Abstract

WDM components fabricated on the silicon-on-insulator platform have transmission characteristics that are sensitive to dimensional errors and temperature variations due to the high refractive index and thermo-optic coefficient of Si, respectively. We propose the use of NH3-free SiNx layers to fabricate athermal (de)multiplexers based on angled multimode interferometers (AMMI) in order to achieve good spectral responses with high tolerance to dimensional errors. With this approach we have shown that stoichiometric and N-rich SiNx layers can be used to fabricate AMMIs with cross-talk <30dB, insertion loss <2.5dB, sensitivity to dimensional errors <120pm/nm, and wavelength shift <10pm/°C.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. Soler Penades, A. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich
Opt. Lett. 39(6) 1406-1409 (2014)

Angled-MMI-based wavelength splitters on silicon nitride waveguide platforms for fluorescence sensing

Jeong Hwan Song, Tangla D. Kongnyuy, Naser Hosseini, Pieter Neutens, Federico Buja, Roelof Jansen, and Xavier Rottenberg
Appl. Opt. 56(29) 8055-8060 (2017)

Silicon nitride O-band (de)multiplexers with low thermal sensitivity

Ge Gao, Daigao Chen, Shiqi Tao, Yinglu Zhang, Shanlin Zhu, Xi Xiao, and Jinsong Xia
Opt. Express 25(11) 12260-12267 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, and G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51, 1251–1256 (2012).
    [Crossref] [PubMed]
  2. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
    [Crossref]
  3. J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
    [Crossref]
  4. Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de) multiplexing based on dispersive self-imaging,” Opt. Lett. 36, 4488–4490 (2011).
    [Crossref] [PubMed]
  5. Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, and G. T. Reed, “Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure,” Appl. Phys. Lett. 102, 7–11 (2013).
    [Crossref]
  6. Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, a. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
    [Crossref] [PubMed]
  7. Y. Hu, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “The evolution of angled MMI structure on the SOI platform,” Proc. SPIE 8990, 89900E (2014).
  8. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601 (2009).
    [Crossref] [PubMed]
  9. T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
    [Crossref]
  10. C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).
  11. K. Debnath, T. Domínguez Bucio, A. Al-Attili, A. Z. Khokhar, S. Saito, and F. Y. Gardes, “Photonic crystal waveguides on silicon rich nitride platform,” Opt. Express 25, 3214–3221 (2017).
    [Crossref] [PubMed]
  12. A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
    [Crossref]
  13. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
    [Crossref]
  14. P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22, 370–378 (2016).
    [Crossref]
  15. A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
    [Crossref]
  16. N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
    [Crossref]
  17. J. Soole, M. Schlax, C. Narayanan, and R. Pafchek, “Athermalisation of silica arrayed waveguide grating multiplexers,” Electron. Lett. 39, 1182 (2003).
    [Crossref]
  18. N. Rouger, L. Chrostowski, and R. Vafaei, “Temperature effects on silicon-on-insulator (SOI) racetrack resonators: a coupled analytic and 2-D finite difference approach,” J. Lightwave Technol. 28, 1380–1391 (2010).
    [Crossref]
  19. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Opt. Express 17, 14627–14633 (2009).
    [Crossref] [PubMed]
  20. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38, 3878–3881 (2013).
    [Crossref] [PubMed]
  21. F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
    [Crossref]
  22. D. Dai, Z. Wang, J. F. Bauters, M.-C. Tien, M. J. R. Heck, D. J. Blumenthal, and J. E. Bowers, “Low-loss Si3N4 arrayed-waveguide grating (de)multiplexer using nano-core optical waveguides,” Opt. Express 19, 14130–14136 (2011).
    [Crossref] [PubMed]
  23. K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

2017 (2)

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

K. Debnath, T. Domínguez Bucio, A. Al-Attili, A. Z. Khokhar, S. Saito, and F. Y. Gardes, “Photonic crystal waveguides on silicon rich nitride platform,” Opt. Express 25, 3214–3221 (2017).
[Crossref] [PubMed]

2016 (2)

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22, 370–378 (2016).
[Crossref]

2015 (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

2014 (2)

2013 (3)

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38, 3878–3881 (2013).
[Crossref] [PubMed]

Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, and G. T. Reed, “Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure,” Appl. Phys. Lett. 102, 7–11 (2013).
[Crossref]

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (3)

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

N. Rouger, L. Chrostowski, and R. Vafaei, “Temperature effects on silicon-on-insulator (SOI) racetrack resonators: a coupled analytic and 2-D finite difference approach,” J. Lightwave Technol. 28, 1380–1391 (2010).
[Crossref]

2009 (3)

2007 (1)

J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

2003 (1)

J. Soole, M. Schlax, C. Narayanan, and R. Pafchek, “Athermalisation of silica arrayed waveguide grating multiplexers,” Electron. Lett. 39, 1182 (2003).
[Crossref]

2001 (1)

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

1999 (1)

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Ahn, H.

J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Al-Attili, A.

Arbabi, A.

Baets, R.

L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, and G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51, 1251–1256 (2012).
[Crossref] [PubMed]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref] [PubMed]

Bauer, J.

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

Bauer, M.

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

Bauters, J. F.

Blumenthal, D. J.

Bogaerts, W.

L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, and G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51, 1251–1256 (2012).
[Crossref] [PubMed]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref] [PubMed]

Bowers, J. E.

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Bucio, T. D.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Chen, X.

Chrostowski, L.

Cunningham, J. E.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Dai, D.

Debnath, K.

Domínguez Bucio, T.

K. Debnath, T. Domínguez Bucio, A. Al-Attili, A. Z. Khokhar, S. Saito, and F. Y. Gardes, “Photonic crystal waveguides on silicon rich nitride platform,” Opt. Express 25, 3214–3221 (2017).
[Crossref] [PubMed]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

Dong, P.

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22, 370–378 (2016).
[Crossref]

Dreyer, C.

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

Dumon, P.

L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, and G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51, 1251–1256 (2012).
[Crossref] [PubMed]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators byoverlaying a polymer cladding on narrowedwaveguides,” Opt. Express 17, 14627–14633 (2009).
[Crossref] [PubMed]

Finlayson, E. D.

Gardes, F.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Gardes, F. Y.

K. Debnath, T. Domínguez Bucio, A. Al-Attili, A. Z. Khokhar, S. Saito, and F. Y. Gardes, “Photonic crystal waveguides on silicon rich nitride platform,” Opt. Express 25, 3214–3221 (2017).
[Crossref] [PubMed]

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

Y. Hu, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “The evolution of angled MMI structure on the SOI platform,” Proc. SPIE 8990, 89900E (2014).

Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, and G. T. Reed, “Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure,” Appl. Phys. Lett. 102, 7–11 (2013).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de) multiplexing based on dispersive self-imaging,” Opt. Lett. 36, 4488–4490 (2011).
[Crossref] [PubMed]

Goddard, L. L.

Goh, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Han, X.

Heck, M. J. R.

Heideman, R. G.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Ho, R.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Hoekman, M.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Hu, Y.

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, a. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref] [PubMed]

Y. Hu, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “The evolution of angled MMI structure on the SOI platform,” Proc. SPIE 8990, 89900E (2014).

Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, and G. T. Reed, “Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure,” Appl. Phys. Lett. 102, 7–11 (2013).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de) multiplexing based on dispersive self-imaging,” Opt. Lett. 36, 4488–4490 (2011).
[Crossref] [PubMed]

Jenkins, R. M.

Jian, X.

Kaneko, A.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Keil, N.

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

Khokhar, A. Z.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

K. Debnath, T. Domínguez Bucio, A. Al-Attili, A. Z. Khokhar, S. Saito, and F. Y. Gardes, “Photonic crystal waveguides on silicon rich nitride platform,” Opt. Express 25, 3214–3221 (2017).
[Crossref] [PubMed]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, a. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref] [PubMed]

Kim, D. J.

J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Kim, G.

J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Koka, P.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Lacava, C.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Lee, J. M.

J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Leinse, A.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Lexau, J.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Li, G.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Li, T.

Mashanovich, G. Z.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, a. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref] [PubMed]

Y. Hu, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “The evolution of angled MMI structure on the SOI platform,” Proc. SPIE 8990, 89900E (2014).

Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, and G. T. Reed, “Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure,” Appl. Phys. Lett. 102, 7–11 (2013).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de) multiplexing based on dispersive self-imaging,” Opt. Lett. 36, 4488–4490 (2011).
[Crossref] [PubMed]

Mitchell, C. J.

Morthier, G.

Motooka, T.

Narayanan, C.

J. Soole, M. Schlax, C. Narayanan, and R. Pafchek, “Athermalisation of silica arrayed waveguide grating multiplexers,” Electron. Lett. 39, 1182 (2003).
[Crossref]

Ogawa, I.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Pafchek, R.

J. Soole, M. Schlax, C. Narayanan, and R. Pafchek, “Athermalisation of silica arrayed waveguide grating multiplexers,” Electron. Lett. 39, 1182 (2003).
[Crossref]

Park, S. H.

J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

Pathak, S.

Penades, J. S.

Petropoulos, P.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Qiu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Reed, G. T.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, a. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref] [PubMed]

Y. Hu, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “The evolution of angled MMI structure on the SOI platform,” Proc. SPIE 8990, 89900E (2014).

Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, and G. T. Reed, “Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure,” Appl. Phys. Lett. 102, 7–11 (2013).
[Crossref]

Y. Hu, R. M. Jenkins, F. Y. Gardes, E. D. Finlayson, G. Z. Mashanovich, and G. T. Reed, “Wavelength division (de) multiplexing based on dispersive self-imaging,” Opt. Lett. 36, 4488–4490 (2011).
[Crossref] [PubMed]

Richardson, D. J.

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Rouger, N.

Saito, S.

Schlax, M.

J. Soole, M. Schlax, C. Narayanan, and R. Pafchek, “Athermalisation of silica arrayed waveguide grating multiplexers,” Electron. Lett. 39, 1182 (2003).
[Crossref]

Schneider, J.

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

Schwetman, H.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Selvaraja, S.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

Selvaraja, S. K.

L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak, X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, and G. Morthier, “Athermal arrayed waveguide gratings in silicon-on-insulator by overlaying a polymer cladding on narrowed arrayed waveguides,” Appl. Opt. 51, 1251–1256 (2012).
[Crossref] [PubMed]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Shubin, I.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Soole, J.

J. Soole, M. Schlax, C. Narayanan, and R. Pafchek, “Athermalisation of silica arrayed waveguide grating multiplexers,” Electron. Lett. 39, 1182 (2003).
[Crossref]

Spring, A. M.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Stankovic, S.

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Tanaka, T.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Teng, J.

Thomson, D. J.

Y. Hu, T. Li, D. J. Thomson, X. Chen, J. S. Penades, a. Z. Khokhar, C. J. Mitchell, G. T. Reed, and G. Z. Mashanovich, “Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform,” Opt. Lett. 39, 1406–1409 (2014).
[Crossref] [PubMed]

Y. Hu, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “The evolution of angled MMI structure on the SOI platform,” Proc. SPIE 8990, 89900E (2014).

Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, and G. T. Reed, “Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure,” Appl. Phys. Lett. 102, 7–11 (2013).
[Crossref]

Thourhout, D. V.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Tien, M.-C.

Uenuma, M.

Vafaei, R.

Van Thourhout, D.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

Vos, K. D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

Wang, J.

Wang, L.

Wang, Z.

Wörhoff, K.

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Yamada, H.

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

Yao, H.

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

Yokoyama, S.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Yu, F.

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Zawadzki, C.

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

Zhang, H.

Zhao, M.

Zheng, X.

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Adv. Opt. Technol. (1)

K. Wörhoff, R. G. Heideman, A. Leinse, and M. Hoekman, “TriPleX: a versatile dielectric photonic platform,” Adv. Opt. Technol. 4, 189–207 (2015).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Qiu, A. M. Spring, F. Yu, and S. Yokoyama, “Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators,” Appl. Phys. Lett. 102, 051106 (2013).
[Crossref]

Y. Hu, F. Y. Gardes, D. J. Thomson, G. Z. Mashanovich, and G. T. Reed, “Coarse wavelength division (de)multiplexer using an interleaved angled multimode interferometer structure,” Appl. Phys. Lett. 102, 7–11 (2013).
[Crossref]

Electron. Lett. (2)

N. Keil, H. Yao, C. Zawadzki, J. Bauer, M. Bauer, C. Dreyer, and J. Schneider, “Athermal all-polymer arrayed-waveguide grating multiplexer,” Electron. Lett. 37, 579 (2001).
[Crossref]

J. Soole, M. Schlax, C. Narayanan, and R. Pafchek, “Athermalisation of silica arrayed waveguide grating multiplexers,” Electron. Lett. 39, 1182 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Baets, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16, 33–44 (2010).
[Crossref]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Subnanometer linewidth uniformity in silicon nanophotonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

P. Dong, “Silicon photonic integrated circuits for wavelength-division multiplexing applications,” IEEE J. Sel. Top. Quantum Electron. 22, 370–378 (2016).
[Crossref]

A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and I. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 5, 1227–1236 (1999).
[Crossref]

J. Light. Technol. (1)

J. M. Lee, D. J. Kim, H. Ahn, S. H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Light. Technol. 25, 2236–2243 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D. Appl. Phys. (1)

T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, “Material and optical properties of low-temperature NH 3 -free PECVD SiN x layers for photonic applications,” J. Phys. D. Appl. Phys. 50, 025106 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Proc. IEEE (1)

A. V. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. E. Cunningham, “Computer Systems Based on Silicon Photonic Interconnects,” Proc. IEEE 97, 1337–1361 (2009).
[Crossref]

Proc. SPIE (1)

Y. Hu, D. J. Thomson, F. Y. Gardes, G. Z. Mashanovich, and G. T. Reed, “The evolution of angled MMI structure on the SOI platform,” Proc. SPIE 8990, 89900E (2014).

Sci. Rep. (1)

C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Gardes, G. T. Reed, D. J. Richardson, and P. Petropoulos, “Si-rich Silicon Nitride for Nonlinear Signal Processing Applications,” Sci. Rep. 7, 22 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of an AMMI.

Fig. 2
Fig. 2

IL as a function Wa for the C and O bands when WMDW = 25µm and θt = 0.3rad.

Fig. 3
Fig. 3

Optimised Li for the: (a) O-band and (b) C-band when WMDW = 25µm with optimised θt.

Fig. 4
Fig. 4

Top view of the fabricated AMMI devices at the interfaces with the multimode waveguide.

Fig. 5
Fig. 5

Spectral response of the studied 3-channel AMMI devices on stoichiometric SiNx (n = 2) at a temperature of 20°C. (a) Simulated spectra (O-band), (b) simulated spectra (C-band), (c) measured spectra (O-band) and (d) measured spectra (C-band).

Fig. 6
Fig. 6

Central wavelength (λi) as a function of the refractive index of the SiNx layers.

Fig. 7
Fig. 7

Sensitivity of the spectral shift as a function of the fabrication error in the width of the AMMI’s multimode waveguide observed with devices fabricated on different material layers for the (a) O-band and (b) C-band.

Fig. 8
Fig. 8

Central wavelength as a function of temperature for AMMIs fabricated on different SiNx layers operating in the (a) O-band and (b) C-band.

Tables (5)

Tables Icon

Table 1 Optimised design parameters for the 3-channel AMMI

Tables Icon

Table 2 Optical properties of the SiNx layers. The refractive index (n) was estimated from ellipsometry measurements. The propagation losses (PL) were measured using the cutback method as described in [9].

Tables Icon

Table 3 Summary of the spectral parameters of AMMIs fabricated SiNx layers with different refractive indices.

Tables Icon

Table 4 Fabrication sensitivity for different WDM devices fabricated on SOI and SiNx. The waveguide geometry of the devices is specified by their width (W), height (H) and etch depth (ED). The sensitivity of the devices is given in both pm/nm and GHz/nm. (*This work)

Tables Icon

Table 5 Temperature sensitivity for different WDM devices. Their waveguide geometry is specified by width (W) and height (H). (*This work)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L i = 4 n e f f x W M D W 2 λ i ( i = 1 , 2 , 3 )

Metrics