batenburg, and J. Sijbers, “Automatic parameter estimation for the discrete algebraic reconstruction technique (DART),” IEEE Trans. Image Process. 21(11), 4608–4621 (2012).
[PubMed]

Vincent, G.

D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).

Vincent, L.

D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).

Vonesch, C.

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

Waller, L.

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,”arXiv:1705.04281 (2017).

Wax, A.

Wedberg, T. C.

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).

Xiao, W.

Yang, S.-A.

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

Yoon, H.

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

Yoon, J.

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

K. Kim, J. Yoon, and Y. Park, “Large-scale optical diffraction tomography for inspection of optical plastic lenses,” Opt. Lett. 41(5), 934–937 (2016).
[PubMed]

S. Shin, K. Kim, J. Yoon, and Y. Park, “Active illumination using a digital micromirror device for quantitative phase imaging,” Opt. Lett. 40(22), 5407–5410 (2015).
[PubMed]

Zhang, T.

Zhou, H.

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
[PubMed]

Zhou, R.

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10, 13–39 (2016).

Adv Sci (Weinh) (1)

M. Habaza, M. Kirschbaum, C. Guernth-Marschner, G. Dardikman, I. Barnea, R. Korenstein, C. Duschl, and N. T. Shaked, “Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation,” Adv Sci (Weinh) 4(2), 1600205 (2016).
[PubMed]

Appl. Opt. (3)

Biophys. J. (1)

J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” Biophys. J. 81(2), 767–784 (2001).
[PubMed]

IEEE Signal Process. Lett. (1)

U. S. Kamilov, D. H. Liu, H. Mansour, and P. T. Boufounos, “A recursive born approach to nonlinear inverse scattering,” IEEE Signal Process. Lett. 23, 1052–1056 (2016).

IEEE Trans. Circ. Syst. (1)

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circ. Syst. 22, 735–742 (1975).

IEEE Trans. Comput. Imaging (1)

U. S. Kamilov, I. N. Papadopoulos, M. H. Shoreh, A. Goy, C. Vonesch, M. Unser, and D. Psaltis, “Optical Tomographic Image Reconstruction Based on Beam Propagation and Sparse Regularization,” IEEE Trans. Comput. Imaging 2, 59–70 (2016).

IEEE Trans. Image Process. (1)

W. van Aarle, K. J. Batenburg, and J. Sijbers, “Automatic parameter estimation for the discrete algebraic reconstruction technique (DART),” IEEE Trans. Image Process. 21(11), 4608–4621 (2012).
[PubMed]

IEEE Trans. Nucl. Sci. (1)

L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl. Sci. 21, 21–43 (1974).

Int. J. Opt. (1)

R. W. Gerchberg, “Super-resolution through Error Energy Reduction,” Int. J. Opt. 21, 709–720 (1974).

J. Biomed. Opt. (2)

A. Kus, W. Krauze, and M. Kujawinska, “Active limited-angle tomographic phase microscope,” J. Biomed. Opt. 20(11), 111216 (2015).
[PubMed]

K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, “High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,” J. Biomed. Opt. 19(1), 011005 (2014).
[PubMed]

J. Biomed. Photonics Eng. (1)

K. Kim, J. Yoon, S. Shin, S. Lee, S.-A. Yang, and Y. Park, “Optical diffraction tomography techniques for the study of cell pathophysiology,” J. Biomed. Photonics Eng. 2, 020201 (2016).

J. Biophotonics (1)

M. Schürmann, G. Cojoc, S. Girardo, E. Ulbricht, J. Guck, and P. Müller, “3D correlative single-cell imaging utilizing fluorescence and refractive index tomography,” J. Biophotonics,  2017, 201700145 (2017).

J. Microsc. (1)

V. Lauer, “New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,” J. Microsc. 205(Pt 2), 165–176 (2002).
[PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Struct. Biol. (1)

E. Nagao, O. Kaneko, and J. A. Dvorak, “Plasmodium falciparum-infected erythrocytes: qualitative and quantitative analyses of parasite-induced knobs by atomic force microscopy,” J. Struct. Biol. 130(1), 34–44 (2000).
[PubMed]

J. Synchrotron Radiat. (1)

Z. Liang, Y. Guan, G. Liu, X. Chen, F. Li, P. Guo, and Y. Tian, “A modified discrete algebraic reconstruction technique for multiple grey image reconstruction for limited angle range tomography,” J. Synchrotron Radiat. 23(2), 606–616 (2016).
[PubMed]

Laser Photonics Rev. (1)

T. Kim, R. Zhou, L. L. Goddard, and G. Popescu, “Solving inverse scattering problems in biological samples by quantitative phase imaging,” Laser Photonics Rev. 10, 13–39 (2016).

Light Sci. Appl. (2)

F. Merola, P. Memmolo, L. Miccio, R. Savoia, M. Mugnano, A. Fontana, G. D’Ippolito, A. Sardo, A. Iolascon, A. Gambale, and P. Ferraro, “Tomographic flow cytometry by digital holography,” Light Sci. Appl. 6, e16241 (2017).

J. Qin, R. M. Silver, B. M. Barnes, H. Zhou, R. G. Dixson, and M. A. Henn, “Deep-subwavelength Nanometric Image Reconstruction using Fourier Domain Optical Normalization,” Light Sci. Appl. 5, e16038 (2016).
[PubMed]

Meas. Sci. Technol. (1)

D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, “Holographic microscopy and diffractive microtomography of transparent samples,” Meas. Sci. Technol. 19, 074009 (2008).

Methods (1)

D. Kim, N. Oh, K. Kim, S. Lee, C.-G. Pack, J.-H. Park, and Y. Park, “Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography,” Methods 2017,S1046 (2017).
[PubMed]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).

Opt. Express (3)

Opt. Lett. (6)

Optica (3)

Proc. Natl. Acad. Sci. U.S.A. (2)

Y. Park, C. A. Best, T. Auth, N. S. Gov, S. A. Safran, G. Popescu, S. Suresh, and M. S. Feld, “Metabolic remodeling of the human red blood cell membrane,” Proc. Natl. Acad. Sci. U.S.A. 107(4), 1289–1294 (2010).
[PubMed]

Y. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh, “Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum,” Proc. Natl. Acad. Sci. U.S.A. 105(37), 13730–13735 (2008).
[PubMed]

Sci. Rep. (3)

K. Kim, S. Lee, J. Yoon, J. Heo, C. Choi, and Y. Park, “Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes,” Sci. Rep. 6, 36815 (2016).
[PubMed]

J. Yoon, Y. Jo, M. H. Kim, K. Kim, S. Lee, S.-J. Kang, and Y. Park, “Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning,” Sci. Rep. 7(1), 6654 (2017).
[PubMed]

J. Hur, K. Kim, S. Lee, H. Park, and Y. Park, “Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques,” Sci. Rep. 7(1), 9306 (2017).
[PubMed]

Sensors (Basel) (1)

K. Lee, K. Kim, J. Jung, J. Heo, S. Cho, S. Lee, G. Chang, Y. Jo, H. Park, and Y. Park, “Quantitative phase imaging techniques for the study of cell pathophysiology: from principles to applications,” Sensors (Basel) 13(4), 4170–4191 (2013).
[PubMed]

Trends Biotechnol. (1)

S. Cho, S. Kim, Y. Kim, and Y. Park, “Optical imaging techniques for the study of malaria,” Trends Biotechnol. 30(2), 71–79 (2012).
[PubMed]

Other (6)

K. Kim, W. S. Park, S. Na, S. Kim, T. Kim, W. D. Heo, and Y. Park, “Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging,” bioRxiv, 186734, preprint (2017).

H.-Y. Liu, D. Liu, H. Mansour, P. T. Boufounos, L. Waller, and U. S. Kamilov, “SEAGLE: Sparsity-Driven Image Reconstruction under Multiple Scattering,”arXiv:1705.04281 (2017).

S. Shin, K. Kim, T. Kim, J. Yoon, K. Hong, J. Park, and Y. Park, “Optical diffraction tomography using a digital micromirror device for stable measurements of 4D refractive index tomography of cells,” in SPIE BiOS (SPIE, 2016), paper 971814.

D. Kim, S. Lee, M. Lee, J. Oh, S.-A. Yang, and Y. Park, “Refractive index as an intrinsic imaging contrast for 3-D label-free live cell imaging,” bioRxiv, preprint 106328 (2017).

G. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw-Hill, 2011).

J. Lim, A. Goy, M. Hasani Shoreh, M. Unser, and D. Psaltis, “Assessment of learning tomography using Mie theory,” arXiv:1705.10410 (2017).

Supplementary Material (1)

NameDescription
» Visualization 1       Visualizations of evaporating water drop over one hour

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Missing cone problem. (a) The finite numerical aperture of an imaging system results in limited access to the scattering signal from a sample. (b) Simulated scattering potential represented in Fourier space. (c) The RI map of a simulated silica bead retrieved from (b).
Fig. 2
Fig. 2 Schematic diagram of the ODT-DART algorithm. Step 1: 25 iterations of GP algorithm. Step 2: Intermediate discretization with sufficient number of discrete RI values. Step 3: 5 iterations of GP algorithm. Step 4: Final discretization with modified least squares Step 5: Voxel error correction after 3 iterations of Steps 1-4.
Fig. 3
Fig. 3 The numerical simulations and performances of ODT-DART in comparison to GP algorithm. (a-b) cross-sectional images of the RI maps of 5-μm-diameter microspheres (ns = 1.461) reconstructed by (a) GP and (b) ODT-DART. (c) The axial RI profile along the center of the reconstructed tomograms in (a-b). (d-e) cross-sectional images of the RI maps of 8-μm-diameter microsphere (ns = 1.4) encapsulating a 3-μm-diameter microsphere (ns = 1.461) reconstructed by (d) GP and (e) ODT-DART. The background medium was set to have RI of nm = 1.336. The left (right) images are the reconstructed tomograms in the absence (presence) of the white Gaussian noises (−10 dB) in the simulated sample fields. (f) The axial RI profile along the center of the reconstructed tomograms in (d-e).
Fig. 4
Fig. 4 Experimental results with a silica microsphere, a RBC and a Pf-RBC. (a-b) cross section images of the RI maps of a 5-μm-diameter silica microsphere suspended in water reconstructed by (a) GP and (b) ODT-DART. (c) 3D-rendered tomogram of (b). (d-e) Cross sections of a human RBC reconstructed by (c) GP and (d) ODT-DART. (f) 3D-rendered tomogram of (e). (g-h) Cross sections of a Pf-RBC in the trophozoite stage reconstructed by (g) GP and (h) ODT-DART. (i) 3D-rendered tomogram of (h).
Fig. 5
Fig. 5 (a-b) Cross sections of the 3-D RI map of a water droplet reconstructed by (a) GP, (b) GP with the geometric constraint, and (c) ODT-DART with the geometric constraint. (d) Volumes of an evaporating water drop as a function of time. Inlet: 3D tracking of the center-of-mass of the water drop in 3D. (e) Evaporating water drop over one hour (see Visualization 1).
Fig. 6
Fig. 6 (a) Schematic optical setup for reconstructing RI tomograms. M: mirror, L: convex lens, CL: condenser lens, OL: objective lens, BS: beam splitter, and R: reference beam. (b) A beam modulator unit. Left: 1st diffraction order from a digital micro-mirror device. Right: A pair of galvanometric mirrors. (c) Measured off-axis holograms at multiple angles and retrieved amplitude and phase images.
Fig. 7
Fig. 7 Limited performances of ODT-DART in simulations. (a) Comparison of tomograms of a 200-nm-diameter silica bead reconstructed by GP and ODT-DART. (b) The lateral and axial profile of phantom and reconstructed RI tomograms. (c-d) Reconstruction performance for 3D Shepp-Logan phantom with RI values of 1.39, 1.43, 1.47, and 1.51 using (c) GP and (d) ODT-DART.
Fig. 8
Fig. 8 Reconstruction of extinction coefficient κ using ODT-DART. (a-b) cross-sectional images of the κ maps of simulated 5-μm-diameter microspheres (ns = 1.461 + 0.01i) reconstructed by (a) GP and (b) ODT-DART. (c) Cross sectional κ maps of a Pf-RBC in Fig. 4 reconstructed by GP and ODT-DART.

Tables (2)

Tables Icon

Table 1 MATLAB pseudo-code for ODT-DART

Tables Icon

Table 2 Summarized specifications of data in simulations and experiments.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

T( n,R )={ n m , ifn< ( n m + n 1 )/2 n i,2i<j , if ( n i1 + n i )/2 n< ( n i + n i+1 )/2 n j , ifn ( n j1 + n i )/2 .
E(ψ)= 1 p {q F (0) (q)0} | F (0) (q) t=1 j ρ t B t (q) | 2 +ε t=1 j | ρ t | 2 ,
( 2π n m λ ) 2 [ ( n i new / n m ) 2 1 ]= ( εpI+ B B ) 1 ,
E(ψ) ρ k * =0= 2 p {q F (0) (q)0} ( F (0) (q) t=1 j ρ t B t (q) ) B k (q) * +2ε t=1 j ρ t ,
t=1 j ρ t ( εp+ {q F (1) (q)0} B k (q) * B t (q) ) = {q F (1) (q)0} F (0) (q) B k (q) * .
( εpI+ B B )ψ= B f.
Δx= λ n m sin θ scan +N A obj , Δz= 2λ 2 n m n m 2 n m 2 sin 2 θ scan Re[ n m 2 N A obj 2 ] .

Metrics